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Summary This contribution summarizes some of the major trends, as well as real opportunities for the application of system 
fault diagnosis and reconfiguration control structures in automatic control systems. There are referenced ongoing concepts for 
residual generation, described design approaches in virtual reconfiguration and, in more details, is presented a new method 
for robust structured residual design and one another for reconfigurable output control structure. 

 
1. INTRODUCTION 

The complexity of control systems requires fault 
tolerance schemes to provide control of the faulty 
system. Fault tolerant systems are that one of the 
more fruitful applications with potential significance 
for domains in which control of systems must 
proceed while the system is operative and testing 
opportunities are limited by operational considera-
tions. The real problem is usually to fix the system 
with faults so that it can continue its mission for 
some time with some limitations of functionality. 

Automated diagnosis is one part of these large 
problems known as fault detection, identification 
and reconfiguration (FDIR). The practical benefits 
of an integrated approach to FDIR seem to be 
considerable, especially when knowledge of 
available fault isolations and system reconfiguration 
is used to reduce the cost and increase the reliability 
and utility of control. 

The paper presents some directions in the field of 
dynamic system fault diagnosis and control structure 
reconfiguration design, with special emphasis on 
structured residual generator design for systems with 
unknown input disturbance, as well as on the 
reconfiguration flexibility offered by state-space 
feedback control.   

2. DIAGNOSIS AND RECONFIGURATION 

The essential aspect for the design of fault-
tolerant control requires the conception of diagnosis 
procedure that can solve the fault detection and 
isolation problem. This procedure composes residual 
signal generation (signals that contain information 
about the failures or defects) followed by their 
evaluation within decision functions. 

In principle, in order to achieve fault tolerance, 
some redundancy is necessary. So far direct 
redundancy is realized by redundancy in multiple 
hardware channels, fault-tolerant control involve 
functional redundancy. Functional (analytical) redu-
ndancy is usually achieved by design of such 
subsystems, which functionality is derived from 
system model and can be realized using algorithmic 

(software) redundancy. Thus, analytical redundancy 
most often means the use of functional relations 
between system variables and residuals are derived 
from implicit information in functional or analytical 
relationships, which exist between measurements 
taken from the process, and a process model. In this 
sense a residual is a fault indicator, based on a 
deviation between measurements and model-
equation-based computation and model based 
diagnosis uses models to obtain residual signals that 
are as a rule zero in the fault free case and non-zero 
otherwise.  

The main goal when synthesizing robust residual 
generators for diagnosis and supervision, as well as 
robust control algorithms, is to attenuate influence 
from model uncertainty while keeping fault 
detection and control performance. Since available 
models of real processes always are uncertain, there 
is naturally a need for robust methods minimizing 
the sensitivity to the model uncertainties and distur-
bances. 

A fault in the fault diagnosis systems can be 
detected and located when has to cause a residual 
change and subsequent analyze of residuals have to 
provide information about faulty component 
localization. The diagnosis is so a decision process 
(pattern recognition process) whose goal is to decide 
whether fault is present or not (to classify pattern by 
computing them to prototypes given by the set of 
classes). From this point of view the fault decision 
information is capable in a suitable format to specify 
possible control structure class to facilitate the 
appropriate adaptation of the control feedback laws.  

The main task to be tackled in achieving fault-
tolerance is the design a controller with suitable 
reconfigurable structure to guarantee stability, 
satisfactory performance and plant operation 
economy in nominal operational conditions, but also 
in some components malfunction. Thus, fault-
tolerant control is a strategy for reliable and highly 
efficient control law design and includes fault-
tolerant system requirements analysis, analytical 
redundancy design (fault isolation principles) and 
fault accommodation design (fault control require-
ments and reconfigurable control strategy). 
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Whereas diagnosis is the problem of identifying 
elements whose abnormality is sufficient to explain 
an observed malfunction, reconfiguration can be 
viewed as the problem of identifying elements 
whose reconfiguration is sufficient to restore 
acceptable behavior of the system. Used reconfigur-
able strategies are derived from systems, which do 
not posses considerable hardware redundancy and 
system properties can be changed by control 
algorithm (structure) modification. The approach 
follows from the insight, that reconfiguration can be 
viewed as the problem of specifying structures (in 
limited case the controller elements) whose reconfi-
guration is sufficient to restore acceptable behavior 
for acceptable faults. The benefits result from this 
characterization give a unified framework that 
should facilitate the development of an integrated 
theory of FDIR and control (fault-tolerant control). 

