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Abstract. In this paper spectral subtractive method and
some of its modification are compared. Performance of
spectral subtraction, its limitations, artifacts introduced
by it, and spectral subtraction modifications for
eliminating these artifacts are discussed in the paper in
details. The algorithms are compared based on SNR
improvement introduced by them. Spectrograms of speech
enhanced by the algorithms, which show the algorithms
performance and degree of speech distortion, are also
presented.
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1. Introduction
The speech processing systems used to communicate or
store speech are usually designed for a noise free
environment but in a real-world environment, the presence
of background interference in the form of additive
background and channel noise drastically degrades the
performance of these systems, causing inaccurate
information exchange and listener’s fatigue. Speech
enhancement algorithms attempt to improve the
performance of communication systems when their input
or output signals are corrupted by noise. The main
objective of speech enhancement or noise reduction is to
improve one or more perceptual aspects of speech, such as
the speech quality or intelligibility. It is usually difficult to
reduce noise without distorting speech and thus, the
performance of speech enhancement systems is limited by
the tradeoff between speech distortion and noise reduction.
The complexity and ease of implementation of any
proposed scheme is another important criterion especially
since the majority of the speech enhancement and noise
reduction algorithms find applications in real-time
portable systems like cellular phones, hearing aids, hands
free kits etc. The numerous of speech enhancement
techniques have been developed based on short-time
spectral attenuation, speech modeling, wavelet

transformation, and etc [1]. The spectral subtraction
method has been one of the most well-known techniques
for noise reduction. Due to its minimal complexity and
relatively ease in implementation, it has been in the
spotlight over the past years.

2. Basic Principle of Spectral
Subtraction

Spectral subtraction is build upon the assumption that the
noise signal and the speech signal are uncorrelated signals
added together to form the noisy speech signal [2]. The
principle of the spectral subtraction method is based on
estimating clean speech power spectrum by subtracting the
noise power spectrum from the speech power spectrum
that includes noise. We assume to have a speech signal
x(n) corrupted by an additive noise d(n). Then the received
noisy signal y(n) is described by
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In the frequency domain, with their respective
Fourier transforms, the power spectrum of the noisy signal
can be represented as:
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where Y (ω), X (ω), D (ω) are DFT magnitudes of y(n),
x(n), d(n) respectively, D (ω)* and  X (ω)* represent the
complex conjugates of D (ω) and X (ω) respectively. If we
assume that d(n) is uncorrelated with x(n) , then the terms
X (ω)D (ω)* and  X (ω)*D (ω) are reduced to zero. Power
spectrum of the noise speech D (ω) cannot be obtained
directly, but can be estimated during speech pauses (when
y(n)=d(n)). The algorithm for separating conversational
speech signal to speech and silence regions is called the
voice activity detector (VAD). The estimation of noise

signal power spectrum can be denoted by
2

)(ˆ wD . Thus

from the above based assumptions, the estimate of clean
speech can be given as (3):
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Fig. 1: General representation of spectral subtraction.

Alternatively a more general form is given by
generalizing the exponent from 2 to a

aaa
DYX )(ˆ)()(ˆ www -= , (4)

where the power spectrum is exchanged for a general form
of spectral density. Once the estimate of the clean speech
is obtained in the spectral domain with the (4) the
enhanced speech signal is obtained by inverse DFT
transformation of )(ˆ wX . Since the human ear is not
sensitive to phase errors of the speech, the noisy speech
phase can be used as an approximation to the clean speech
phase, for reconstruction enhanced speech from its
spectrum. Thus a general form of the estimated speech in
frequency domain can be written as:
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Figure 1 shows a block diagram of the spectral
subtraction method. The processing, is carried out on a
short-time basis (frame-by-frame), therefore, a time-
limited window should be applied to input noisy speech
signal at the beginning of the algorithm, and overlap add
at the end is done to reconstruct the speech estimate in the
time domain.

3. Noise Estimation and Speech/Silence
Detection

A practical speech enhancement system consists of two
major components, the estimation of noise power
spectrum, and the estimation of speech. Therefore, a
critical component of any frequency domain enhancement
algorithm is the estimation of the noise power spectrum. In
single channel noise reduction/speech enhancement
systems, most algorithms require an estimation of average
noise spectrum, and since a secondary channel is not
available this estimation of the noise spectrum is usually
performed during speech pauses. This requires a reliable
speech/silence detector. The speech/silence detection.

