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Abstract. The objective of this paper is to familiarize
readers with the basic analytical propagation model of
short optical pulses in optical fiber. Based on this model
simulation of propagation of the special type of pulse,
called a soliton, will be carried out. A soliton transmission
is especially attractive in the fiber optic
telecommunication systems as it does not change a pulses
shape during propagating right-down the fiber link to the
receiver. The model of very short pulse propagation is
based on the numerical solution of the nonlinear
Schroedinger equation (NLSE), although in some specific
cases it is possible to solve it analytically.
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1. Introduction
Solitary waves, sometimes simply called soliton, have been
a topic of theoretical and experimental study for many
years. Though this paper is related to fibre optics, in
reality solitary waves exist also in other field of science
like hydrodynamics, biology and plasma physics.
Historically the one who first observed a soliton wave was
James Scott Russel in 1834 when he accidentally noticed
in the narrow water canal a smoothly shaped water heap
that for his surprise was able to propagate in the canal
without a apparent change in its shape a few kilometres
along. The essence of propagation of this solitary wave
was not a long time understood until appropriate
mathematical model was conceived in the 1960’s together
with a way of solving nonlinear equation with the help of
inverse scattering method.

Now let us go back to the field of optics. Generally
speaking, there exist two forms of solitary waves,
depending on whether the light is being confined in space
or time. If the first is the case wave is referred to as spatial
soliton or in the second case as temporal soliton. Soliton
forming phenomenon stems from nonlinear properties of
medium where a particular wave is propagating. Namely,

in a field of optics it is Kerr effect that is responsible for
optical nonlinearities. In the case of spatial soliton the
natural property of light to disperse in space is being
proactively compensated by the nonlinearity of the
medium in such a way that higher intensity part of an
optical beam (typically in the center of Gaussian beam)
increase a value of refractive index of medium forming de
facto a core of waveguide that is responsible to confine in
reverse a dispersed light to the middle of the beam itself. It
can be easily intuitively understood that if the self induced
nonlinearity is too high the beam will get focused and on
the other hand if it is very small or none, beam will
disperse in space – a prevailing situation in many cases
where a beam does not have enough power density to
induce nonlinearity in a medium.

2. Mathematical Modeling of the
Solitary Wave

The propagation of light can be precisely described
mathematically with Maxwell equations. When equations
for magnetic and electric fields are combined together one
get [1], [2]:
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where c is the speed of light in the vacuum and e0 is the
vacuum permittivity. The induced polarization P consists
of two parts such that [1][2]:
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r

are
related to the electric filed by the general relations [1], [2],
[3], [4]:
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where c(1) and c(3)  are  the  first-  and  third-  order
susceptibility tensors.

3. Propagation of Soliton Pulse in
Optical Fibers

To better understand a soliton pulse propagation in optical
fiber it necessary to set up our modeling on the
mathematical expression (1). We will suppose, that a
solution for electric filed E have a form [1]:
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where F(X,Y) is transverse field distribution that
corresponds to the fundamental mode of single mode fibre.
A(Z,t) is along propagation axis Z and on time t dependent
amplitude of the mode.  After some math manipulations
one can come to the equation that governs pulse
propagation in optical fibres [1]:
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The parameters b1 a b2 include the effect of
dispersion to first and second orders, respectively.
Physically, b1=1/vg,  where  vg is group velocity associated
with the pulse and b2 takes into account the dispersion of
group velocity. For this reason, b2 is called the group
velocity dispersion (GVD) parameter.

Parameter g is nonlinear parameter that takes into
account the nonlinear properties of a fiber medium.
Paragmeter b1 is in real case always positive but on the
other hand parameters lZD and g can be in some specific
case either positive or negative. The parameter b1 is
closely associated in practice with better known parameter
called dispersion parameter – D (ps/nm/km). The relation
between them is in the form [1]:
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As we know, dispersion parameter D is a monotonically
increasing function of wavelength, crossing a zero point at
wavelength lZD, which is called a zero chromatic
dispersion wavelength. If a system operates with
wavelengths above lZD, where D is positive, b2 must be
negative and a fiber is said to work in anomalous
dispersion mode. If a fiber is operated below lZD, the D is
negative and b2 must be positive. In this case a fiber is said
to operate in normal dispersion mode. As regards the
nonlinear parameter g it can be generally either positive or
negative, depending on the material of the wave guide. For
silica fiber is parameter g positive but for some other
materials it can be negative. More specifically, equation
(6) has only two solution, in the form of either dark or

bright soliton. The bright soliton corresponds to the light
pulse but dark soliton is rather a pulse shaped dip in CW
light “background”. In other words, the dark soliton is in a
fact negation of the bright soliton. Where there is
maximum of light in the bright soliton, there is minimum
of the light in the dark soliton and vice versa.

