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Summary This paper discusses a chosen set of mainly object-oriented formal and semiformal methods, methodics, 
environments and tools for specification, analysis, modeling, simulation, verification, development and synthesis of 
distributed control systems (DCS). 

 
1. INTRODUCTION 

Increasing demands on technical parameters, 
reliability, effectivity, safety and other 
characteristics of industrial control systems initiate 
distribution of its control components across the 
plant. The complexity requires involving of formal 
methods in the process of specification, analysis, 
modeling, simulation, verification, development, and 
in the optimal case in synthesis of such systems. 

2. DISTRIBUTED CONTROL SYSTEM 

A common general definition of a distributed 
system describes it as a system consisting of several 
intelligent devices cooperating for common purpose. 
Intelligent devices (microcomputers, workstations, 
robots etc.) support processes, which coordinate 
activities and information exchange via a 
communication network. In order to call a device 
“intelligent”, it must fulfill following requirements 
(Fig. 1): 
� Contain some kind of processor or CPU for 

processes realization and decision making; 
� Dispose sufficient memory capacity for 

information storage. 
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Fig. 1 Example of distributed control system and 
intelligent device structure 

The term Distributed Control System (DCS) 
denotes a control system, usually of a manufacturing 
system, process or other type of dynamic system, in 
which the control elements are distributed and 

interconnected by a network for the purpose of 
communication and monitoring. 

In the next section the problem of formalizing 
the processes of DCS’s life-cycle will be discussed. 

3. FORMAL METHODS 

The main motivations of using formal concepts 
are [9]: 
� In the process of formalizing informal 

requirements, ambiguities, omissions and 
contradictions will often be discovered; 

� The formal model may lead to hierarchical semi-
automated (or even automated) system 
development methods; 

� The formal model can be verified for correctness 
by mathematical methods; 

� A formally verified subsystem can be 
incorporated into a larger system with greater 
confidence that it behaves as specified; 

� Different designs can be evaluated and compared. 
 

In general, formal methods for distributed control 
systems must address the following problems: 
I. Modeling - Select appropriate models and 
formal notations for adequately describing 
controlled and control system. These notations must 
deal with the dynamic and reactive nature of the 
controlled system, and allow for the proper 
expression of timing properties. 
II. Verification - The verifier is presented with a 
formal mathematical model of the system, and a 
specification S of how the controlled system should 
behave. The verification problem involves 
demonstrating that the model of the system satisfies 
the specification S. 
III. Development - In controller development a 
specification S is given that the plant must satisfy 
(the controller is not given). A disciplined method is 
sought whereby designers can be helped to construct 
a controller so that system model satisfies S. In 
development the controller should be built in a 
modularly structured compositional fashion 
(controller architecture) . 
IV. Synthesis – If controller development is fully 
automated, then such process is called synthesis. 
 A chosen set of methodics, environments and 
tools fully or partially satisfying the specified 
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requirements related to formalisms will be 
introduced. 
 
3.1 Sequential Function Chart 

 
The primary objective of Sequential Function 

Chart (SFC++) is the implementation of graphical 
modeling formalism for design, validation, 
simulation and automatic code generation of 
industrial systems, graphical language for 
programming its control software and supervisory 
level control tool for control, monitoring, 
diagnostics etc. [10]. The aim of the running project 
is also creation of visual programming environment, 
which integrates the advantages of object-oriented 
modeling for design and simulation and the 
performance of distributed control systems (i.e. 
computers with real-time operating systems 
interconnected via industrial networks). To bypass 
the differences between object-oriented model and 
implementation level, on which run several parallel 
tasks, a standard formalism (IEC, 1988; UTE, 1992) 
is used for describing of system dynamics and 
programming of control system based on Sequential 
Function Chart (SFC). 
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 Fig. 2 SFC++ logical architecture 

 
SFC++ is intended for control systems using 

single or multiprocessor computers or PLCs with 
real-time operating systems ((RTOS) interconnected 
by local networks and with control buses connecting 
the process and other devices. 
 
3.2 The Crisys project 
  

The Crisys project aims at improving, 
unification and formalization of  the actual methods, 
techniques and tools used in the industries concerned 
with process control, in order to support a global 
system approach when developing DCS [2],[3]. The 
main result of Crisys project is quasi-synchronous 
approach based on synchronous language Lustre [7] 
and associated tool SCADE (Safety Critical 
Application Development Environment) [1]. This 

approach is dedicated to a special class of DCS, 
which are organized as several periodic processes, 
with nearly the same working period, but without 
common clock, and which communicate by means 
of shared memory through serial links or field 
busses. 
 