Passive approaches to fault-tolerant control make 
use of robust control technique to ensure that a 
closed-loop system remains insensitive to certain 
faults using constant controller parameters and 
without use of on-line fault information. Active 
fault-tolerant control requires a mechanism for 
detecting and isolating unanticipated abnormal 
system changes to reschedule controller function. 
Thus, system reconfigurability implies that fixed 
structure can be modified to account for uncontroll-
able changes in the system, i.e. active fault-tolerant 
controllers are generally variable in their structure, 
but use the concept of unanticipated faults. Modern 
methods for reconfigurable control design have to 
take into account nominal system parameters, and 
include faults residual effects as well as modeling 
errors and inaccuracies of the fault decision and 
system models in FDIR system robustness. 

3. THE STATE OF THE ART 

 Model-based fault diagnosis can be understood 
as the detection, isolation and determination of faults 
in components of a system from comparison of its 
available measurements with a priori information 
represented by the system’s mathematical model. 
Faults are detected usually by setting a threshold on 
a residual signal generated from the difference 
between real measurements and their estimates using 
the mathematical model. The major sub-classes of 
model-based FDI, based on quantitative models, are 
parity equation, state estimation, and parameter 
estimation approaches, respectively. 

The systems under consideration can be under-
stood as multi-input and multi-output linear (MIMO) 
dynamic system with unknown input disturbance 
and in state-space form this class of discrete-time 
linear dynamic system be represented as 

( 1) ( ) ( ( ) ( )) ( )ai i i i i+ = + + +q Fq G u f Ed  (1) 

( ) ( ) ( )i i sy = Cq + f i    (2) 
where , and are vectors 
of the state, input and output variables, respectively, 
and

( ) ni ∈q \ ( ) ri ∈u \ ( ) mi ∈y \

n n×∈F \ , n r×∈G \ , are real matrices of 
full ranks. Monitored faults in the system actuators 
and system sensors are modeled by two additive 
vectors . In the next, it is sup-
posed that system input uncertainties are structured, 
i.e. it is known how they enter the system dynamics 
through appropriated matrices E and, in general, the 
unknown disturbances d(i) acting on the system can 
includes the non-monitored system faults. 

m n×∈C \

( ) ,r
a i ∈f \ ( ) m

s i ∈f \

The basic idea of the parity relations approach is 
to provide a proper check of the parity (consistency) 
of the measurement acquired from the monitored 
system. For a system without disturbance the gene-
ralized parity space equation is 

( ) ( ) ( ( ) ( )) ( )Y P U U Fa Fsi i h i i i− + +y = Q q + Q u f f  (3) 

where QP is the observability matrix and QU is the 
Toeplitz matrix of the Markov system parameters of 
appropriate dimensions defined by m, n, and h, and 
realized residual vector equation can be chosen as 

 ( ) ( ( ) ( ))M Y U Ui i i−r = V y Q u    (4) 
To obtain residual vector decoupled from state 

variable vector q(i-h), the projection matrix VM need 
to satisfy condition 

M P =V Q 0                                         (5) 
This leads to vector residual  

    (6) ( ) ( ) ( )M U Fa M Fsi i +r = V Q f V f i

i

One method to solve (5) is presented e.g. in [8]. 
The basic idea behind the observer and filter-

based technique is to estimate the outputs of the 
system from the measurement by using either 
Luenberger estimator or Kalman predictor. 

Assuming that matrices F, G, and C are known, 
and E = 0, the estimator equations for a system (1), 
(2) are 

  ( 1) ( ) ( ) ( ( ) ( ))e ei i i i+ = + + − eq Fq Gu J y y  (7) 

( ) ( )e ei iy = Cq     (8) 
Design task is to determine matrix J by that way, 

that all eigenvalues of the matrix Fe = F – JC are 
from the unit circle centered at the origin of the 
complex plane z. Since for MIMO systems and for 
prescribed set of desired eigenvalues this solution is 
not unique, a design method based on singular value 
decomposition (SVD) can be found e.g. in [6]. 

Then, the output estimation error can be used as 
residual, i.e. 

