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Summary The damper cage bars’ currents occur only when the synchronous machine operates in a dynamic regime and its 
rotor speed differs from the stator field speed. Basically there are two ways of calculating the damper cage currents, by using 
the machine equivalent circuit or by employing a 2D or 3D finite element method (FEM) analysis. In this paper are discussed 
two methods to calculate the damper cage currents, one based on a coupled field-circuit approach when all the machine 
dimensions and winding should be known and another based on DC-decay tests conducted with the rotor on d, respectively q 
axis when all the transient parameters and time constants are obtained. Both methods are quite simple and offer an acceptable 
accuracy. 

 
1. INTRODUCTION 

Obtaining parameters of a synchronous machine is 
and will be an important step of the designing 
procedure. The study of the machine transient is also 
requiring a good estimation of the parameters. An 
appropriate determination allows knowing precisely 
the machine behaviour in different operating 
regimes.    

There are many proposed methods to obtain the 
parameters from tests [1, 2], identification and 
estimating methods [3, 4] while the analytical 
approaches are lately neglected; it is one of the 
reasons why this paper tries to prove that some 
analytical approaches can give satisfactory results 
depending on the considered assumptions.  

The most important aspect in computing the 
damper winding is to obtain the current distribution 
in each damper bar. 

In this paper two methods for calculating the 
parameters and the damper bar currents are 
presented. The first method, a field-circuit approach,  
is based on grouping two symmetrically located bars 
into loops. A sinusoidal distribution of currents in 
the damper winding is assumed [5]. An equivalent 
current and voltage is defined and the damper 
winding will be reduced to an equivalent winding on 
both axes, with an equivalent resistance and 
inductance. The rotor parameters will be referred to 
the stator side. 

In the second method discussed here a DC decay 
test will be applied with the rotor on d, respectively 
on q-axis, at standstill where is no coupling between 
the axes [6]. The time constants and transient 
parameters are obtained for both axes. 

2. FIELD-CIRCUIT APPROACH 

In order to obtain the damper bar current 
distributions, first all the parameters must be known.  

 

 
 
The number of parameters that must be calculated 

depends on the number of pole bars. 
In Fig.1 is presented the way the bars are grouped 

into loops for d- and q-axis respectively for the case 
with 9 bars per pole. Each bar together with another 
bar which lies symmetrically on the d- respective q-
axis constitutes a single turn separate damper 
winding, named loop in this paper.   
 

 
 

Fig.1. Defining the single turn damper windings (loops) 
on the d- and q- axis 

 
The air gap field distribution in the machine can 

be obtained numerically by finite elements method 
but also is possible to be given analytically. If the 
analytical approach is considered to obtain the form 
factors that are necessary to calculate the self and 
mutual inductances, a permeance distribution curve 
along a pole pitch can be defined based on the 
machine geometrical dimensions (minimum and 
maximum air-gap length, pole pitch, stator inner 
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diameter, pole arc) that approximates more or less 
precisely the real air gap permeance or magnetic 
field distribution. 

In Fig. 2, two permeance distribution curves are 
presented; the dotted one is a result of a 2D-FEM 
computation while the other was obtained 
analytically. 

 

 
Fig.2.  Permeance distribution curves 

- - - - numerically,        analytically 

    

The air gap flux given analytically has the following 
expression: 
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where N is the number of turns per pole of a given 
rotor circuit, li is the machine ideal length and IR is 
the current from a rotor circuit (filed winding or a 
loop). The permeance associated for an elemental 
length (dx) of the pole pitch: 
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The ratio �/�0 was introduced because the 
permeance distribution through the air gap is not 
constant. A function can be defined as the ratio λ/λ0 
for the whole pole pitch, function that has two terms: 
a sinusoidal function for the length of the pole tip 
(f1) and a third degree function for the inter-pole 
region (f2). The permeance distribution curve is 
symmetrical in respect to the pole axis, than the λ/λ0 
ratio: 
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    Constants A, B and C have to be calculated for a 
given machine considering the specific values of the 
air-gap permeance. The self and mutual inductances 
must be calculated separately for each rotor circuit. 
First, few relations will be presented in order to 
obtain the field winding self and mutual inductances. 
      The field winding self inductance is composed 
by two terms; the main magnetizing inductance 
(LhF) and the leakage inductance (L�F): 

FhFF LLL σ+=   

The flux produced by a pole, if only the field 
winding is fed, comes as: 
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The total flux produced by the field winding: 

FhFhFFhF ILN ⋅=⋅=Ψ φ                   (7) 

