
Overview of distributed control systems formalisms 253

OVERVIEW OF DISTRIBUTED CONTROL SYSTEMS FORMALISMS

P. Hole�ko

Department of Control and Information Systems, Faculty of Electrical Engineering, University of Žilina
Univerzitná 8216/1, SK 010 26, Žilina, Slovak republic, tel.: +421 41 513 3343, e-mail: holecko@fel.uniza.sk

Summary This paper discusses a chosen set of mainly object-oriented formal and semiformal methods, methodics,
environments and tools for specification, analysis, modeling, simulation, verification, development and synthesis of
distributed control systems (DCS).

1. INTRODUCTION

Increasing demands on technical parameters,
reliability, effectivity, safety and other
characteristics of industrial control systems initiate
distribution of its control components across the
plant. The complexity requires involving of formal
methods in the process of specification, analysis,
modeling, simulation, verification, development, and
in the optimal case in synthesis of such systems.

2. DISTRIBUTED CONTROL SYSTEM

A common general definition of a distributed
system describes it as a system consisting of several
intelligent devices cooperating for common purpose.
Intelligent devices (microcomputers, workstations,
robots etc.) support processes, which coordinate
activities and information exchange via a
communication network. In order to call a device
“intelligent”, it must fulfill following requirements
(Fig. 1):
� Contain some kind of processor or CPU for

processes realization and decision making;
� Dispose sufficient memory capacity for

information storage.

���

���

������	�
���

��

���

���

����
��

��

��
������	�������

� �

�

�

�� ��

��

��

�� ��

��

Fig. 1 Example of distributed control system and
intelligent device structure

The term Distributed Control System (DCS)
denotes a control system, usually of a manufacturing
system, process or other type of dynamic system, in
which the control elements are distributed and

interconnected by a network for the purpose of
communication and monitoring.

In the next section the problem of formalizing
the processes of DCS’s life-cycle will be discussed.

3. FORMAL METHODS

The main motivations of using formal concepts
are [9]:
� In the process of formalizing informal

requirements, ambiguities, omissions and
contradictions will often be discovered;

� The formal model may lead to hierarchical semi-
automated (or even automated) system
development methods;

� The formal model can be verified for correctness
by mathematical methods;

� A formally verified subsystem can be
incorporated into a larger system with greater
confidence that it behaves as specified;

� Different designs can be evaluated and compared.

In general, formal methods for distributed control
systems must address the following problems:
I. Modeling - Select appropriate models and
formal notations for adequately describing
controlled and control system. These notations must
deal with the dynamic and reactive nature of the
controlled system, and allow for the proper
expression of timing properties.
II. Verification - The verifier is presented with a
formal mathematical model of the system, and a
specification S of how the controlled system should
behave. The verification problem involves
demonstrating that the model of the system satisfies
the specification S.
III. Development - In controller development a
specification S is given that the plant must satisfy
(the controller is not given). A disciplined method is
sought whereby designers can be helped to construct
a controller so that system model satisfies S. In
development the controller should be built in a
modularly structured compositional fashion
(controller architecture) .
IV. Synthesis – If controller development is fully
automated, then such process is called synthesis.
 A chosen set of methodics, environments and
tools fully or partially satisfying the specified

IU – Intelligent Unit
GW – Gateway
P – Process
ASIC – Application
Specific Integrated
Circuit

254 Advances in Electrical and Electronic Engineering

requirements related to formalisms will be
introduced.

3.1 Sequential Function Chart

The primary objective of Sequential Function

Chart (SFC++) is the implementation of graphical
modeling formalism for design, validation,
simulation and automatic code generation of
industrial systems, graphical language for
programming its control software and supervisory
level control tool for control, monitoring,
diagnostics etc. [10]. The aim of the running project
is also creation of visual programming environment,
which integrates the advantages of object-oriented
modeling for design and simulation and the
performance of distributed control systems (i.e.
computers with real-time operating systems
interconnected via industrial networks). To bypass
the differences between object-oriented model and
implementation level, on which run several parallel
tasks, a standard formalism (IEC, 1988; UTE, 1992)
is used for describing of system dynamics and
programming of control system based on Sequential
Function Chart (SFC).

System
Model

SFC++
Editor

Local Data

Debugging
Module

RunTime
Module

Evolution
Module

Event
Manager

I/O Module

Development Subsystem RunTime Subsystem

 Fig. 2 SFC++ logical architecture

SFC++ is intended for control systems using

single or multiprocessor computers or PLCs with
real-time operating systems ((RTOS) interconnected
by local networks and with control buses connecting
the process and other devices.