( ) ( ) ( )ei i i−r = y y    (9) 
There exist robust and structured modifications 

of this principle, which can be found e.g. in [3], [8]. 
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Kalman predictor equations, and derived 
residuals, are given in the same structure as (7) to 
(9). The gain matrix J is computed as 

    (10) 1( )( )T −= + +J FPC S R CPCT

T

where P is a solution of the algebraic discrete 
Riccati equation 

1( )( ) ( )

T

T T T−

= + −
− + + +

P FPF Q
FPC S R CPC FPC S

 (11) 

and P, Q, and R are real symmetric positive definite 
matrices of appropriated dimension. Using in noise 
environment, an algorithm to estimate the system 
and the measurement noise covariance Q, R, and S is 
presented e.g. in [5]. Since a threshold setting on the 
residual signal in a noise environment can call false 
alarms, evaluation is based on the residual mean-
value change detection using the Shewhart graph 
algorithm modification (see e.g. [1], [8]).  

In most practical cases, the process parameters 
are not known at all and they can be determined with 
parameter estimation methods. The least-square 
estimation of the SISO system parameters (with 
exponential forgetting) can be expressed in recursive 
(Kalman) form [8], [13] 

( 1) ( ) ( 1)( ( 1) ( 1))ei i i y i y i+ = + + + − +d d j   (12) 

     (13) ( 1) ( 1) ( )T
ey i i i+ = +l d

    (14) 1( 1) ( ) ( 1) ( 1)i i i r i−+ = + +j P l
2( 1) ( 1) ( ) ( 1)Tr i b i i i+ = + + +l P l            (15) 

     (16) 1( 1) ( ) ( 1)i i r i−+ = +P P

[
( )

( 1) ( ) ( 1) ( )
T i

y i y i n u i u i n
=

= − − − − − −
l

" " ]    (17) 

[ ]1 0 1 0( ) T
n ni f f g g− −=d " "     (18) 

where b ε (0, 1〉 is a forgetting factor, P is a symme-
tric positive definite matrix and d is the system 
parameter vector. Then, an estimation error is used 
as residual, i.e. 

( ) ( )i i−r = d d     (19) 
and its evaluation is realized using the mean-value 
change detection. For improved estimate of MIMO 
system parameters, subspace identification methods 
are used [10], [12]. 

Many modifications of above presented methods 
are known especially for residual filter design using 
linear/nonlinear continuous-time system models (see 
e.g. [2], [4], [8]). 

To achieve fault tolerance used methods relies on 
employing on-line fault diagnosis schemes, react to 
the results of diagnosis and activate an alternative 
control (reconfigurable control structure) that is 
supposed to handle the fault. Among these structures 
can be quoted control systems with adaptation to 
faults, the virtual-based control structures, as well as 
output control reconfiguration algorithms, which 
guarantee the dominant closed-loop dynamics. 

Adaptation to faults is one of the earliest 
methods for the controller re-design, generally based 
on the model-matching. Hard limitation implies 
from condition that all closed loop have to take the 
similar dynamics. One new way to construct a 
reconfigurable control with adaptation to sensor 
faults is presented in [9]. 

Opposite strategies use virtual based reconfigu-
rable principle. Instead of adapting the controller to 
the faulty system a reconfiguration goal is virtually 
adapt faulty system to the nominal controller. The 
virtual sensor is generally based on the Luenberger 
estimator and the virtual actuator takes its dual form.     

In the case of sensor faults virtual sensor can be 
designed in the form 

       (20) 
( 1)

( ) ( ) ( ( ) ( ))
e

e f f f e

i
i i i

+ =
= + + −

q
Fq Gu J y C q i

i    ( ) ( ) ( ) ( )e f f ei i= + −y Xy C XC q          (21) 

where Cf is the output matrix of the system with a 
sensor fault and yf (i) is the faulty measurement 
vector at time instant i. If X = 0, estimated vector is 
used for control, if X = I, the outputs of fault-free 
sensors are combined with associated estimate, to 
substitute missing output of the faulty sensor. The 
duality in virtual actuator design one can see in [2]. 

4. SOME NEW SOLUTIOS  

4.1 Robust Structured Residuals  

Under assumption that matrices F, E, and C are 
known, a set of structured estimators with respect to 
system outputs can be designed to a system (1), (2), 
where k = 1,2, …, m, and  

( 1) ( ) ( ) ( ) ( )k k k k k k ki i i i+ = + + +p P p Q Gu J K T y

i

(22) 

( ) ( ) ( )ek k k ki iq = p + O T y   (23) 
Here is the state vector of the k-th 

estimator, is a system state vector q(i) es-
timate derived from the k-th estimator state vector, 

( ) n
k i ∈p \

( ) n
ek i ∈q \

n n
k

×∈P \ , , , , as 
well as 

×m n
k ∈Q \ ( 1)n m

k
× −∈J \ ( 1)n m

k
× −∈K \

( 1)n m
k

× −∈O \ are designed matrix parameters 
and matrix is degenerative iden-
tity matrix, which k-th row is deleted. 

