
 Application of FPGA's in flexible analogue electronic image generator design

37

APPLICATION OF FPGAs IN FLEXIBLE ANALOGUE ELECTRONIC IMAGES
GENERATOR DESIGN

P. Kulla, Š. Slávik, J. Huska

Department of Radio and Electronics, FEI SUT, Ilkovi�ova 3, Bratislava, 812 19

 tel.:+421 (0)7 602 91 896 (863), E-mail: kulla@elf.stuba.sk
www: http:\\www.elf.stuba.sk\~kulla\index.htm

Summary This paper focuses on usage of the FPGAs (Field Programmable Gate Arrays) Xilinx as a part of our more complex work
dedicated to design of flexible analogue electronic images generator for application in TV measurement technique or/and TV service
technique or/and education process. The FPGAs performs here the role of component colour R, G, B, synchronization and blanking
signals source. These signals are next processed and amplified in other parts of the generator as NTSC/PAL source encoder and RF
modulator. The main aim of this paper is to show the possibilities how with suitable development software use a FPGAs in analog
TV technology.

1 DESCRIPTION OF ANALOGUE ELECTRONIC
IMAGES GENERATOR
 Analogue electronic images (AEI) generator is device
which electronically generates in most cases testing
images in appropriate TV standard system, e.g. vertical
colour bars. Therein discussed generator works in E-
NTSC/PAL systems and is capable to generate one, two,
three or four color bar octets, as it can be seen on Fig.1,
where one octet of bars is shown. Component colour R,
G and B signals, which correlate with this bar octet, are
then shown on Fig.2. As we can see, signals work only
with two levels, therefore they can be generated using
binary logic, e.g. based on FPGAs technology. Besides

Fig.1 One octet of colour bars

Fig.2 Component R, G and B signals of colour bar octet

component colour R, G, B signals, AEI generator
generates also composite synchronization signal and
composite blanking signal for TV raster synchronization
and blanking, [1]. They can be seen on Fig.3. These
signals, especially for PAL system, are described in

norms CCIR – B, G (or D, K). Even if it does not have
to seem too clear, these signals can also be generated as
two valued (the different levels, shown on Fig.3, are
obtained by different amplification and non - additive
superposition outside of FPGA). Once we showed that

Fig.3 Illustration of blanking and synchronization signals

as colour signals R, G and B, so even synchronization
and blanking signals may be generated in FPGA, we can
now mark the position of this FPGA in the AEI
generator. It is drawn on Fig.4.The FPGA device can be

Fig.4 FPGA as a part of whole AEI generator

configured via plugged cable from PC or commonly
after device power–up from EEPROM memory, which
permanently holds configuration stream. Signals
generated in FPGA are then driven out through ports
Out 1 and Out 2 (these signals are in base frequency
band), or processed in E-NTSC/PAL encoder and RF
modulator. The block structure of whole logical design
inside of the FPGA itself is shown on Fig.5. We can see
therein one part which cares about synchronization and
blanking signals, marked as Sync&Blank, and a second
part marked as RGB, which takes care about component
colour R, G and B signals. This division has a practical
reason, because when we would like to create flexible
type AEI generator, we would not need to change both
these parts, but we could leave Sync&Blank (S&B) part
without any change. The design is driven with 8 MHz
clock signal from crystal controlled oscillator. External

Advances in Electrical and Electronic Engineering

38

Fig.6 Timing diagram of inside and output C-BLANK signals of “blanking” part of S&B generator

Fig.5 Block structure of logical design in FPGA

buttons Reset and Program allow entry and function
configuration of full logical part of AEI generator.

