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Summary - This study deals with the numerical model of both the physical and the chemical processes in the tornado. 
Within the paper, a basic theoretical model and a numerical solution are presented. We prepared numerical models based on 
the combined finite element method (FEM) and the finite volume method (FVM). The model joins the magnetic, electric and 
current fields, the flow field and a chemical nonlinear ion model. The results were obtained by means of the FEM/FVM as a 
main application in ANSYS software. 

 
1. INTRODUCTION 

The full electromagnetic-hydro-dynamic 
(EMHD) model of a tornado is a coupled problem in 
which there are coupled the electric, magnetic, fluid 
flow fields, electric circuit and chemical (dynamical 
ions) models. This model was built with the 
combined finite element methods (FEM) and the 
finite volume methods (FVM).  

A more complete understanding of tornado-
genesis must be developed before the feasibility of 
mitigation by heating fine structure, such as cold 
downdraft regions, can be determined. Also, the 
present severe storm diagnostic capability and 
numerical simulation codes are not yet suitable for 
real-time assessment of electromagnetic heating 
results. It is suggested that their be used in a 
tornado-genesis mitigation system:  

• Real-time calculations. It would be 
desirable to predict the development faster 
than real-time to be able to provide better 
targeting.  

• Continuously updated with fresh data from 
diagnostic systems. Validation using 
extensive field data.  

• Nested grid calculations down to 58 meters 
or less in horizontal grid dimensions.  

•  Ability to calculate heating patterns with 
complex electromagnetic heating beam 
geometry. 

•  Inclusion of important microphysics 
considerations. 

The diagnostics must also be capable of real-time 
operation, a one-second or less response time. It is 
generally known [1]-[7] that the tornado produces 
characteristic sferics of its own. In this regard, Jones 
[I] reported that the 10 kHz sferics associated with 
the tornado, but observed prior to the occurrence of 
the tornado, were much more intense than those 
associated with ordinary thunderstorms. 
Furthermore, after the tornado forms, a shift in the 
sferics frequency response is reported from low 
frequencies (app.10 kHz) to high frequencies. Jones 
[2] reported that tornados have characteristic 
waveforms, and that there is a significant correlation 

between the number of sferic flashes at 150 kHz and 
the occurrence of tornados. Jones [3] also concludes 
that the flashing rate is a good indication of the 
intensity of the storms, and has given a tentative 
storm classification system based upon the flashing 
rate. Huebner et al. [6] were able to show that a 
variation of the sferic frequency spectra of tornados 
with respect to storms does exist. However, they 
were unable to confirm all of the predictions made 
by Jones.  

According the last work of Kikuchi [9], [10] is 
possible to build model EMHD for numerical 
simulation of transient effects in the tornado. The 
examples of different tornado are showed in figure 
Fig. 1. 

2. MATHEMATICAL AND NUMERICAL 
MODEL 

Electromagnetic part is derived from Maxwell 
equations 

 
 

T
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 div =B 0 , div ρ=D  (2) 
 
where H is the vector of magnetic field intensity, B 
is the magnetic flux density, JT is the vector 
of total current density, D is the electric flux density 
, ρ is the electric charg density. 
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where E is the vector of electric field intensity. 
Vector functions of electric, magnetic field are 
expressed by means of a scalar electric φe and vector 
magnetic potentials  A. Final current density from 
(4) JT is influenced by velocity v of the flowing ion 
solution and outer magnetic field. 
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where m is particle mass, q is the electric charge, γ is 
the conductivity of parts tornado body from the 
macroscopic view. 

The model from relations (1) to (5) was solved 
by finite element methods (FEM) [11] with ANSYS 
system. The geometrical model was built with two 
modifications. First of them is simply geometrical 
model, showed in Fig. 2a. 

The parameters of the first tornado can be written 
as a several parameters. We have used the bold 
signed parameters.  Inner velocity: 100 – 190 km/h, 
speed of rotation: 72 – 720 km/h , outer diameter: 10 
– 100 m inner diameter: 15 – 30.48 m, speed of 
movement: 0 – 120 km/h , height: 50 – 500 m. 
 

 

  
 

  
Fig. 1  Different type of tornado body 

 
 

   
 

Fig. 2a  Basic geometrical dimensions of the first tornado model (left) in meters  and its FEM model (right) 
 

 
Fig. 2b  Basic geometrical dimensions of the second 

tornado model  

 
 

3. NUMERICAL SOLUTION FEM/FVM 

The numerical model was prepared by means of 
ANSYS tools [11] and main FEM/FVM solution 
was solved with APDL program over ANSYS 
system. In the Fig. 3 we can see boundary condition 
for basic solution of electric charge moving. This 
model definition is not so perfect expression of 
tornado state. There are only 50 points where were 
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different electric charge placed and started the 
transient EHD effect. A first results from the model 
are showed in the figure Fig. 4.  Therefore was built 
full EMHD tornado model according of (1) to (5) 
condition. The model is under the test just now. 
Both model was solved for time interval from 
t∈�1.10-12,1.10-2

� sec. Then we can observe the ions 
moving trend and changing of electromagnetic field 
in the tornado body during the time interval.  

4. CONCLUSION 

This work deals with EHD and EMHD 
numerical tornado model. There is basic 
mathematical and numerical description in the 
article and first results of electromagnetic field 
distribution and ions moving in the critical part of 
tornado body. Such analysis could be used for 
understanding of time state and time dependent of 
tornado effects in the breadth time interval 
observation. On the two different tornado 
geometrical model was tested the EHD and EMHD 
numerical model. 
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Fig. 3  Boundary and initial condition of  EHD and 
EMHD tornado model, scalar electric potential ϕe, 

magnetic field intensity H0 
 

 
 
 

 
 
 
Fig. 4  Simply solution of EHD tornado model, displacement of a vector electric field intensity a) and its module b) 
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Fig. 4  Simply solution of EHD tornado model, displacement of a magnetic field intensity module c), positive charge moving, 
t=0.5ps d), 
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