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Summary: The actuators working on the principle of thermoelasticity belong to novel elements of this kind that are charac-
terized by very high forces acting at relatively low shifts of the dilatation element. The paper analyses their operation proper-
ties in the dependence of selected geometrical parameters of the device and also the amplitude and frequency of the field 
current. The task is solved as a coupled electromagnetic-thermoelastic problem. The theoretical considerations are illustrated 
on an example whose results are discussed. 

 
1. INTRODUCTION  

The actuators are devices transforming electric 
energy into mechanical motion or forces. They are 
widely spread in a great deal of industrial, transport, 
control and other systems. Every actuator usually 
consists of several static and movable parts. While 
the static parts form its body and primary electric 
circuit (but there are exceptions), the movable parts 
are intended for transferring the force effects.  

Operation of the actuators is derived from sev-
eral physical principles. We can mention electro-
magnetic and electrodynamic force effects, magne-
tostriction, piezoelectricity etc. All these principles 
have been known for many years and relevant in-
formation about them can be found in several books 
and numerous journal references (see, for example, 
[1]–[3]). 

The characteristics and properties of particular 
types of the actuators cover quite a broad domain. 
Nevertheless, the situation becomes to be problem-
atic when we need to reach high forces at small 
shifts. A typical application is depicted in Fig. 1, 
where four actuators hold a metal body that is to be 
machined.  

 
Fig. 1. Four actuators holding a metal body  

 
The classical actuators, unfortunately, are not 

able to satisfy such a condition. Their main draw-
back is that the forces they can reach are by several 

orders smaller than necessary. That is why the au-
thors started investigating a new class of these de-
vices based on thermoelasticity. Their principle 
follows from Fig. 2. Its arrangement is assumed 
(with a small inaccuracy) axisymmetric. 

 
Fig. 2. Schematic view of the thermoelastic actuator 
 
The steel dilatation element 1 clamped in a stiff 

wall 3 is heated by the field coil 2 carrying harmonic 
current of a given amplitude and frequency. The 
Joule and magnetization losses in it bring about its 
temperature rise and thermoelastic strains and 
stresses. These strains result in the total force TEF  
acting on the fixed body 4 that depend on the stiff-
ness of the whole system. The smaller displacement 
δ  (Fig. 1) the higher force TEF  and vice versa. In 
order to avoid its plastic deformation the maximum 
mechanical stress in the dilatation element must not 
exceed the limit of elasticity of the used steel mate-
rial. 

The force TEF  depends on a number of various 
factors. In works [4] and [5] the authors investigated 
the dependence of its value particularly on the am-
plitude of the field current and its frequency. But it 
also depends on the length of the dilatation element 
and its cross-section. In fact, this force grows ap-
proximately linearly with the length of the element 
and in this way we seemingly could obtain any de-
sired value. On the other hand, such a growth of the 
length could result in the loss of axial stability of the 
device. And this is a contradiction leading to the 
necessity of an appropriate compromise. 
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The paper presents a methodology of finding the 
most important characteristics of the device as func-
tions of the geometry of the dilatation element. In 
this sense it represents a natural continuation of the 
above papers [4] and [5]. 

2. CONTINUOUS MATHEMATICAL MODEL 

The task generally represents a nonlinear coupled 
problem characterized by the interaction of the elec-
tromagnetic field, field of temperature and field of 
thermoelastic displacements. Every field is de-
scribed by a partial differential equation (PDE) 
whose coefficients are given by expressions contain-
ing the physical parameters of the material. Unfortu-
nately, as these physical parameters vary with the 
growing temperature, the coefficients are not con-
stant and must be properly adjusted in the course of 
computation.  

Another problem often consists in the fact, that 
the problem has also contact character. The dilata-
tion element first touches the fixed body first by 
quite a small surface in the form of a circular ring 
whose area then gradually grows with the growing 
temperature. This may brings difficulties in determi-
nation of the time evolution of the forces acting on 
the body.   

The electromagnetic field is solved independ-
ently of the other two fields. This means that the 
electrical conductivity and magnetic permeability of 
the material involved do not depend on the tempera-
ture. But this simplification has practically no nega-
tive influence on the results because the temperature 
of the system is supposed not to exceed about 
300 °C.  

The distribution of the electromagnetic field in 
space and time is (because of the presence of the 
nonlinear dilatation element) described by the solu-
tion of the well-known parabolic PDE for the mag-
netic vector potential A  in the form [6] 

ext
1

curl curl
t

γ
µ

� � ∂+ =� � ∂� �

AA J                (1) 

where µ  denotes the magnetic permeability, γ  the 
electric conductivity and extJ  the vector of the ex-
ternal current density in the field coil.  