2 GENERATION OF SYNCHRONIZING AND
BLANKING SIGNALS
 As already mentioned, both these signals,
synchronization and blanking signal, are gathered in one
logical part. In general for interleaved screening by
CCIR – B(G) or D(K) the synthesis of complex
blanking and synchronizing generator is joined with
generational formula

 22.. Hf == NN.. vf ((11))
where
 Hf is picture line repeating frequency,

 Vf -- ffiieelldd repeating frequency,
 N - count of picture lines.
Further discussion about synthesis of complex blanking
and synchronizing generator is presented e.g. in [1], [5],
[7]. In relation to Eq.(1) and Fig.5 the full (composite)
blanking signal C-BLANK generation expects from the
reference clock signal PCLK generate number of
additional signals with suitable output duty cycle and
repeating frequency by Fig.6. Interrelationship between

continuous horizontal blanking H-BLANK, vertical
blanking V-BLANK and composite blanking C-
BLANK signals can be defined then by following
formula

 C BLANK H BLANK V BLANK− = − • − (2)
Likewise in relation to Eq.(1) and Fig.5 the full
(composite) synchronizing signal C-SYNC generation
expects from the reference clock signal PCLK generate
number of another additional signals with suitable
output duty cycle and repeating frequency by Fig.7.
Interrelationship between continuous horizontal syn-
chronizing H-SYNC, holding UI-CONT, equalizing VI-
CONT, vertical synchronizing V-SYNC, vertical 7,5H
impulses 7H5 and composite synchronizing C-SYNC
signals in this case can be defined by following formula
 1 2 3C SYNC F F F− = + + (3)
where auxiliary signals Fi (i=1,2,3) have next forms

 1F H SYNC 7H5= − + ((44))

 2F 7H5 V SYNC VI CONT= • − • − ((55))

 3F V SYNC UI CONT= − • − ((66))

2.1 Software implementation of S&B generator

 Software implementation of any digital circuit, in the
future hardware implemented in the FPGA’s inside
structure, is coupled into possibilities of its development
software system, [3], [4], [6]. The modern approach to
software implementation of complex blanking and
synchronizing generator is usage New Symbol Wizard
generator with connection a VHDL editor for its inside
structure editing. By this equipments created inside
architecture of complex synchronizing and blanking
generator, edited in Verilog Hardware Design Language
and debugged for Xilinx FPGA silicon XC3020E, is
shown in Fig.8. From this architecture one can see in
which parallel processes are generated all of additional
signals and how in correlation to Eq.(1) ÷ Eq.(6) are

Fig.7 Timing diagram of inside and output C-SYNC signals of “synchronizing” part of S&B generator

 Application of FPGA's in flexible analogue electronic image generator design

39

-- S&B generator , July 2005, created by SS and PK
library IEEE;
use IEEE.std_logic_1164.all;
library SYNOPSYS;
use SYNOPSYS.attributes.all;
entity TVSYNC_FULL_1 is
 port (PCLK: in STD_LOGIC;
 V_SYNC: inout STD_LOGIC;
 V_BLANK: inout STD_LOGIC;
 H_SYNC: inout STD_LOGIC;
 H_BLANK: inout STD_LOGIC;
 C_SYNC: inout STD_LOGIC;
 C_BLANK: inout STD_LOGIC;
 GCLK: inout STD_LOGIC;
 UI_cont: inout STD_LOGIC;
 VI_cont: inout STD_LOGIC;
 FH2: inout STD_LOGIC;
 FH_sym: inout STD_LOGIC);
end TVSYNC_FULL_1;
architecture TVSYNC_FULL_1_arch of TVSYNC_FULL_1 is
signal v_sync_a: STD_LOGIC; -- pom. sig. na vytvorenie PSI
signal ENP, ENG: STD_LOGIC;
signal countP, countG, width_rsi, width_ui, width_vi: INTEGER
range 0 to 255; -- counter
signal count_rzi: INTEGER range 0 to 511; -- counter
signal count_v: INTEGER range 0 to 1023; -- counter
begin
 make_GCLK: process(PCLK, ENG, GCLK)
 begin
 ENG <= '0';
 if ENG = '0' then
 ENG <= '1';
 GCLK<= '1';
 countG <= 0;
 elsif PCLK'event and PCLK = '0' then
 countG <= countG + 1;
 if countG = 1 then
 GCLK <= not GCLK;
 countG <= 0;
 end if;
 end if;
 end process make_GCLK;
 make_FH2: process(PCLK, ENP)
 begin
 if ENP = '0' then
 countP <= 0;
 ENP <= '1';
 FH2 <= '1';
 elsif PCLK'event and PCLK = '1' then
 countP <= countP + 1;
 if countP = 127 then
 FH2 <= not(FH2);
 countP <= 0;
 end if;
 end if;
 end process make_FH2;
 make_FH: process(FH2, FH_sym)
 begin
 if FH2'event and FH2 = '1' then
 FH_sym <= not(FH_sym);
 end if;
 end process make_FH;
make_RZI_CONT: process(FH_sym, PCLK)
 begin
 if FH_sym = '0' then
 count_rzi <= 0;
 H_BLANK <= '0';
 elsif PCLK'event and PCLK = '0' then
 H_BLANK <= '1';
 count_rzi <= count_rzi + 1;
 if count_rzi >= 100 then
 H_BLANK <= '0';
 end if;
 end if;
 end process make_RZI_CONT;

