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Abstract. This paper deals with the two-stage two-phase 
electronic systems with orthogonal output voltages and 
currents - DC/AC/AC. Design of two-stage DC/AC/AC 
high frequency converter with two-phase orthogonal 
output using single-phase matrix converter is also 
introduced. Output voltages of them are strongly non-
harmonic ones, so they must be pulse-modulated due to 
requested nearly sinusoidal currents with low total 
harmonic distortion. Simulation experiment results of 
matrix converter for both steady and transient states for 
IM motors are given in the paper, also experimental 
verification under R-L load, so far. The simulation 
results confirm a very good time-waveform of the phase 
current and the system seems to be suitable for low-cost 
application in automotive/aerospace industries and 
application with high frequency voltage sources. 
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1. Introduction 
In the very early days of commercial electric power, 
some installations used two-phase four-wire systems for 
motors [1]. Two-phase systems have been replaced with 
three-phase systems. Two-phase supply with 90 degrees 
between phases can be derived from a three-phase system 
using a Scott-connected transformer. Two-phase circuits 
typically use two separate pairs of current-carrying 
conductors, alternatively three wires may be used, but the 
common conductor carries the vector sum of the phase 
currents, which requires a larger conductor. 

Nowadays, the low-cost two-phase drives are again 
developed and produced. They are dedicated for 
industrial and residential applications when 3 - phase 

system of electrical energy is missing. But they are used 
3-phase low cost motors which are supplied 
asymmetrically into two phases from the voltage 
converter, Fig. 1, [4]. 

On the other side, it can be also easily created using 
power electronic converters e.g. from battery supply, 
with two-phase transfer of energy for zero distance. 
DC/2AC, Fig. 2, and DC/HF_AC/2AC, Fig. 3a, 3b and 
Fig. 4, converter system can generate two-phase 
orthogonal output with variable voltage and frequency 
[2], [3]. 

 
Fig. 1: Two-phase drive using voltage inverter and 3-phase low-cost 

motor [4]. 

 
Fig. 2: Block diagram for two-phase motor supply. 
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a) 

 

b) 

Fig. 3: a) principle diagram of full bridge converter with second phase 
shifted by 90 degrees, b) block diagram of half bridge 
converter with HF transformer and central points of the source. 
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Fig. 4: Principle diagram of two-stage converter with using LLC 
converter, HF transformer and half-bridge matrix converter  a) 
block scheme of two-phase system, b) circuit diagram of single 
branch of the system. 

2. Two-Stage Two-Phase Systems 
with HF AC Interlink Matrix 
Converters (DC/HF_AC/2AC) 

This DC/HF_AC/2AC system usually consist of single-
phase voltage inverter, AC interlink, HF transformer, 2 -
phase converter and 2 - phase AC motor. Due to AC 
interlink direct converter (cyclo or matrix converter) is 
the best choice. System with matrix converter and high 
frequency AC interlink can generate two-phase 
orthogonal output with both variable voltage and 
frequency [4], [5], [6]. Switching frequency of the 
converter is rather high (~tens of kHz). Since the voltages 
of the matrix converter system should be orthogonal 
ones, the second phase converter is the same as the first 
one and its voltage is shifted by 90 degree. Proposed 
scheme of two-stage two-phase converter system is 
shown in Fig. 3a. Basically, it consists of single-phase 
fast IGBT inverter, and of two single-phase matrix 
converters, both in full-bridge connection. Since the 
switches of the inverter operate with hard commutation, 
switches of matrix converters are partially soft-
commutated in the zero-voltage instants of the AC 
voltage interlink using unipolar PWM. Therefore, the 
expected efficiency of the system can be higher as 
usually by using of classical three-phase inverter. Inverter 
of first stage can be connected as: 

1. full bridge converter, 

2. half bridge converter, 

3. LLC converter, Fig. 4. 

Inverter of second stage can be connected as: 

1. full bridge converters connection, Fig. 3a, 

2. two half bridge ones with central point of the source 
using HF transformer Fig. 5a or, 

3. half-bridge ones with central points of the motor 
load Fig. 5b. 

 
a) 
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b) 

Fig. 5: Circuit diagram of half-bridge converters system with a) central 
points of AC source; b) central points of motor loads. 

The advantage is then less number of semiconductor 
devices of the converters (four instead six). Disadvantage 
of the half-bridge is, of course, double voltage stress of 
the semiconductor switching elements. About to 2-phase 
AC electric motors there are many works, [4], [7], [8], [9] 
and others. 