But solution to this equation is, in this case, prac-
tically unfeasible due to relatively long time of the 
process of heating (usually of the order of seconds or 
tens of seconds). That is why the model was simpli-
fied considering the magnetic field harmonic. Then 
it can be described by the Helmholtz equation for the 
phasor A  of the magnetic vector potential A  

extcurlcurl j ωγµ µ+ ⋅ =A A J                (2) 

The magnetic permeability µ  in every element 
is considered constant, but its value is not known in 
advance. Finding its corresponding values requires 
an appropriate iterative process and the value of 
permeability in all cells at every iteration step must 
be adjusted to the relevant magnetic flux density. 

This simplification is also advantageous from the 
viewpoint of determining the distribution of the 
specific losses w  representing the internal sources 
of heat in ferromagnetic dilatation element 1 (Fig. 
2). These losses are considered as a sum of the spe-
cific Joule losses Jw  and magnetization losses mw , 
so that  

J mw w w= +                           (3) 
where 

2
eddy

J eddy, jw ωγ
γ

= = ⋅
J

J A             (4) 

while mw  are determined from the known loss de-

pendence ( )m mw w= B  for the used material 

(magnetic flux density B  in every element is in this 
model also harmonic). 

The boundary conditions along the axis of the ar-
rangement and artificial boundary placed at a suffi-
cient distance from the system are of the Dirichlet 
type. 

The temperature and stress-strain fields should 
be solved in the hard-coupled formulation. Never-
theless, as we investigate only the steady states, only 
a small error appears when using the operator-
splitting method and solving both fields separately 
(another case would be the solution of the nonsta-
tionary problem, where disregarding the mutual 
links could lead to a substantial loss of accuracy). 

The distribution of the steady-state temperature 
field is described by equation [7] 

( )div gradT wλ ⋅ = −                  (5) 

where λ  is the thermal conductivity (a temperature-
dependent function) and w  the internal sources of 
heat given by (3). The boundary conditions gener-
ally respect the convection of heat from the shell of 
the device into ambient air and radiation. 

The solution of the thermoelastic problem may 
be carried out by several different ways. We will 
mention four fundamental approaches that are based 
on 
• the Lamé equation for the displacements,  
• the standard equations based on the balance of 

forces in an elementary volume of the contin-
uum, 

• the Airy function or  
• the variational principle.  

After some considerations we used the Lamé 
equation that reads  

( ) ( )
( ) T

grad div

3 2 grad ,T

ϕ ψ ψ

ϕ ψ α

+ ⋅ + ⋅ ∆ −

− + ⋅ ⋅ + = 0

u u

f
             (6) 

where ,ϕ ψ  are coefficients associated with mate-
rial parameters by relations [8] 

( )( ) ( ),
1 1 2 2 1

E Eνϕ ψ
ν ν ν

⋅
= =

+ − ⋅ +
.            (7) 

Here E  denotes the Young modulus of elasticity 
and ν  the Poisson coefficient of the transverse con-
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traction. Finally ( ), ,r zu u uϕ=u  represents the dis-

placement vector, Tα  the coefficient of linear ther-
mal dilatability and f  the vector of internal me-
chanical volume forces. 

The boundary conditions follow from the assump-
tion that the left front of the device (Fig. 2) is fixed. 

The knowledge of the displacement is the starting 
point for finding the corresponding deformations. 
These can be calculated (in the cylindrical coordi-
nate system , ,r z ϕ ) from formulas  
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  (8) 

Using the Hook law in the tensorial form we fi-
nally calculate the corresponding strains and stresses 
in shell 1 that is, from the mechanical viewpoint, the 
most exposed part of the device. 

The axial component TE,zF  of the total force 

TEF  acting in the dilatation element in the direction 
of axis z  (for the given displacement) then follows 
from the integration of the relevant axial stresses 
over its cross-section. There holds 

1,4
TE, d ,z zzS

F Sσ= ��                       (9) 

zzσ denoting the distribution of the axial stresses in 
the dilatation element 1 along its contact with the 
fixed body 4 (see Fig. 2), whose area is 1,4S . 