3.2 The Crisys project

The Crisys project aims at improving,
unification and formalization of the actual methods,
techniques and tools used in the industries concerned
with process control, in order to support a global
system approach when developing DCS [2],[3]. The
main result of Crisys project is quasi-synchronous
approach based on synchronous language Lustre [7]
and associated tool SCADE (Safety Critical
Application Development Environment) [1]. This

approach is dedicated to a special class of DCS,
which are organized as several periodic processes,
with nearly the same working period, but without
common clock, and which communicate by means
of shared memory through serial links or field
busses.

Fig. 3 CRISYS methodology scheme

3.3 The ISILEIT project

The ISILEIT (Integrative Specification of

Distributed Control Systems for the Flexible
Automated Manufacturing) project aims at the
development of a seamless methodology for the
integrated design, analysis and validation of
distributed production control systems [6]. Its focus
is the use of existing techniques which should be
improved with respect to formal analysis, simulation
and automatic code generation. The integration of
SDL block diagrams, UML statecharts and
collaboration diagrams formed an executable
specification language that allows specifying
reactive behavior as well as complex application
specific object structures. To ensure the correctness
of the design at the earliest stage, validation in form
of simulation and formal verification is integrated

Specification: centralized model

SCADE editor

SCADE editor

SCADE editor

Simulation
Automated tests

generation
Formal verification

Distribution
protocol

SCADE
function
model

SCADE
Distributed
functions

Distributed
implementation

model

Simulation
Automated tests

generation
Formal verification

Performance validation

Robust properties
analyzator

Environment
emulation

Communication
library

SCADE code
generator

code code code

Overview of distributed control systems formalisms 255

into the process. The developed simulation
environment can be used to prove that the generated
executable code meets the requirements.

Fig. 4 ISILEIT methodology evaluation activities

3.4 DCS Modeler, DCS Simulator

During design of object-oriented simulation
model of a DCS several requirements were
considered [4]:

a) Dynamic behavior of each component device

within DCS can be considered to be a Finite State
Machine (FSM);

b) Overall state of simulation model of a DCS is
changing and is determined through
communication events among component device
models;

c) Component device models of simulation model of
a DCS should correspond with physical sensors
and actuators in order to simplify the construction
of DCS simulation model;

d) Device model consists of diverse combinations of
device component models;

e) Events among component device models are
transmitted at a level within device or at a level
among devices.

The DCS simulation model should be combined

with network model in order to evaluate the event
communication at the inter-device level. To solve
these requirements principles using Design Patterns
are widely used. This approach specifies reusable
mechanisms for cooperation and interaction between
classes or between objects for the purpose of solving

common object-oriented problems in general
domain.

3.5 Architecture Description Language

The Architecture Description Language (ADL)
is defined as a language which disposes of
capabilities for modeling conceptual architecture of
both hardware and software systems [8]. The
language provides models, notations and tools for
description of components and its interactions,
particularly with regard to large-scale high-level
designs. It supports the selection of principles,
application of architecture paradigms, abstraction
and designs implementation.

The main properties of the language include

explicit specification of:
� components,
� connectors,
� interfaces,
� configurations.

A component represents a computation unit or

data store and forms loci of computation and state. A
connector is a construction block used for modeling
of interactions among components and for modeling
or rules, which govern those interactions. The
interfaces ensure correct connectivity and
communication of components. Architectural
configuration or topology is connected graph of
components and connectors which describes
architectural structure.

3.6 IEC 614 99

The IEC 61499 standard modified the Function
Block (FB) concept of the IEC 61131-3 standard
taking into account the FB concept in field-bus
standardization IEC 61804 [5]. Thus the elementary
model of IEC 61499 is a function block, which
forms the basic structural block of the entire
application. There are two types of function blocks:
basic function blocks and composite function blocks.
Composite function blocks contain other composite
blocks and/or basic function blocks. Basic function
block contains algorithm and an Execution Control
Chart (ECC). Even though the IEC 61499 has some
similarities with its predecessor IEC 61131
regarding structural hierarchy and atomic structural
construct, function blocks concept, it established a
special different concept. Primarily the standard
introduced an event-driven approach of interaction
among function blocks, whereas existing standards
and languages use data or signal communication
among elements with assumption of cyclic
execution. The standard is defined as a generic
standard hence not limiting user to apply of a
specific implementation language, communication
protocol or hardware components. This enables

Create system
specification

Create system
model

(FUJABA)

Generate
executable model

Instantiate system in
ASM meta-model

Validate system
model by
execution

Prepare ASM for
model-checking

Run model-checker

System
 specification

System object
 model

Java
appliaction

Design errors

Instance of ASM
data structure

ASM model

Model checking
input

V
A
L
I
D
A
T
I
O
N

V
E
R

I
F
I
C

A
T
I
O

N

256 Advances in Electrical and Electronic Engineering

generation of heterogeneous networks of distributed
control applications.