3. PWM Modulation Strategies for 
Half-Bridge Matrix Converter 
Theoretical analysis of single-phase matrix 

converter has been done, e.g. [10], [11]. Equivalent 
circuit diagram of Half-bridge single phase converters 
two-phase system is depicted in Fig. 6. 

 
Fig. 6: Circuit diagram of half bridge converters system with HF 

transformer and central points of the source. 

Contrary to bridge-matrix converter the half-bridge 
connection doesn’t provide unipolar PWM control, so the 
bipolar pulse switching technique should be used. The 
orthogonal voltages with bipolar PWM control are 
depicted in Fig. 7. 

 

Fig. 7: Output orthogonal voltages of the half-bridge matrix converter 
system with bipolar PWM. 

Switching strategy of one half-bridge matrix 
converter, based on ‘even’ bipolar PWM, can be 
explained using Fig. 8, in greater details. Fourier analysis 
is useful and needed for determination of total harmonic 
distortion of the phase current of the matrix converter 
[10], [12]. 

 

a) 
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b) 

Fig. 8: Switching strategy of half bridge converter for a) positive and  
b) negative half period of operation. 

It is important and clear visible  from these figures 
that during switching at the end of the period of HF AC 
supply (n.Ts) the switching losses will be zero due to zero 
value of commutation voltage. Switching frequency can 
be set from some kHz for high power applications up to 
several tens of kHz for low power applications. It deals 
with sinusoidal bipolar pulse-width-modulation contrary 
to unipolar regular PWM [13]. Switching-pulse-width 
can be determined based on equivalence of average 
values of reference waveform and resulting average value 
of positive and negative switching pulses area during 
switching period, Fig. 9. 

 
Fig. 9: : PWM with even multiply of f1. 

The switching instant is equal to: 
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The total harmonic distortion of the current is given 
by [10]: 
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4. Two-Phase Induction Motor 
Permanent progress in the field of power electronic 
devices has given a rise to two-phase induction machine 
(TPIM). These machines have two equal stator windings 
spatially shifted by 90 degrees. Supply is carried out by 
two phase converter with currents shifted 90 degrees in 
time. By means of this supply a waveform of flux density 
rotating in the air gap, similar to that of the three phase 
machines, is produced and vibrations and unfavourable 
noise are thus suppressed [14]. 

Let us consider the equivalent circuit of TPIM. 
Subscripts D and Q mean phases of TPIM (first and 
second). Subscripts ns and ps mean negative sequence 
and positive sequence of rotating fields in TPIM. 
Parameters Rs, Xs, Rr´, Xr´ and Xm are stator resistance, 
stator leakage reactance, rotor resistance referred to 
stator, leakage reactance referred to stator and 
magnetizing inductance, respectively. K is a ratio of turns 
of the phase D over the turns of the phase Q. The 
negative sequence of rotating field in air-gap is 
suppressed by symmetrical two-phase supply. 

 
Fig. 10: Equivalent circuit of TPIM. 

The equivalent circuit, Fig. 10, can be described by 
following formulas: 

 dsDs
Ds

Ds iR
dt

d
v 


. (4) 
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Flux linkages can be written as: 

  QrQsmDQssDQs iiLiL  . (7) 

  DrDsmQDssQDs iiLiL  . (8) 

  QrQsmDQrrQr iiLiL  ´ . (9) 

  DrDsmQDrrDr iiLiL  ´ . (10) 

In the case of squirrel-cage rotor the rotor voltages 
are equal to zero, thus: 

 0 DrQr vv . (11) 

If ωr is angular displacement between stator and 
rotor axes, then 
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d r
r
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is angular speed of the rotor. 

An expression for the instantaneous electromagnetic 
torque can be obtained by applying the principle of 
virtual displacement. This relation (positive for motor 
action) is expressed as: 

 







 qrdr

a

m
drqr

m

a
e i

N

N
i

N

N
pT  . (13) 

where p is a number of pole-pairs. 

The real TPIM was used with name-plate: 

Tab.1: Nameplate of investigated TPIM. 

PN (W) VN (V) nN (rpm) IN (A) TN (Nm) 
150 230 2730 1,0 0,55 

Parameter used in simulation are: 

Tab.2: Parameters of TPIM. 