3. ILLUSTRATIVE EXAMPLE 

The aim of the example is the qualitative evalua-
tion of basic aspects influencing the operation pa-
rameters of the actuator – the maximum thermoelas-
tic force TE, ,maxzF  and maximum shift ,maxzu∆  of 
its dilatation element 1. The basic arrangement of 
the actuator is depicted in Fig. 3. Its starting length 

00 0.145l = m and starting radius 00 0.015r = m. The 
detailed information about the physical parameters 
of its structural parts is listed in Tab. 1. The mag-
netization characteristic of the dilatation element 
(steel 12040) is depicted in Fig. 4. The relative mag-
netic permeability of other parts rµ is equal to 1.  

The main parameters that affect the operation of 
the actuators are: 
• the real length 0il  and radius 0ir  of the dilata-

tion element 1 (during the computations we 
considered 0 00 00 001.1 , 1.2 , 1.3il l l l= ⋅ ⋅ ⋅  with 

0 00ir r=  and 0 00 00 001.1 , 1.2 , 1.3ir r r r= ⋅ ⋅ ⋅  with 

0 00il l= ), 

• the amplitude of the current density extJ  (with 

only one nonzero component Jϕ  in the tangen-

tial direction) of the field current extI and  

• frequency f  of the field current. 
These aspects are discussed in the next paragraphs. 

 
Fig.  3. The starting arrangement of the investigated 

 actuator with principal dimensions 
 

Table 1 

Basic physical parameters of the structural parts  
of the actuator [9], [10] 

material 
position 
in Fig. 

3 

γ  
(S/m) 

λ  
(W/mK) 

E  
(N/m2) 

υ  
(–) 

Tα  
(1/K) 

steel 
12 040 

1 

5·106 * ( )Tλ  2.1·1011 0.3 1.25·10-5 

Kevlar 
3 

0.04 1.0 1.24·1011 0.1 2·10-6 

Teflon 
4 

0 1.6 – – – 

copper 
2 

**5.7·107 306.1 – – – 

* ( )Tλ  see Fig. 5 
** the specific conductivity of copper has to be reduced by the 
coefficient of filling of the coil whose value is 0.785 (the coil is 
wound by a conductor of circular cross-section). Therefore, it is 
necessary to consider 7

Cu 4.474 10γ = ⋅ S/m. 

 
Fig. 4. Dependence ( )r r Bµ µ=  

 for carbon steel 12 040 

The results presented in the next paragraphs were 
obtained by the numerical solution of the problem 
by means of the FEM-based code QuickField [11] 
and several own procedures. Solved were equations 
(2), (5) and (6). The temperature field was calculated 
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only with the boundary condition of convection. 
Radiation was neglected because the external 
boundary is cold (the thermal conductivity of Teflon 
and Kevlar insulating parts is very low). 
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Fig. 5. Dependence ( )Tλ λ=  

 for carbon steel 12 040 

All three fields were checked with respect to the 
convergence of results. We used discretization 
meshes with about 
• 190000 nodes for the magnetic field, 
• 80000 nodes for the temperature field, 
• 25000 nodes for the field of displacements. 

Figs. 6–9 show some selected results for the 
starting arrangement of the actuator (see Fig. 3). 

 
Fig. 6. Electromagnetic field of the actuator (starting 

arrangement, 2Jϕ = A/mm2, 50f = Hz) 

 
Fig. 7. Stationary temperature field of the actuator (start-

ing arrangement, 2Jϕ = A/mm2, 50f = Hz, 

68.2maxT = °C, 20.0minT = °C) 

 
Fig. 8. Field of thermoelastic displacements of the actua-
tor (starting arrangement, 2Jϕ = A/mm2, 50f = Hz, 

maximum displacement 5
, 8.74 10z maxu −∆ = ⋅ m, 

, , 0TE z minF = ) 

 
Fig. 9. Field of thermoelastic displacements of the actua-
tor (starting arrangement, 2Jϕ = A/mm2, 50f = Hz, 

minimum displacement , 0z minu∆ = m, 

, , 88.285TE z maxF = kN) 

The most important results representing the main 
contribution of the paper follow from Figs. 10a–13b. 
On their basis we can draw these conclusions: 

