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Summary The image reconstruction problem based on Electrical Impedance Tomography (EIT) is an ill-posed inverse 
problem of finding such conductivity distribution that minimizes some optimisation criterion, which can be given by 
a suitable primal objective function. This paper describes new algorithms for the reconstruction of the surface conductivity 
distribution, which are based on stochastic methods to be used for the acquirement of more accurate reconstruction results 
and stable solution. The proposed methods are expected to non-destructive test of materials. There are shown examples of the 
identification of voids or cracks in special structures called honeycombs. Instead of the experimental data we used the 
phantom evaluated voltage values based on the application of finite element method. The results obtained by this new 
approach are compared with results from the known deterministic approach to the same image reconstruction.  

 
1. INTRODUCTION 

In Electrical Impedance Tomography an 
approximation of the internal conductivity 
distribution is computed based on the knowledge of 
the voltages and currents on the surface of the body. 
We have studied the possibilities of using stochastic 
and deterministic methods to reconstruct static two-
dimensional (2D) conductivity distribution on thin 
conductive layers of unknown surface conductivity 
and known geometry. An example of the so called 
honeycomb structure is shown in Fig. 1. There will 
be shown that the 2D static images obtained from 
the solution of inverse problem are able to recover 
the original values by means of suitable algorithms 
based on stochastic or deterministic methods. In 
inverse problems the forward problem is used to 
predict the observation. The frequency range of the 
applied current sources used in EIT is of the order 
of kHz. The corresponding wavelength of the 
electromagnetic wave is much larger than the 
dimension of the specimen under investigation so 
that curl electric field components as well as 
displacement current influence can be neglected and 
only the conductive currents are considered. 

Fig.  1. An example of honeycombs 
 

Further we assume the existence of the thin 
conductive layers only. Let grads and divs be the 
surface gradient and the surface divergence 
operators on supposed conductive layer. This field is 
described by the continuity equation 
 

s sdiv grad 0s Uσ = ,   (1) 
 

Here, U is the potential and σs is the unknown 
surface conductivity distribution in the phantom. 
The problem is solved as a static one. The solution 
of (1) satisfies the Dirichlet and Neumann boundary 
conditions, too. Equation (1) together with the 
complete electrode model [1] is discretized by the 
Finite Element Method (FEM). We approximated 
(1) from nodal values Uj using approximation 
functions Nj on a grid of linear triangular finite 
elements 
 

j j( , )
nodes

U U N x y= � .   (2) 

 
Applying the Galerkin method to (1) and 

integrating by parts we have (m is the outer unit 
normal to the thin layer) 
 

i igrad grad grad 0.s s s s s
layer c

N U d N U dcσ σ⋅ − ⋅ =� �l m    (3) 

 
The line integral along c is nonzero only for 

those nodes i that belong to curve c common to layer 
l and to the surface of the current supply electrodes. 
We include the electrode contact impedances 
according to [1] in (3) and we obtain the resulting 
discretized system of linear equations of the form  
 

=K U F .    (4) 
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2. PROPOSED RECONSTRUCTION 

TECHNIQUES  

The EIT inverse problem searches for 
parameters in a high-dimensional space. Let propose 
the primal objective function 
 

( ) ( ) 2

M FEM

1
2s sσ σΨ = −� U U .   (5) 

 
Here σs is the surface conductivity distribution 

vector in the object, UM is the vector of measured 
voltages on the boundary, and UFEM(σs) is the vector 
of computed peripheral voltages in respect to σs, 
which can be obtained using FEM. To minimize the 
objective function Ψ(σs) we can use a lot of different 
methods based on both deterministic and stochastic 
approaches [2, 3]. When we apply the deterministic 
method based on the Least Squares (LS) method due 
to the ill-posed nature of the problem, regularization 
has to be used. It is possible to apply the widely 
known Tikhonov Regularization Method (TRM) or 
the Total Variation Primal Dual Interior Point 
Method (TV PD-IPM), described in [4, 5]. With 
respect to regularization the object function of TRM 
can be written in the form 

( ) ( ) 2 2
M FEM

1
2s s sLσ σ α σΨ = − +� U U   (6) 

 Here, � is the regularization parameter, and L is 
the so-called regularization matrix. The primal 
objective function Ψ(σs) for TV PD-IPM algorithm  

( ) ( ) 2 2
M FEM s

1
2s sσ σ α βΨ = − + +� �U U Lσσσσ     (7) 