Where the magnetizing inductance is 

hFFhF CNL ⋅⋅= 2λ                       (8) 

with � being the permeance calculated for a constant 
air gap machine and ChF is a form factor calculated 
based on relation (4), Di being the air-gap interior 
stator diameter: 
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   The coupling between the field winding and the 
stator phase winding exists for the fundamental of 
the flux on the d-axis. The mutual stator-filed 
winding inductance is: 

FSFwSSSF CNkNL ⋅⋅⋅⋅= λ                (11) 

with kwS being the stator winding factor and CFS the 
form factor, [7]. 
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One of the methods which is proposed in this 
paper calculates the damper bar currents by 
considering a sinusoidal distribution in loops. This 
analytical calculation reduces the damper winding to 
two equivalent windings, one with its magnetic axis 
in line with the direct- and one with the quadrature 
axis. The method is applicable when the damper 
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windings have the bars with the same chemical 
composition and cross section. The flux density has 
a pulsating sinusoidal distribution in space with its 
magnetic axis in the pole axis. The currents induce 
in each pair of bars located at the same distance 
from the pole axis will have the same magnitude and 
an opposite flowing direction. 

The definition of a loop (Fig.1) remains valid in 
this situation but will be assumed that the currents 
with the maximum magnitude are induced in the 
loop located at a half pole pitch from the flux wave 
axis. 

The currents from each loop positioned at the 
electric angle �/2 from the flux wave axis will have 
a magnitude equal to sin (�/2) from the maximum 
magnitude. If IDd is the direct axis current with the 
maximum magnitude, than a current from the nth 
loop will be: 
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An important simplifying assumption introduced 
in this approach is that the mmf produced by any 
loop has a rectangular distribution. This assumption 
is not entirely true at a machine with salient poles 
and a variable air gap along the pole tip, but only in 
this way the damper winding can be reduced to an 
equivalent one circuit winding. Thus, the magnitude 
of the fundamental direct axis MMF component 
corresponding to the nth loop will be: 
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and the resultant space fundamental mmf of all the 
loops is: 
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where NDd is the number of loops. Based on the 
number of bars per pole, the following discussion 
must be made: 

if Ddb Nn ⋅= 2 , than ( ) bn n αθ ⋅−= 12         (16) 
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Considering this, for both odd and even number of 
bars per pole, the resultant space fundamental mmf 
on d-axis can be expressed as: 
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For the q-axis, the resultant space fundamental 
mmf is obtained by a similar reasoning. 

( )bDqbDq kInF +⋅⋅⋅= 11
π

               (21) 

In order to refer the rotor parameters to the stator 
side, the fundamental armature mmf and the 
equivalent damper winding mmf yield equal air gap 
fundamental flux density distributions when their 
magnetic axis are aligned.  

Ddad BB =                                (22) 

Bad is the flux density produced by an equivalent 
damper winding current circulating in the stator 
phase (IDr). 

Cad  and Caq are the form factors [7]. 
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while BDd is the flux density produced by the 
equivalent damper winding current IDd. 
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From rel. (35) the ratio of actual and referred to 
the stator side currents will be obtained: 
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The expressions of the referred parameters are [7]:  
- the equivalent damper winding leakage   
inductance referred to the stator, with Ld� being the 
equivalent single bar direct axis leakage: 
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-    the mutual inductance between the stator phase 
and the equivalent damper winding referred to 
stator: 
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-    the referred stator-field, field-equivalent damper 
winding and stator-direct axis equivalent damper 
winding mutual inductances have the same value 
(28). 

FDrSFrSDr LLL ==                       (30) 

-  the equivalent damper winding resistance 
referred to stator: 
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-   the referred field winding leakage inductance 
and resistance: 
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Also the ration between the actual and referred 
field currents is: 
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With the above presented relations, all the rotor 
parameters were referred to the stator side. Thus, if a 
p.u. system is adopted, than only the stator reference 
system will be used. Independently from the number 
of damper bars per pole, a voltage equation system 
with 5 equation and 5 unknown quantities is 
obtained at a given slip (26); the unknown quantities 
being the stator d- and q-axis currents, the field 
current and the equivalent damper winding d- and q-
axis currents. 

The sample machine considered as example is a 
three phase one with rated power of 7.5 MVA, two 
pole pairs and 9 bars per poles. After obtaining all 
the machine parameters, the obtained voltage 
systems, with 12 respectively with 5 voltage 
equations, were solved for a given slip (s=1) and 
voltage (u=0.186 p.u. corresponding to 

VU 310656.12 ⋅= rated phase voltage). The 
considered operating regime was an asynchronous 
starting with short-circuited field winding. In Fig.2., 
the actual values of damper bar currents are  
presented, obtained with the above presented method  
and respectively obtained via a numerical approach 
[8]. 