The specific Joule losses Jw  (see Figs. 10a, 10b) 
in the dilatation element 1 grow both with growing 
frequency f  of the field current and (even more 
expressively) with growing amplitude of its density 
Jϕ . These losses also grow with the length 0il  of 

the dilatation element while the growth of its radius 

0ir  leads to their reduction. The reason of such a 
behavior consists in the fact that the domain of the 
dilatation element with induced eddy currents is 
larger in case of longer, thinner element than in case 
of shorter, but thicker cylinder (its volume is consid-
ered constant). 
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Fig. 10a. Dependence of the specific Joule losses Jw  in 

the dilatation element 2 on this length 0il  ( 00 0.145l = m, 

0 00 0.015ir r= = m) 
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Fig. 10b. Dependence of the specific Joule losses Jw  in 

the dilatation element 2 on this radius 0ir  

( 00 0.015r = m, 0 00 0.145il l= = m) 
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The average temperatures de,aT  of the dilatation 

element 1 and maximum temperatures c,maxT in the 
field coil 2 as functions of the geometry of the ele-
ment 1 are depicted in Figs. 11a and 11b. They grow 
again with increasing frequency f  of the field cur-
rent and, even more expressively, with growing 
amplitude of its density Jϕ  (the growth is some-

times so high that it even exceeds the acceptable 
limit ≈ 250 °C, compare Fig. 11a). This is evidently 
caused by the corresponding evolution of the spe-
cific Joule losses Jw . The growth is again supported 

by growth of the length 0il  of the dilatation element 

1 and suppressed by growth of its radius 0ir . In this 

case smaller amount of heat (compare the losses Jw  
in Figs. 10a, 10b) produced within the surface layer 
of shorter length does not heat up the “deeper” lay-
ers of the dilatation cylinder of greater radius. 
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Fig. 11a. Dependence of the average temperature ,de aT  of 

the dilatation element 1 and maximum temperature 

,maxcT  of the field coil 2 on the length  0il  of element 1 

( 00 0.145l = m, 0 00 0.015ir r= = m) 
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Fig. 11b. Dependence of the average temperature ,de aT  of 

the dilatation element 1 and maximum temperature 

,maxcT  of the field coil 2 on the radius  0ir  of element 1 

( 00 0.015r = m, 0 00 0.145il l= = m) 

The maximum thermoelastic forces TE, ,maxzF  
produced by the dilatation element 1 as functions of 
its geometry are shown in Figs. 12a and 12b. They 
grow with the frequency f  of the field current, with 

the amplitude of its density Jϕ , with its length 0il  

(which is given by the corresponding growth of 
temperature de,aT , compare Fig. 11a) and finally 

even with its radius 0ir . The last case shows that this 
growth (even when small) at practically not increas-
ing temperatures de,aT , compare Fig. 11b, follows 

from the fact that smaller thermoelastic stresses zzσ  

proportional to de,aT  act on larger cross-section of 

the dilatation element 1 growing with 2
0ir . 
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Fig. 12a. Dependence of the maximum thermoelastic force  

, ,maxTE zF  on the length  0il  of element 1 ( 00 0.145l = m, 

0 00 0.015ir r= = m) 
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Fig. 12b Dependence of the maximum thermoelastic force  

, ,maxTE zF  on the radius  0ir  of element 1 

( 00 0.015r = m, 0 00 0.145il l= = m) 

The maximum thermoelastic displacements 

,maxzu∆  of the dilatation element 1 as functions of 
its geometry are shown in Figs. 13a and 13b. They 
also grow with the frequency f  of the field current, 

with the amplitude of its density Jϕ . But unlike the 

thermoelastic forces TE, ,maxzF  the growth is sup-

ported only by the increase of the length 0il  of the 
dilatation element 1. Here the variations of the ra-
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dius 0ir  do not have practically any influence. It can 
be explained by the following considerations: 

• In the first case the effects of growth of the 
length 0il  of element 1 and growth of the tem-

perature de,aT  superimpose (compare Fig. 11a). 

• In the second case no growth of the temperature 

de,aT  appears with the growth of the radius 0ir  
(compare Fig. 11b). And the growth of radius 

0ir  itself does not influence its dilatation in the 
axial direction. 
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Fig. 13a. Dependence of the maximum thermoelastic 
displacement z,maxu∆  on the length  0il  of element 1 

( 00 0.145l = m, 0 00 0.015ir r= = m) 
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Fig. 13b. Dependence of the maximum thermoelastic 

displacement z,maxu∆  on the radius  0ir  of element 1 

( 00 0.015r = m, 0 00 0.145il l= = m) 

4. CONCLUSION 

Evidently, the thermoelastic actuators are devices 
that are able to produce very high forces and may be 
used for specific industrial applications such as fix-
ing various bodies. The authors see their further 
improvement in using intelligent materials with 
highly developed pseudoplasticity. 

Important is also their dynamic behavior (in se-
lected applications the time of producing the force 
may be of great importance). That is why the authors 
will continue in their research. 
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