( 1)m m
k m k

− ×
∅= ∈T I \

Then, with absence of faults, the state estimation 
error can be expressed as follows 

( 1) ( 1) ( 1)
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

k ek

k k k k k k k

n k k k k k k k

n k k

i i i
i i

i i
i

+ + − + =

( )
= + − − − +

+ − − + − +
+ −

e = q q
P e F P J T C O T CF q

I Q O T C Gu P O K T y
I O T C Ed

(24) 

where n n
n

×∈I \  is the identity matrix. 
It is evident, to obtain an autonomous state esti-

mation error vector, the design conditions have to be 

k k k k k k= − −P F J T C O T CF   (25) 

k n k k= −Q I O T C    (26)    

k k k=K P O    (27) 
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      ( )    (28) 0

k i

)◊=

)

0

n k k− =I O T C E
and then the state estimation error difference equation 
reduces to the form   

           (29) ( 1) ( )k ki + =e P e

It is evident, to guarantee asymptotic stability, 
matrix Pk have to be stable. 

4.1.1 Disturbance Decoupling  

The disturbance decoupling can be achieved 
using condition (28), i.e. 

k k =O T CE E        (30) 
 Multiplying (11) on the right side by identity 

matrix gives 
   (31) 1(( ) ) ( ) (T T

k k k k k
−=O E T CE T CE T CE E T CE

where 
         (32) 1( ) (( ) ) (T T

k k k k
◊ −=T CE T CE T CE T CE

is the Penrose pseudoinverse of a matrix TkCE. 
Substituting (31) into (30) and multiplying this 

result on the left side by matrix TkC one can obtain 

         (33) 1 )( ( )m k k k−
◊−I T CE T CE T CE �

and so all solutions of (30) are 
       (34) 1 )( ) ( ( )mk k kE k k−

◊ ◊+ −=O E T CE O I T CE T CE
where OkE is any nonzero matrix of appropriate dim-
ension. 

4.1.2 Solution of Estimate Error Convergence  

Using (34) the system matrix (25) can be written 
as 

    = ( ( ) )
( ( ) )

k k k k k k

n k k k k

nkE k k k

◊

◊
−

= − − =
− −

− −

P F J T C O T CF
I E T CE T C F J T C
O T C I E T CE T C F

       (35) 

    11
1

k kE
k

k k k k
k k

⎡ ⎤
− =⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
=P J O J

T C
1 1k−F F C

T CF
(36) 

respectively, where 

             (37) 1=( ( ) ) n n
nk k k

×◊− ∈F I E T CE T C F \

             (38) 2( 1)
1= n m

k kEk
× −⎡ ⎤⎣ ⎦∈J J O \

          (39) 2( 1)
1

1
= m nk

k
k k

− ×⎡ ⎤
⎢ ⎥
⎣ ⎦

∈C
T C

T CF
\

Equation (36) takes the standard structure of the 
state estimator system matrix and within the design 
task matrix Pk has to be designed in such a way, that 
all its eigenvalues be stable. Therefore, the goal is to 
select a real matrix Jk1 which can be computed using 
e.g. the singular-value decomposition (SVD) method 
for prescribed set of estimator system matrix eigen-
values {zki, | zki | < 1, i = 1,2, ..., n} [6]. 

It is obvious, that the first m-1 columns of Jk1 
note the matrix Jk, and the rest columns specify the 
matrix OkE. Knowing Jk, as well as OkE one can 
compute Ok from (15), and Qk and Kk using (7), (8), 
respectively. 

4.1.3 Structured Residual Design  

Generally, the structured residual vectors rk, for  
k = 1,2, …, m, can be defined as 

( ) ( ) ( )k k ek ki i i= +r X q Y y       (40) 
Denoting 

   ( ) ( ) ( )ek ki i i= −q q e     (41) 
and injecting (2) and (22) into (21) results in 

 ( ) ( ) ( ) ( ) ( )k k k k k k si i i i= + − +r X Y C q X e Y f   (42) 

To make residuals decoupled from state vector, it 
is possible to set 

,k k k k= − =X T C Y T     (43) 
Then a set of structured residual computational equ-
ations takes form 