As can be seen, with only one exception the 
proposed method gives closed values to that 
calculated via the numerical approach.  

 

 
Fig.2. Actual damper bar current values from 

  analytical and numerical methods 
 

3. STANDSTILL DC DECAY TEST 

The standstill DC decay test consists in cutting off 
the constant DC supply, allowing the current from 
the coils to reach zero and keeping the rotor in a fix 
position. Initially, the switch K2 is closed, K1 is 
open. The DC source is supplying two phases of the 
stator with a known current io, whereas the 
excitation is short-circuited. Once the switch K2 is 
opened and K1 is closed simultaneously, the 
decreasing of the current is acquired and using a 
dedicated program, the reactances and time 
constants of the synchronous machine can be 
obtained. A low power salient pole synchronous 
machine was tested in the Electric Machines 
Laboratory at EPFL, Switzerland. 

 
 

 
 

Fig. 3.  Standstill DC decay test setup 
 

The classical DC decay test requires also that the 
rotor at standstill to be either in transversal axis, 
either in longitudinal one. This work treats this case 
in particular, as well as, a general case, when the 
rotor is in a random position.  The validation is done 
for a small laboratory machine. After this, the 
procedure is developed and applied for a simulated 
large machine with the rotor in various positions. 
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1. Identification procedure for d- and q- axis  
 

 
Fig. 4.  d- and q- axis diagram 

 
The identification procedure starts from a 

mathematical model, which consists of the machine 
voltage equations for the d- and q-axis. In the 
transient period of time, the voltage input becomes 
zero, rs is the resistance of two series connected 
phases (in Fig. 2 – a and b phases), i is the resultant 
current of the two windings, � is the resultant flux 
coupled with the two phases, L stands for the 
inductance and p expresses the operator d/dt. 
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For writing the expression of the current variation 
i’ in the transient interval of time, Laplace 
transformations and operational inductances are 
used: 
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The d- and q- axis current time-variation is 
considered as being given by a sum of exponential 
functions, which means, in a per-unit variant,  
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where the coefficients A, B, C and � are functions of 
time-constants and reactances for each of the axis 
[2].  

The developed identification program is based on 
the MATLAB curve-fit procedure. Starting from the 
expressions of the currents, the identification is 
applied on parts of the curves. Estimated data are 
used as initial values. 

Firstly, the procedure was tested by using known 
values for simulating a small machine. The results of 
the simulation are fed to the identification program, 
Fig.5. The identified parameters were afterward 
compared to the input values used in the simulation 
program. There was a very good accuracy.  

 

 
The d-axis current is more difficult to calculate 

accurately than that on the q-axis, because of the 
three time constants. But, with this method of 
identification (in different intervals) the problem can 
be solved with good accuracy and consistency of the 
results. 

 

 
Fig. 5.  Procedure lay out 

 

2. Procedure’s validation 
 

The identified constants A, B, C and �, obtained 
by curve-fitting, are directly used to calculate the 
time constants T and reactances X. 

 
Tab. 1.  d - axis parameters for simulated files 

 
 

 
Tab. 2.  q - axis parameters for simulated files 

 
 
A difference between known values and identified 

ones of less then 0.01% was obtained. The 
identification was made for both axes, fig.6. 
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Fig. 6.  Currents identification  (1 p.u.) 

 

4. CONCLUSION 

The goal of this paper was the determination of 
the parameters and the damper bar currents 
distribution using analytical computation method for 
a salient pole synchronous machine and a DC decay 
test. 
    Assuming that the damper currents have a 
sinusoidal distribution made possible the reduction 
of the damper winding to equivalent circuits in both 
d- and q-axis defined by only one resistance and one 
inductance. Thus, a synchronous machine with 
variable air gap and unsymmetrical damper winding 
was reduced by the equivalent winding to a constant 
air gap and continuous damper winding similar with 
the model of a squirrel cage induction machine. 

The field-circuit approach is simple to use but is 
based on simplifying assumptions that influences the 
results. 

The DC decay test allows the identification of  
all the transient parameters of the machine. The 
calculated values of the reactance and time constants 
by this identification method have been found to be 
in a quite good agreement with the simulation ones.  

This identification method is quick and easy to 
perform once the equations are written, and with 
some carefully chosen initial conditions can give  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

good values for transient and sub-transient 
parameters. It is an attractive alternative to other 
tests because of the equipment simplicity and 
because of the simulation and identification CPU 
required time.  
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