 make_RSI_CONT: process(FH_sym, PCLK, H_sync)
 begin
 if FH_sym ='0' then
 H_SYNC <= '0';
 width_rsi <= 0;
 elsif PCLK'event and PCLK='1' then
 width_rsi <= width_rsi + 1;
 if ((width_rsi >= 12) and (width_rsi <= 48)) then
 H_SYNC <= '1';
 else
 H_SYNC <= '0';
 end if;
 end if;
 end process make_RSI_CONT;
 make_UI_CONT: process(PCLK, FH2)
 begin
 if FH2 = '0' then
 UI_cont <= '1';
 width_ui <= 0;
 elsif PCLK'event and PCLK = '1' then
 width_ui <= width_ui + 1;
 if ((width_ui >= 12) and (width_ui <= 48)) then
 UI_cont <= '0';
 else
 UI_cont <= '1';
 end if;
 end if;
 end process make_UI_CONT;
 make_VI_CONT: process(PCLK, FH2)
 begin
 if FH2 = '0' then
 VI_cont <= '1';
 width_vi <= 0;
 elsif PCLK'event and PCLK = '1' then
 width_vi <= width_vi + 1;
 if ((width_vi >= 12) and (width_vi <= 30)) then
 VI_cont <= '0';
 else
 VI_cont <= '1';
 end if;
 end if;
 end process make_VI_CONT;
 make_V_SYNC_supply: process(FH2)
 begin
 if FH2'event and FH2 = '1' then
 if count_v = 0 then
 V_BLANK <= '1';
 v_sync_a <= '1';
 end if;
 count_v <= count_v + 1;
 if count_v = 5 then
 V_SYNC <= '1';
 end if;
 if count_v = 10 then
 V_SYNC <= '0';
 end if;
 if count_v = 15 then
 v_sync_a <= '0';
 end if;
 if count_v = 50 then
 V_BLANK <= '0';
 end if;
 if count_v = 624 then
 count_v <= 0;
 end if;
 end if;
 end process make_V_SYNC_supply;

 C_SYNC <= not((not(v_sync_a) and H_SYNC) or
(not(VI_cont) and v_sync_a and not(V_SYNC)) or (UI_cont
and v_sync_a and V_SYNC));

 C_BLANK <= not(V_BLANK or H_BLANK);

end TVSYNC_FULL_1_arch;

Fig.8 Full architecture of Sync&Blank generator written in VHDL of software system FND Exp F1.5

Advances in Electrical and Electronic Engineering

40

created final output signals H-BLANK and C-BLANK.

3 GENERATION OF COMPONENT COLOUR R,
G, B SIGNALS

Component colour signals R, G and B generation is
maintained by Fig.5 in block marked RGB. These
signals are derived, e.g. for alternate number of colour
bar octets, from clock signal (8 MHz) using appropriate
divider signed on Fig.9 as block U1 (DIV X). For exam-