Scheme can be a determining factor for the
performance of the whole system of noise reduction based
on spectral subtraction. The speech/silence detection is
necessary to determine frames of speech pauses or noise
only frames, to allow an update of the noise estimate. If
the speech/silence decision is not correct then speech
echoes and residual noise tends to be present in the
enhanced speech. Typically, in recognizing the speech and
noise segments of a speech signal, its energy level [3],
pitch, zero crossing rate, statistical and spectral properties
are used. The basic principle of a speech/silence detector is
that it extracts measured features or quantities from the
input signal and then compares these values with
thresholds usually extracted from noise-only periods.
Voice activity (VAD=1) is declared if the measured values
exceed the thresholds. Otherwise, no speech activity or
noise, silence (VAD=0) is present. Voice activity detector
(VAD) tends to follow a common paradigm comprising a
pre-processing stage, a feature-extraction stage, a
threshold comparison stage, and an output-decision stage.
A general block diagram of a VAD design is shown in Fig.
2.

Fig. 2: Block diagram of a basic VAD design.

4. Limitation of Spectral Subtraction
Noise spectrum estimate is obtained from the non-active
regions of noisy speech. This assumption is valid for the
case of stationary noise in which the noise spectrum does
not vary much over time. Traditional VADs track the
noise only frames of the noisy speech to update the noise
estimate. But the update of noise estimate in those
methods is limited to speech absent frames. This is not
enough for the case of non-stationary noise in which the
power spectrum of noise varies even during speech
activity.

Spectral subtraction performance is limited by the
accuracy of noise estimation, which additionally is limited
by the performance of speech/pause detectors [4]. VAD
performance degrades significantly at lower SNR.
However, the main problem with spectral subtraction is the
processing distortions caused by random variations of the
noise spectrum. Irrespective of the methods used for
estimating the noise statistics, the true short spectrum of
the noise will always have a finite variance. Thus the noise
estimate will always be over or under the estimate of the
true noise level. Therefore, wherever the noisy signal level
is near the level of the estimated noise spectrum, spectral
subtraction (4) results in some randomly located negative
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values for the estimated clean speech magnitude. To
remove the negative components half-wave rectification
(setting the negative portions to zero), or full wave
rectification (absolute value) are used. The non-linear
mapping of the negative, or small valued spectral
estimates, results in the estimated magnitude spectrum to
consist of a succession of randomly spaced spectral peaks
[5]. This leads to an annoying residual noise, also called
musical noise due to their narrow band spectrum and
presence of tone-like characteristics. This noise although
very different from the original noise, can be very
disturbing. A poorly designed spectral subtraction, can
sometime results in a signal that is of a lower perceived
quality and lower information content, than the original
noisy signal. To eliminate the problem of musical noise
and enhance spectral subtraction performance some
modifications were introduced.

5. Modifications of Spectral
Subtraction

5.1 Spectral Subtraction Using Scaling Factor
and Spectral Floor

The first spectral subtraction method proposed by Boll [2]
consists of implementation of the following relationship:
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As it was discussed above, though the noise is
reduced by this method, there is still considerable
broadband noise (musical noise) remaining in the
processed speech. To eliminate this problem the method
proposed in [5] introduces two additional parameters to
basic spectral subtraction algorithm. There are scaling
factor α, and spectral floor β. Since the residual noise
spectrum consists of peaks and valleys with random
occurrences, spectral subtraction using scaling factor and
spectral floor tries to reduce the spectral excursions for
improving speech quality. This proposed technique can be
expressed as:
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Where  α ≥ 0,  and β<<1.  The  harshness  of  the  subtraction
can be varied by applying a scaling factor α. The values of
scaling factor α higher than 1 result in high SNR level of

denoised signal, but too high values may cause distortion
in perceived speech quality. Therefore, the value of α has
to be chosen carefully in order to prevent both the musical
noise and too much signal distortion. The introduction of
spectral floor prevents the spectral components of the
enhanced speech spectrum to descend below the lower
bound 2)(wb D×  , thereby “filling-in” the deep valleys
surrounding narrow peaks (from the enhanced spectrum).
Reducing the spectral excursions of noise peaks (as
compared to when the negative components are set to
zero) reduces the amount of musical noise.

Fig. 3: Block diagram of modified spectral subtraction.