D 

Rs [Ω] R´r  [Ω] Xσs [Ω] Method Xm (Ω) Lm (H)
19,92 50,1 21,37 Classical 374,9 1,1933 

X´r [Ω] Ls [H] L´r [H] Suhr´s 233,5 0,7417 
21,37 0,0679 0,0679 2-phase 452 1,4388 

Q 

Rs [Ω] R´r [Ω] Xσs [Ω] FEM 398,5 1,2599 
21,32 51,1 22,3    

X´r [Ω] Ls [H] L´r [H]    
22,3 0,0709 0,0709    

5. PC Simulation 
Simulation model for R-L load has been modelled in 
OrCAD programming environment and simulation model 

for PMSM motor load has been modelled in MatLab 
programming environment. 

Simulation results of single-phase half-bridge 
matrix converter with R-L load are shown in Fig. 11 and 
the output voltages (in different topologies of converter) 
in detail are depicted in Fig. 12. 

Parameters for simulation of R-L load are UinDC = 
350 V, UiSQUARE = 350 V, fiSQUARE = 50 kHz, UoutACmax = 
300 V, foutSW = 100 kHz, foutAC = 100 Hz, R = 10 Ω, L = 
30 mH. 
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Fig. 11: Simulated waveforms of the single-phase converter under R-L 
load a) output voltage, b) output current. 
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Fig. 12: Output voltages of two-stage converter in detail with using a) 
Push-pull converter b) LLC converter. 

Simulated waveforms during start-up of the two-
phase induction machine (TPIM) supplied by two-phase 
switched (PWM, UDC = 350 V, fsw = 50 kHz, UoutAC = 
230 V, fout = 50 Hz) voltage shifted by 90 degree are 
depicted in Fig. 13. 
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Fig. 13: Time-waveforms speed, torque and currents of TPIM during 

start-up. 

Simulation results of torque-speed characteristic of  
two-phase induction machine (TPIM) supplied by two-
phase harmonics voltage shifted by 90 degree are shown 
in Fig. 14. 

 

Fig. 14: Simulated torque-speed characteristic for two-phase harmonics 
supply of TPIM (and its approximation). 

Torque-speed characteristics were investigated by 
several methods of calculation and modeling [14], [16]. 
The obtained characteristics are shown in the next section 
(Experimental Verification, Fig. 17) due to comparison 
possibility with measured values. 
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6. Experimental Verification 
Experimental verification (measurement) of torque-speed 
characteristic has been done using two-stage two-phase 
power electronic converter consists of single-phase full-
bridge voltage inverter and two single-phase full-bridge 
matrix converters (switching frequency fsw = 5 kHz) for 
test rig system. There is shown test rig in Fig. 15. All 
system is controlled by Freescale DSP 56F8013DEMO. 
Measured output waveforms of voltage and current of the 
two-phase power electronic system with TPIM motor are 
presented in Fig. 16. The Q winding is supplied by 
voltage of converter UQ, equal in magnitude to D 
winding and shifted by 90 electrical degrees of the D 
winding [15]. 

 
Fig. 15: Circuit diagram of investigated of two-phase induction 

machine. 
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Fig. 16: Measured output voltages and currents of the physical model of 

two-phase power electronic system (fSW = 5 kHz). 

Experimental measurements of torque-speed 
characteristics, Fig. 17, have been done at full nominal 
supply voltage with this type of control: 

 the voltage of matrix converter was overmodulated - 
the converter was operated with full width of the 
voltage pulses 

 the voltage of matrix converter was controlled by 
PWM (switching frequency fsw= 5 kHz) 

Resulted torque-speed characteristics carried-out by 
the measured on real machine, Fig. 18, at steady-state 
conditions are presented in Fig. 17 together with those 
obtained by various methods of calculation and 
modelling. The torque-speed characteristics given in the 
figure can be compared between each to other. As can be 
seen the error between theoretical obtained characteristics 
is very small what can be justified by neglected 
imperfections in simulation model. 
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Fig. 17: Comparison between measured and simulated torque-speed 

characteristics of TPIM with two-phase supply. 

 

Fig. 18: : Motor test stand. 
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7. Conclusion 
The simulated results were compared with real 
measurement and the results give good coincidence, Fig. 
17. The parameters used in simulation model of TPIM 
have been calculated by several methods and majority 
once give good real results. It was found out that torque 
of TPIM is higher by PWM supply by 5 kHz switching 
frequency than in case of simply rectangular supply (the 
no-harmonic rectangular voltage supply decreases the 
TPIM performance, because of high harmonic spectrum). 
The torque by sinusoidal supply is lower than in case of 
PWM supply. It is caused by not regular phase shift, due 
to complicated supply aparature [14]. Using chosen half-
bridge connection for both inverter and matrix converters 
with bipolar PWM the number of power switching 
elements of the two-stage converter can be reduced and 
smaller then those of classical three-phase voltage 
inverter. 
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