Fig.9 Logical layout of the RGB generator

ple to create one colour bar octet we must divide clock
signal 104 times, because as seen on Fig.2, one colour
bar takes 6,5 �s, clock period is 0,125 �s, then 6,5 :
0,125 = 52, therefore we need to divide the clock
signal 104 times to obtain pulse with duration 6,5 �s.
Thus we create continuous pulse signal with pulse width
6,5 �s. The start of dividing is driven by falling edge of
H–BLANK signal, what is horizontal blanking signal
from block Sync&Blank, and which means start of new
TV line. For creation of one octet of colour bars on TV
screen we need to create only 4 pulses with width 6,5 �s
(Fig.2). This is maintained in block marked on Fig.9 as
U2, which is multi input AND gate and which detects
number Y, in this case number 4 (rising edge of fifth
pulse), and which resets D flip–flop and other parts of
schema. Thus we created needed B signal. Next two
needed G and R signals are derived using division by
two. Letters X and Y in blocks U1 and U2 mean that we
do not need to use only numbers 104 for divider U1 and
4 for detector U2 as described, but when we need to
generate other count of colour bar octets, we can use
other constants. Table 1 shows these constants for case
of generating 1, 2, 3 or 4 octets of vertical colour bars.

Tab.1 X,Y constants specification
Count of color

bar octets
X – value of U1

block
Y – value of

U2 block
1 104 4
2 52 8
3 34 12
4 26 16

3.1 Software implementation of RGB generator
Likewise as in part 2.1, the modern approach to

software implementation of RGB generator is usage
New Symbol Wizard generator with connection a
VHDL editor for its inside structure editing, too. By
these equipments created inside architecture of full
programmable RGB generator, edited in Verilog
Hardware Design Language and debugged for Xilinx
FPGA silicon XC3020E, is shown in Fig.10.

Fig.10 Full architecture of RGB generator – 1/2

-- RGB generator, September 2005, created by SS and PK
library IEEE;
use IEEE.std_logic_1164.all;
library SYNOPSYS;
use SYNOPSYS.attributes.all;

entity TVGVIDEO11 is
 port (
 PCLK: in STD_LOGIC;
 H_BLANK: in STD_LOGIC;
 C_BLANK: in STD_LOGIC;
 V_SYNC: in STD_LOGIC;
 RED: inout STD_LOGIC;
 GREEN: inout STD_LOGIC;
 BLUE: inout STD_LOGIC;
 Q_TDDFF: inout STD_LOGIC;
 Q_PRG: inout STD_LOGIC;
 My_GSR: in STD_LOGIC;
 PRG: in STD_LOGIC
);
end TVGVIDEO11;

architecture TVGVIDEO11_arch of TVGVIDEO11 is
 component STARTUP
 port (GSR: in std_logic);
 end component;

 signal count_r,CONST_R: integer range 0 to 127; -- counter
& constant
 signal count_g,CONST_G: integer range 0 to 255; -- counter
& constant
 signal count_b,CONST_B: integer range 0 to 63; -- counter
& constant

 signal SEL: STD_LOGIC_VECTOR (1 downto 0);
 signal r,g,b,EN: STD_LOGIC;
 signal count_delay: integer range 0 to 63;

 begin
 U2: STARTUP port map (GSR=>My_GSR);

flip_flop:process (PRG, Q_TDDFF)
 begin

 if (Q_TDDFF = '1') then
 Q_PRG <= '0';
 elsif (PRG'event and PRG = '1') then
 Q_PRG <= '1';
 end if;
 end process flip_flop;
 delay_increment:process (V_SYNC)
 begin
 if (V_SYNC'event and V_SYNC = '1') then
 count_delay <= count_delay + 1;
 if count_delay = 1 then
 Q_TDDFF <= '0';
 elsif (count_delay = 63) then
 count_delay <=0;
 Q_TDDFF <= '1';
 end if;
 end if;
 end process delay_increment;
prog:process (Q_PRG, EN)
 begin
 if EN = '0' then
 SEL(0) <= '0';
 SEL(1) <= '0';
 EN <= '1';
 elsif Q_PRG'event and Q_PRG='1' then
 SEL(0) <= not SEL(0);
 if (SEL(0)='1') then
 SEL(1) <= not SEL(1);
 end if;
 end if;
 end process prog;