The performance of this type of SS algorithm is
limited in the usage of stationary optimized parameters,
which are difficult to choose for all speech and noise
situations. It is difficult to suppress noise without
decreasing intelligibility and without speech distortion,
especially for very low signal-to-noise ratios.

5.2 Wiener Filtration
It is convenient to consider the spectral subtraction as a
filter, by manipulating (4) such that, it can be expressed as
the product of noisy speech signal spectrum and the
frequency response of a spectral subtraction filter as:
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The spectral subtraction filter is a zero phase filter,
with its frequency response H(ω),  is  in  the  range  of  0   <
H(ω) <  1. The filter acts as a SNR-dependent attenuator.
The attenuation in each frequency increases with the
decreasing SNR, and vice-versa.

A transfer function of the Wiener filter [6], H(ω)wiener
, is expressed in terms of the power spectrum of clean
speech Ps (w) and the power spectrum of noise Pd (w) as in
(9). But power spectrum of clean speech is not known, the
power spectrum of the noisy speech Py (w) signal is used
instead as:
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Wiener filter cannot be applied directly to estimate
the clean speech since speech cannot be assumed to be
stationary. Therefore, an adaptive Wiener filter
implementation can be used to approximate the above
filter (10) as:
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Comparing H(ω) and H(ω)wiener from (9) and (11), it
can be seen that the Wiener filter is based on the ensemble
average spectra of the signal and noise, whereas the
spectral subtraction filter (with a=2) uses the instantaneous
spectra  for  noise  signal  and  the  running  average  (time-
averaged spectra) of the noise. In Wiener filter theory the
averaging operations are taken across the ensemble of
different realization of the signal and noise processes. In
spectral subtraction we have access only to single
realization of the process.

Using of  power  spectrum of  noisy  speech,  instead  of
that of clean speech for calculating the transfer function
degrades Wiener filter accuracy. To solve this problem, an
iterative algorithm is used [6]. In the algorithm the output
signal of the Wiener filter is utilized to design a more
accurate Wiener filter. Thus by iterating this process, we
can design a high accurate Wiener filter. The input signal
of the iterative Wiener filter is not renewed at each
iteration. This means that only the filter is renewed.

5.3 Iterative Spectral Subtraction
To consider the musical noise problem common to
conventional spectral subtraction method, an iterative
spectral subtraction method was proposed in [7]. The
iterative method is motivated by iterative Wiener filtering,
where filtering output signal is used to design a higher
performance Wiener filter. In iterative spectral subtraction
the filtering output signal is used not only for designing
the filter but also as the input signal of the next iteration
process. Specifically for spectral subtraction, after the first
spectral subtraction process, the type of additive noise is
changed to that of musical noise. Then the noise signal is
estimated from unvoiced segment parts. And, a new
spectral subtraction filter is designed by using the new
estimated noise (musical noise) and the new noisy speech
(inc1uding the musical noise), which is the output signal
by the first spectral subtraction. By the designed filter, an
enhanced output signal can be obtained from the input
signal. At every iteration musical noise is estimated in
different frames, because the musical noise is not
stationary in short time frames analysis. When we do such

noise estimation, the spectral subtraction filter is always
designed so as to reduce the musical noise remained in the
previous spectral subtraction process. Therefore, the
musical noise can be reduced significantly by performing
the iterative spectral subtraction as shown.

5.4 Spectral Subtraction Based on Perceptual
Properties

The choice of the subtraction parameters α, β and a is  a
main challenge in subtractive type speech enhancement
algorithms. To track changes in background noise it is
necessary to subtraction parameters to be adaptive. Good
results are obtained, when the adaptation of subtractive
parameters in time and frequency domain based on
masking properties. Masking consists in the fact, that the
human auditory system does not distinguish two signals
when the signals are close to each other (in the time or
frequency domain). In [8] the noise masking threshold
T(ω) is used for adjusting spectral subtraction parameters
α and β on a per frame and per frequency basis. The noise
masking threshold is obtained through modeling the
frequency selectivity of the human ear and its masking
property. The different calculation steps are summarized
in [8].