    ( ) ( ) ( ), 1,2, ,k k k ki i i k m= + =sr T Ce T f …    (44) 

4.1.4 Sensor and Actuator Faults Action  

Structured residual generator equation (44) 
implies, the k-th sensor fault is not observed in the 
 k-th residual since defined basic property of Tk. 
Using (1), (2) and (25) – (28) one can verify that 

 ( 1)
( ) ( ) ( ) ( 1)

k

k k k a k s k k s

i
i i i i

+ =
= + − −

e
P e Q Gf JT f O T f +

i

(45) 

and, since (25) implies 
    ( 1) ( 1) ( 1)k k k ki i+ = + + sr T Ce T f +

)+

i

   (46) 
the computational form of the residual vector can be 
rewritten as 

( 1) ( 1)
( ( ) ( ) ( ) ( 1)

k k s

k k k k a k s k k s

i i
i i i i

+ = + +
+ + − −

r T f
T C P e Q Gf JT f O T f

 (47) 

It can be seen in (47) the actuator falts are 
observed in all residual generators with time-delay 
equal one period of sampling. Since state error 
estimate convergence is provided and disturbance is 
decoupled, the residuals are aproximatly zeros in a 
fault-free routine. 

4.2 Reconfigurable Output Control Structure  

Assuming the system is both controllable and 
observable, as well as the input and output  matrices 
are of full rank, that is rank(G) = r, rank(C) = m, and  
r = m < n, , rank(F) = n, then there exist matrix K 
such that the static output feedback control law of 
the form 

( ) ( ) ( )i i= − = −u Ky KCq   (48) 
can be designed. 

The freedom that characterizes the placing of the 
closed-loop system matrix eigenvalues  and associa-
ted closed-loop eigenvectors by eigenstructure assig-
nment using output feedback means, that 

(i) max(r,m) closed-loop eigenvalues can be 
assigned, 

(ii) max(r,m) eigenvectors can be associated with 
assigned closed-loop eigenvalues. 

In view of (1), (2), and (48), the autonomous 
closed-loop system is described by equatios 
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( 1) ( ) ( )i i+ = −q F GKC q   (49) 
          (50) ( ) ( )i i=y Cq

The solution of the aforementioned problem is 
a real matrix which can be designed using 
singular value decomposition (SVD) method for  a 
set of eigenvalues {z

r m×∈K \

i, | zi | < 1, i = 1,2, ..., m} [6]. 
4.2.1 State Vector Transformation  

Using given state model of the system (1), (2), it 
is possible to transform the state vector q(i) to the 
input-closed state space by a matrix n n

G
×∈T \ to 

yield the realization 
         (51) ( ) ( )G Gi =q T q i

i

iu

G

Since (51) implies 
           (52) ( 1) ( ) ( )G G G Gi i+ = +T q FT q Gu

this follows as a consequence 
             (53) ( 1) ( ) ( )G G Gi i+ = + Gq F q G

      (54) ( ) ( )G Gi i=y C q
where 

       1 ,G G G G
−= =F T FT C CT   (55) 

1

, ,
,0 0

r r
G G G

n r r n n r

−

−

⎡⎡ ⎤= = = ⎢⎢ ⎥⎣ ⎦ ⎣ ⎦

I I
G T G T G

−

⎤
⎥

i

G i

j

 (56) 

With (55), (56)  control law (48) takes form 
         (57) 1( ) ( ) ( )G G G Gi i−= − = −u KCT T q KC q

and the closed-loop system equation (49) is transfor-
med to 

               (58) ( 1) ( ) ( )G G G Gi + = −q F G KC q
As one can see, the state transformation does not 

affect the output feedback gain matrix and this is 
also true for the eigenvalues of the transformed 
system.  

4.2.2 Feedback Gain Matrix Design  

For any pair of closed-loop eigenvalues and their 
associated eigenvectors {(zj, nj),  j = 1,2, ...,m}, ge-
nerally complex conjugate, holds 

( )G G G j jz− =F G KC n n   (59) 
where nj is the j-th right eigenvector. Equality (59) 
can be  rewritten to the singular form 

        (60) j
Gj

G j

⎡ ⎤
=⎢ ⎥

⎣ ⎦

n
L KC n 0

,
| r

Gj j G
n r r

z
−

⎡= −⎢⎣ ⎦
IL I F 0

⎤
⎥

i

i

  (61) 

and using SVD procedures applied to all matrices 
LGj one can design gain matrix K [9]. 