 Application of FPGA's in flexible analogue electronic image generator design

41

Fig.10 Full architecture of RGB generator – 2/2

4 FULL ANALOGUE ELECTRONIC IMAGES
GENERATOR HARDWARE IMPLEMANTATION
In Fig.11 is shown the whole logic design, implemented
in FPGA Xilinx silicon - XC4003E, where both
Sync&Blank generator and RGB generator parts can be
seen as two bigger boxes marked TVGVIDEO11 and
TVSYNC_FULL_1. For hardware implementation
needed configuration bit-stream for this device has 53
984 bits and determines needed capacity of configurable
EEPROM by Fig.4 (MC28C64). Next Fig.12 shows
inside structure of silicon - XC4003E after
programming procedure in Epic Design Viewer/Editor
of its development software system. At last in Fig.13 is
shown the complete produced flexible analogue
electronic images generator, where FPGA Xilinx can be
seen in right top corner, [2].

Fig.11 Whole logic design of Sync&Blank and RGB generator

parts in schematic editor

Fig.12 Inside structure of silicon - XC4003E after

programming procedure in Epic Design Viewer/Editor

5 CONCLUSION
In contribution described and discussed main questions
relative to complex design of flexible analogue
electronic images generator show on possibilities how
simply use FPGAs in design of its logical parts (see
Fig.5). Obtained results suggest on their full
exploitation within education of subject of Analogue
and Digital Television in Master’s program of Radio
and Electronics or/and in TV measurement technique
or/and TV service technique.

REFERENCES

[1] Šev�ík,P., Kulla,P.: Televízna technika (príru�ka na

cvi�enia). Skriptum EF STU , ES STU, Bratislava,
2001,359 str., 4. vydanie

[2] Slávik,Š.: Generátor testovacích obrazov pre analógový
systém FTV-PAL. Diplomová práca, KRE FEI STU,
Bratislava 2005, 55 str.

[3] http://direct.xilinx.com/bvdocs/publications/4000.pdf
[4] http://direct.xilinx.com/bvdocs/publications/ds006.pdf

rgb:process (PCLK, H_BLANK, SEL, const_r, const_g,
const_b)
 begin
 if (SEL(0) or SEL(1))='0' then
 CONST_R <= 103;
 CONST_G <= 207;
 CONST_B <= 51;
 elsif (not SEL(0) or SEL(1))='0' then
 CONST_R<=51;
 CONST_G<=103;
 CONST_B<=25;
 elsif (SEL(0) or not SEL(1))='0' then
 CONST_R<=33;
 CONST_G<=67;
 CONST_B<=16;
 else
 CONST_R<=25;
 CONST_G<=51;
 CONST_B<=12;
 end if;

 if H_BLANK='1' then
 count_r <= 0;
 count_g <= 0;
 count_b <= 0;
 r <= '1';
 g <= '1';
 b <= '1';
 elsif (PCLK'event and PCLK = '0') then
 count_r <= count_r +1;
 count_g <= count_g +1;
 count_b <= count_b +1;
 if (count_r = CONST_R) then
 r <= not(r);
 count_r <=0;
 end if;
 if (count_g = CONST_G) then
 g <= not(g);
 count_g <=0;
 end if;
 if (count_b = CONST_B) then
 b <= not(b);
 count_b <=0;
 end if;
 end if;
 end process rgb;
RGB_set:process (C_BLANK, r, RED, g,GREEN, b, BLUE)
 begin
 RED <= not(r and C_BLANK);
 Green <= not(g and C_BLANK);
 BLUE <= not(b and C_BLANK);
 end process RGB_set;

end TVGVIDEO11_arch;

Advances in Electrical and Electronic Engineering

42

[5] Kulla,P.: Studio Television Circuits and Equipment.

Lectures and seminaries, Study text, Dept. of Radio &
Electronics, Bratislava, 1997-2005, (in slovak)

[6] XILINX: The Programmable Logic Data Book, XILINX
1993

[7] Philips: Book IC02b, Philips 1992

Acknowledgement
This contribution is supported by the Slovakia Ministry
of Education under VEGA Grant No. G-1/0144/03 and
VTP Project No. 102/VTP/2000.

Fig.13 Complete produced PAL flexible analogue electronic images generator
generator