 

Fig. 3 CRISYS methodology scheme 

 
3.3 The ISILEIT project 

 
The ISILEIT (Integrative Specification of 

Distributed Control Systems for the Flexible 
Automated Manufacturing) project aims at the 
development of a seamless methodology for the 
integrated design, analysis and validation of 
distributed production control systems [6]. Its focus 
is the use of existing techniques which should be 
improved with respect to formal analysis, simulation 
and automatic code generation. The integration of 
SDL block diagrams, UML statecharts and 
collaboration diagrams formed an executable 
specification language that allows specifying 
reactive behavior as well as complex application 
specific object structures. To ensure the correctness 
of the design at the earliest stage, validation in form 
of simulation and formal verification is integrated 
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into the process. The developed simulation 
environment can be used to prove that the generated 
executable code meets the requirements. 

 
 

Fig. 4 ISILEIT methodology evaluation activities 

 
3.4 DCS Modeler, DCS Simulator 
 

During design of object-oriented simulation 
model of a DCS several requirements were 
considered [4]: 

 
a) Dynamic behavior of each component device 

within DCS can be considered to be a Finite State 
Machine (FSM); 

b) Overall state of simulation model of a DCS is 
changing and is determined through 
communication events among component device 
models; 

c) Component device models of simulation model of 
a DCS should correspond with physical sensors 
and actuators in order to simplify the construction 
of DCS simulation model; 

d) Device model consists of diverse combinations of 
device component models; 

e) Events among component device models are 
transmitted at a level within device or at a level 
among devices.  

 
The DCS simulation model should be combined 

with network model in order to evaluate the event 
communication at the inter-device level. To solve 
these requirements principles using Design Patterns 
are widely used. This approach specifies reusable 
mechanisms for cooperation and interaction between 
classes or between objects for the purpose of solving 

common object-oriented problems in general 
domain. 

 
3.5 Architecture Description Language 
 

The Architecture Description Language (ADL) 
is defined as a language which disposes of 
capabilities for modeling conceptual architecture of 
both hardware and software systems [8]. The 
language provides models, notations and tools for 
description of components and its interactions, 
particularly with regard to large-scale high-level 
designs. It supports the selection of principles, 
application of architecture paradigms, abstraction 
and designs implementation. 

 
The main properties of the language include 

explicit specification of: 
� components, 
� connectors, 
� interfaces, 
� configurations. 
 
A component represents a computation unit or 

data store and forms loci of computation and state. A 
connector is a construction block used for modeling 
of interactions among components and for modeling 
or rules, which govern those interactions. The 
interfaces ensure correct connectivity and 
communication of components. Architectural 
configuration or topology is connected graph of 
components and connectors which describes 
architectural structure. 
 

3.6 IEC 614 99 
 

The IEC 61499 standard modified the Function 
Block (FB) concept of the IEC 61131-3 standard 
taking into account the FB concept in field-bus 
standardization IEC 61804 [5]. Thus the elementary 
model of IEC 61499 is a function block, which 
forms the basic structural block of the entire 
application. There are two types of function blocks: 
basic function blocks and composite function blocks. 
Composite function blocks contain other composite 
blocks and/or basic function blocks. Basic function 
block contains algorithm and an Execution Control 
Chart (ECC). Even though the IEC 61499 has some 
similarities with its predecessor IEC 61131 
regarding structural hierarchy and atomic structural 
construct, function blocks concept, it established a 
special different concept. Primarily the standard 
introduced an event-driven approach of interaction 
among function blocks, whereas existing standards 
and languages use data or signal communication 
among elements with assumption of cyclic 
execution. The standard is defined as a generic 
standard hence not limiting user to apply of a 
specific implementation language, communication 
protocol or hardware components. This enables 

Create system 
specification

Create system 
model

(FUJABA)

Generate 
executable model

Instantiate system in 
ASM meta-model

Validate system 
model by 
execution

Prepare ASM for 
model-checking

Run model-checker

System
 specification

System object
 model

Java 
appliaction

Design errors

Instance of ASM 
data structure

ASM model

Model checking 
input

V
A
L
I
D
A
T
I
O
N

V
E
R

I
F
I
C

A
T
I
O

N



256 Advances in Electrical and Electronic Engineering 
 

generation of heterogeneous networks of distributed 
control applications.  

 
 

 
Fig. 5 Function Block (FB) model according to IEC 

61499-1 standard 

 
The IEC 61499 standard defines open 

architecture for design, development, simulation, 
testing and implementation of distributed control 
and automation systems. 

4. CONCLUSION 

The introduced selected set of formal and 
semiformal methodics, methods, environments and 
tools is designed to be involved in the process of 
specification, design, analysis, modeling, simulation, 
verification, development and synthesis of 
distributed control systems used in industrial 
environments. The formalization of these activities 
enables exact formulation and testing of diverse 
system requirements, parameters, functionalities, 
structures etc. The formal outputs of these processes 
may be subject of appraisal of supervisory authority 
to guarantee the correctness of the entire procedure 
and meeting the specified requirements. 
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