Fig. 5 Function Block (FB) model according to IEC

61499-1 standard

The IEC 61499 standard defines open

architecture for design, development, simulation,
testing and implementation of distributed control
and automation systems.

4. CONCLUSION

The introduced selected set of formal and
semiformal methodics, methods, environments and
tools is designed to be involved in the process of
specification, design, analysis, modeling, simulation,
verification, development and synthesis of
distributed control systems used in industrial
environments. The formalization of these activities
enables exact formulation and testing of diverse
system requirements, parameters, functionalities,
structures etc. The formal outputs of these processes
may be subject of appraisal of supervisory authority
to guarantee the correctness of the entire procedure
and meeting the specified requirements.

Acknowledgement

The work has been supported by KEGA project Nr.
K-057-06-00: Innovation of laboratory education
methodics on the basis of modelling and simulation
in Matlab program environment in combination with
educational models using e-learning.

REFERENCES

[1] Bergerand, J.L., Pilaud, E.: SAGA: A Software
Development Environment for Dependability in
Automatic Control. Safecomp’88, Pergamon
Press, 1988.

[2] Caspi, P., Curic, A., Maignan, A., Sofronis, C.,
Tripakis, S., Niebert, P.: From Simulink to
SCADE/Lustre to TTA: a Layered Approach
for Distributed Embedded Applications.
Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for
embedded systems, pp. 153-162, San Diego,
California, USA, ISSN 0362-1340, 2003.

[3] Caspi, P., Mazuet, C., Paligot, N.R.: About the
Design of Distributed Control Systems: The
Quasi-Synchronous Approach. SAFECOMP
2001, LNCS 2187, pp. 215-226, 2001.

[4] Tomura, T., Uehiro, K., Kanai, S., Yamamoto,
S.: Developing Simulation Models of Open
Distributed Control System by Using Object-
Oriented Structural and Behavioral Patterns.
Proceedings of the Fourth International
Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’01), 2001.

[5] Frey, G., Hussain, T.: Modeling Techniques for
Distributed Control Systems based on the IEC
61499 - Current Approaches and Open
Problems. Proceedings of the 8th International
Workshop on Discrete Event Systems
(WODES 2006), Ann Arbor, Michigan, USA,
pp. 176-181, 2006.

[6] Giese, H., Kardos, M., Nickel, U.: Integrating
Verification in a Design Process for
Distributed Production Control Systems. Proc.
of Second International Workshop on
Integration of Specification Techniques for
Applications in Engineering (INT2002),
Grenoble, France, 2002.

[7] Halbwachs, N., Caspi, P., Raymond, P., Pilaud,
D.: The synchronous dataflow programming
language Lustre. Proceedings of the IEEE, pp.
1305-1320, ISSN 0018-9219, 1991.

[8] Medvidovic, N., Colbert, E.: Architecture
Description Languages. Center for Software
Engineering, 2003.

[9] Ostroff J.S.: Formal Methods for the
Specification and Design of Real-Time Safety
Critical Systems. Journal of Systems and
Software, Vol. 18, No. 1, pp 33-60, April 1992.

[10] Pardo, X.C., Ferreiro, R., Vidal, J.: SFC++:
A Tool for Developing Distributed Real Time
Control Software. Advanced technologies in
manufacturing, pp. 197-202, ISBN 84-95138-
08-5, 1998.

[11] Zeigler, B., Praehofer, H., Kim, T.G.: Theory
of Modeling and Simulation, Second Edition.
Academic Press, USA, ISBN 0-12-778455-1,
2000.

Algorithm
realization control

(hidden)

Algorithm (hidden)

Internal data
(hidden)

FB type

FB call name
event flow event flow

data flow data flow

event inputs event outputs

data inputs data outputs

source capabilities
(FB realization planning, projection to

communication objects and process variables)