Here L is a suitable regularization matrix again 
and β is a small positive parameter, which represents 
an influence on the smoothing of Ψ(σs). For the 
solutions of (6) and (7) we can apply a Newton-
Raphson method. The iterative procedures are very 
sensitive to be trapped in local minima and so 
sophisticated regularization must be taken into 
account to obtain the stable solution.  
 A little bit different approach present global 
optimizing evolutionary algorithms, such as genetic 
algorithms, which have been recently applied to the 
EIT problem [6, 7]. Compared to the genetic 
algorithms, the Differential Evolution Algorithm 
(DEA) is a relatively new heuristic approach to 
minimizing nonlinear and non-differentiable 
functions in a real and continuous space. DEA can 
converge faster and with more certainty than many 
other global optimization methods according to 
various numerical experiments. It requires only a 
few control parameters and it is robust and simple in 
use. The details of the algorithm based on DEA can 
be found for example in [8]. Furthermore new 
algorithm so-called the Controlled Selection of Non-

homogeneities (CSN) can be used to the 
reconstruction of the conductivity distribution [9]. 
The optimization of the primal objective function (5) 
based on the CSN is a relatively new technique with 
a very simple basic principle. All the briefly 
introduced methods were used to reconstruction of 
the surface conductivity distribution. 
 
3. EXPERIMENTAL RESULTS 

 A simple example of 2D grid of the honeycomb 
structure is given in Fig. 2. The grid is fully 
described by its nodes and edges. The mesh for the 
calculation of the gradients, voltage reference 
values, and the Jacobians during iterations, has a 
total of 384 edges, and 272 nodes. The same finite 
element mesh is used for the forward and the inverse 
calculations. The volume conductivity is assumed to 
be zero. The surface conductivity σs has non-zero 
value 72 700 S (on black edges) except the black 
bold edges, where the actual value of conductivity σs 
�has zero value and these edges represent some 
cracks in honeycombs structure, see the original 
conductivity distribution in the Fig. 2 and Fig. 4. We 
assume the constant distribution of the conductivity 
σs on all edges.  
Two simple examples of some results of numerical 
experiments are presented in following figures. The 
number of current supply and voltage electrodes was 
48 and the exciting currents were distributed 
trigonometrically with magnitude 1 mA. All the 
recovered values were obtained using modification 
of the TRM, PD-IPM, DEA and CSN algorithms. In 
the Fig. 3 and Fig. 5 are presented conductivity σs 
distributions on edges obtained using TRM, DEA 
and CSN algorithms. The conductivity distribution 
σs obtained using PD-IPM is not shown because it is 
very similar to results obtained using TRM, the 
accuracy of recovering results is a little bit worse in 
case of using PD-IPM.  

 

 
Fig.  2. Example 1, original distribution 
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When we use the TRM we needed 5 iterations to 
obtained results presented in Fig. 3, Fig. 5 and the 
accuracy in both cases is strong depending on the 
value of the regularization parameter �. We can see 
that the best results of the reconstruction were 
obtained always when we use the CSN algorithm. 

 

 
 

 

 

 

Fig.  3. Example 1, reconstruction results  
 
 
 

 
Fig.  4. Example 2, original distribution 

 

 
 

 
 

 
Fig.  5. Example 2, reconstruction results 
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4. CONCLUSION 

In this paper the new possibilities to the 
reconstruction of non-homogeneities distribution has 
been presented. The all algorithms based on both 
deterministic and stochastic approaches have been 
adapted to reconstruction of conductivity 
distributions in special honeycomb structures. Based 
on many numerical experiments performed during 
the above-described algorithms and methods we can 
say that only the application of the CSN 
reconstruction algorithm has the significant 
advantage over the TRM in better accuracy and 
stability of the reconstruction process. On the other 
hand the CSN is very time-consuming technique. 
The stability of the TRM algorithm is a bit sensitive 
to the setting of the starting value of conductivity. 
The regularization parameter α controls the relative 
weighting allocated to the prior information. Its 
optimal choice provides balance between the 
accuracy and stability of the solution. On the basis 
of many numerical experiments, it is supposable that 
we obtain higher accuracy of the reconstruction 
results for smaller value of the parameter α, but if 
the value of α is decreasing, the instability of the 
solution is increasing. The results stated above as 
well as many other examples were obtained using a 
program written in MATLAB by author. 

The next paper will present other possibilities 
and some examples to obtain the effective 
reconstruction results in more practical cases with 
respect to the best accuracy, stability and space 
resolution of non-homogeneities. 
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