4.2.3 Control Reconfiguration  

The system faults modify the system properties, 
which can be now described by equations 

( 1) ( ) ( )f fi i+ = +q F q G u   (62) 
        (63) ( ) ( )fi i=y C q

where Ff , Gf, and Cf are system matrices of the same 
dimensions with matrices of the nominal model. 

The reconfiguration task is to include a new stab-
ilizing feedback control law  

( ) ( ) ( )f f fi i= − = −u K y K C q  (64) 
in such a way that a new closed-loop system matrix 
Ff  –  GfKfCf  can capture as much as possible the 
eigenstructure of the  nominal closed-loop system 
matrix (with the same dominat eigenvalues of 
matrices). Design is based on the same transform-
ation as (55) and (56) but using TGf  with structure 

1

, ,
,0 0

r r
Gf Gf f Gf f

n r r n n r

−

− −

⎡ ⎤⎡ ⎤= = = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

I I
G T G T G   (65) 

4.2.4 Optimization 

Transformation matrices TG or TGf are not unique 
and there exist other structures of this matrices given 
by permutations in rows of the basic structure, i.e. 

, ,0 0
r r

G Gh
n n r n n r h− −

⎡ ⎤⎡ ⎤ ⎛ ⎞= ≈ = ⎢ ⎥⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦

I IT G T G  (66) 

but some may be singular or give unstable solutions. 
As an optimization criterion can be used 

    
2

1 1min ([ ... ] [ ... ])m f mf h Fh
J = −n n n n  (67) 

where nj, j = 1,2, …,m are the right eigenvectors 
associated with desired eigenvalues.  

The procedure outlined above is extended to the 
state feedback control, but reconfiguration flexibility 
of the state control is limited, since all eigenvalues 
of the nominal closed-loop system have to be 
preserved in both control structures.  

5. ILLUSTRATIVE EXAMPLE 

The system model was given by (1), (2), where  
0.9895 0.0325 0.5650 0.0207 0.4258
0.8714 0.9711 0.0844 0.0111 0.0312
0.5164 0.0101 0.9997 0.3905 0.0962
0.1268 0.0464 0.0017 0.5643 0.3288
0.9421 0.1117 0.0053 0.3431 0.6177

−⎡ ⎤
⎢ ⎥− −
⎢ ⎥= −⎢ ⎥

− −⎢ ⎥
−⎢ ⎥⎣ ⎦

F

0.1638 0.0056 0.0610 2.9345
0.0549 0.4929 0.0026 1.9764

,0.4444 0.0015 0.1765 3.9234
1.5728 0.0101 0.6431 2.5675
1.0863 0.0307 0.1966 3.7597

−⎡ ⎤ ⎡
−

⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= =− ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢− − ⎥⎣ ⎦ ⎣

G E

⎦

 

1 1 1

0.1
1 0 0 0 0 0.2
0 1 0 0 0 , eig( ) 0.3
0 0 1 0 0 0.4

0.5

k k k

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥= = −⎢ ⎥ =
⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

C z P J C  

   Using the same desired eigenvalues for all estima-
tors, for example the parameters of the first estima-
tor was computed as follows 

1

0.2460 0.5704 0.6605 0.0174 0.4645
0.0059 0.2055 0.0535 0.0020 0.0008
0.0019 0.0735 0.4882 0.0006 0.0002
0.3021 0.1717 0.5525 0.3397 0.2777
0.4686 0.5990 0.7200 0.0384 0.7127

− −⎡ ⎤
⎢ ⎥−
⎢ ⎥= − −⎢ ⎥
− − −⎢ ⎥

− − −⎢ ⎥⎣ ⎦

P  
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Fig.  1. Structured residual outputs for 3rd sensor fault  
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⎢ −
⎢= −⎢
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1

0.2439 0.2072
0.2115 0.0543 0 1 0,0.0718 0.4879 0 0 10.1911 0.6394
0.0251 0.0260

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎣ ⎦⎢ ⎥− −
⎢ ⎥−⎣ ⎦

K T  

Figure 1 shows residual generator outputs for the 
3rd sensor fault. Starting transient part of the residu-
als responses is relevant to different initial state 
vectors setting in estimators and in the system.   

6. CONCLUSION 

Most of real systems offer the possibility to 
include complex control algorithms, reconfigurable 

control structures, fault-diagnosis methods as well as 
condition monitoring. The contribution gives a basic 
overview of these structures with hope to inspire 
some new points of view on this modern trend.    
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