The bright soliton can propagate in only such a
waveguide where there is either the positive nonlinearity
parameter g and anomalous dispersion or the negative
nonlinear parameter but normal dispersion. For a classical
silica fiber the first is the case.

4. The Soliton Pulse and the Simulation
of its Propagation in the Optical
Fiber

Equation (6) can be normalized in the form:
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using this transforms:
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where T0  is moving time window width (very often set to
the pulse width) and 2

2
0 / bTLD =  is dispersion length.

Using inverse scattering method reveals that solution
of above mentioned equation has a form:
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If N is integer, it represents the order of the soliton
pulse. Very interesting situation comes when N=1. In this
case of first order soliton, the pulse does not change its
shape at all as it propagates in optical fiber. In contrast
when N is higher than one, pulse shape is not stable and

change periodically with soliton period DLZ
20
p

= . At the

end  of  every  period  Z0 the soliton resembles its initial
simple pulse shape. It is evident that for
telecommunication purposes is the soliton of first order
most suitable, because in this application is necessary to
keep a pulse shape stable.

Parameter N, which defines the soliton order can be
further expressed by:
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where T0 [s] corresponds to input pulse width, P0[W] is
pulse peak power 2b [s2/m] takes into account group
velocity dispersion and g[(Wm)-1] is nonlinear parameter
of the fiber material.

I have studied a propagation of soliton pulses within
the optical fiber using a simulation tool Optsim form
ARTIS  In this case a equation (6) is solved numerically
using a split-step-Fourier method. The scheme used is
shown  on  Fig.  1.  As  can  be  seen,  I  have  used  a  soliton
generator (the most left side icon) that numerically
generates sequence of sech(t) pulses. The pulse width was
set to 10 ps with period of 400 ps. I have used a standard
single mode fiber model with a fiber length of 100 km. I
have set up two peak powers of the pulse, namely 100 mW
and 166 mW. As pulses satisfy a condition for the soliton
shape, it was only necessary to adjust appropriate pulse
width and peak power. According to the formula (11) and
for the case of first order soliton, we need:
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when real values are substituted to the above equation, in
particular T0=10 ps, b2= -20 ps2/km and g=1,2 W-1km-1

the adequate power to reach first order soliton regime is
approximately 166 mW. In other words if a sech(t) pulse
have this peak power one should at least according to
theory have a first order soliton that is transmitted
through a fiber unchanged in shape. To verify this I have
used in above model a fiber without a loss, it is possible of
course only in simulations not in the practice. In the
reality it would be necessary to deploy optical amplifiers
(like EDFA or Raman, or both in combination) to
overcome the loss in the real fiber link and keep the power
of the soliton in required limits, otherwise the pulse will
start to spread again, the effect of nonlinearity will be not
so strong to effectively suppress unwelcome influence of
the fiber chromatic dispersion.

Fig. 1: Simulation of soliton in fiber.

To illustrate creation of the soliton I have used the
scheme on Fig. 1. The pulse shape can be seen on Fig. 2.

The right couple of overlapping (higher one above other)
pulses corresponds to the input. These pulses were in
sequence sent to 100 km section of the single mode fiber
link.

Fig. 2: Simulation of soliton in fiber.

The one with the lower power (100 mW) relates to
the lower output pulse that is shown at the left side of the
picture. It is evident that in this case the pulse undergoes
spreading caused by chromatic dispersion and peak power
is not yet high enough to compensate dispersion. On the
other hand, if one increase optical power it is possible to
get to the point, where the nonlinearity entirely
compensate dispersion and the pulse propagates in the
fiber link without any change in the shape, except a small
increase in its amplitude. It is worth to mention right now,
that this increase in amplitude is temporal phenomenon
because if one would have study the pulse propagation
more carefully it would be revealed that its peak oscillates
until reaching a point of steady amplitude. This happens
mostly in cases when the input pulse does not resemble the
exact soliton form. The beauty of a soliton is among other
things in its ability to reassemble original shape despite of
some disturbing factors acting upon it.

5. Conclusion
In this paper a very basic analysis of solition transmission
and its dynamics in the optical fiber was performed. It has
been shown by simulation that bright soliton can form in
classical optical single mode fiber and in the case of zero
loss it can propagate without a change of its shape. As
result it is possible to overcome issue with influence of the
dispersion on pulse spreading and achieve a much longer
transmission distances and also increase line capacity.
However, the application of soliton transmission is not
entirely without problems. Soliton pulses should be apart
in time considerably to avoid excessive overlapping. If
soliton’s overlap is not sufficiently suppressed solitons will
have an effect on the transmission of themselves in a way
to cause individual soliton’s group velocity to vary along
the line and resulting in increased system jitter.
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