The choice of the subtraction parameters α, β and a is
a main challenge in subtractive type speech enhancement
algorithms. To track changes in background noise it is
necessary to subtraction parameters to be adaptive. Good
results are obtained, when the adaptation of subtractive
parameters in time and frequency domain based on
masking properties. Masking consists in the fact, that the
human auditory system does not distinguish two signals
when the signals are close to each other (in the time or
frequency domain). In [8] the noise masking threshold
T(ω) is used for adjusting spectral subtraction parameters
α and β on a per frame and per frequency basis. The noise
masking threshold is obtained through modeling the
frequency selectivity of the human ear and its masking
property. The different calculation steps are summarized
in [8]:
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where αmin,  βmin and  αmax,  βmax are the minimal and
maximal values of scaling factor and spectral floor
respectively. Fα and Fβ are the functions for a maximum
reduction of residual noise: Fα = αmax when T(ω) = T(ω)min
and Fα = αmin when T(ω) = T(ω)max, where T(ω)min and
T(ω)max are the minimal and maximal values, respectively,
of the updated masking threshold. The values Fα between
these two extreme limits are obtained by the interpolation
of values T(ω). By similar considerations we obtain the
values Fβ. The following values were experimentally
obtained to provide a good tradeoff for a human listener:
αmin = 1 and αmax = 6; βmin = 0 and βmax = 0,02; exponent is
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constant a=2. Principle of SS with perceptual weighting is
shown on Fig. 4.

Fig. 4: Block diagram of a spectral subtraction with perceptual weighting.

6. Experiments and Discussion
To compare speech enhancement techniques some
experiments were made in Matlab environment. For
experiments we have used speech signals from SpeechDat
database [9] constituted by sentences pronounced in Czech
language by male and female speakers. Sentesces were
corrupted by two types of additive noise (AWGN and car
noise) to obtain noisy speech with different values of the
signal to noise ratio (SNRinput = 15, 10, 5 and 0 dB). The
amount of noise reduction is generally measured with the
SNR improvement, given by the difference between input
and output segmental SNR. The obtained values of SNR
improvement  for  two  types  of  noise  are  given  in  Fig.  5.
The best noise reduction is obtained in case of white
Gaussian noise (AWGN), while for car noise this
improvement decreases. For both types of noise, the SS
with perceptual weighting and iterative SS achieve result
in significant improvement over conventional SS.
Modified SS and Wiener filtering outperform conventional
SS on 1-2 dB. The greatest difference in algorithms
performance can be observed in case of input signal at
0 dB SNR level.

The main drawback of the SNR is the fact that it has
a very poor correlation with subjective quality assessment
results. SNR of enhanced speech is not sufficient objective
indicator of speech quality. Structure of residual noise and
speech distortion can be seen on spectrograms of denoised
speech. Figure 6 represents spectrograms of speech
enhanced by above described algorithms (conventional
spectral subtraction (CSS), modified spectral subtraction
(MSS) with scaling factor and spectral floor, Wiener
filtration (WF), Iterative spectral subtraction (ISS) and
spectral subtraction with perceptual weighting (SSPW)).
As it shown on Fig. 6 conventional SS as well as modified
SS contain audible residual noise, which can be annoying
for listener. Wiener filtering results in a smaller amount of
residual noise, but this noise has musical structure and

speech regions, especially fricative consonants, are also
attenuated. This type of SS can result in speech distortion.

Fig. 5: SNR improvement of noise reduction algorithms for (a) AWGN
noise, (b) Car noise.

The best results were obtained with SS algorithm
with perceptual weighting. In case of this type of SS small
amount of residual noise is leaved, but this noise has a
perceptually white quality and distortion remains
acceptable.

7. Conclusion
In this paper, some subtractive-type methods for acoustic
noise reducing are introduced. In particular, methods
based on short time Fourier transforms are examined. The
limitations of spectral subtraction are briefly discussed.
The artifacts introduced by SS methods are described, and
how the conventional SS method is modified to counter
these artifacts. From the SNR improvement point of view
iterative SS and SS with perceptual weighting show the
best noise reduction results from the other methods.
Conventional SS, iterative SS and Wiener filtration
algorithms results in audible residual noise, which can
cause decreasing of speech intelligibility. The most
progressive method of noise reduction is a SS with
perceptual weighting based on masking properties of
auditory model. This speech enhancement method takes
advantage of how people perceive the frequencies instead
of just working with SNR. It results in appropriate residual
noise attenuating and acceptable degree of speech
distortion.
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Fig. 6: Speech spectrograms. (a) Clean speech, (b) Noisy speech in the case of additive car noise (SNR = 0 dB), (c) – (g) Speech enhanced by noise reduction
algorithms.
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