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Summary In this paper the numeric modelling of total resistance of a thin sheet, with local conductivity in randomly 
distributed grains higher then is that of the basic matrix, is presented. The 2D model is formed by a structure of longitudinal 
and transversal conductors interconnected in nodes of a square net. In all nodes, using iteration procedure, the potential is 
determined from which the conductance of sheet is computed between two touching electrodes. The described model can be 
used to imitate the behaviour of heterogeneous thin conducting sheets prepared by different techniques. The model was 
verified in some cases where the net resistance is well known from the theory.  
 
 
1. INTRODUCTION  

 
During the preparation of thin conducting sheet 

(for instance magnetic or other) samples, beside 
other parameters also their total conductance is often 
monitored. The results of such measurement are of 
primary interest namely if the samples are not 
electrically homogenous. Even though in the sheet a 
material with known conductivity may be dominant, 
during its preparation, there may appear (due to 
phase transition) more or less randomly distributed 
grains with different conductivity, see Fig. 1, [1]. 
One may expect that with the growth of the volume 
part having different conductivity then has the 
ambient material, the total conductance of the sheet 
(measured between two touching electrodes) will be 
an important characteristic of the whole process. 
However there is certain evidence of somewhat 
irregular nature during the growth of the grains with 
a higher conductivity [2]. The thickness of these 
sheets is typically around hundreds or less nm.  

From a standpoint of the electric conductance 
(resistance) as measurement on area, excited by that 
purpose, with the cross dimensions of several mm – 
in the presented contribution we are engaged with 
(computer) modelling of a 2D square-network. 
Between each pair of neighbouring nodes a local 
conductor (resistor) is defined. The edge points of 
this net (in contrast to internal ones, each having 4 
neighbours) have only three, and the four corner-
points only two neighbours. At two distinguished 
locations in the net (connection of the measuring 
electrodes) there are sets of points with known 
potential. After the potential of all remaining nodes 
is evaluated it is simple to determine the current 
flowing to or from each of the electrodes, and 
consequently, the total resistance (conductance) that 
would be measured between them. The properties of 
such a model are to a substantial extent determined 
by the rules which govern the distribution of grains 
with lower/higher conductivity (their location and 
dimensions) on an area with otherwise homogeneous 
(and higer/lower) conductivity. 

 

2. THEORY AND  MODEL 
 
The aim of numeric modelling is to determine 

the electric conductance (resistance) between two 
electrodes (sets of selected nodes) on a square area. 
Evaluation of the potential in individual nodes of the 
net, indexed by rows and columns as  i, j  (ie matrix  
I×J) is based on so-to-say, algorithm for the electric 
circuit solution by the well commonly known node 
voltage method [3].  

 

The potential of any internal node having four 
neighbours (excluding those under the electrodes), is 
given by expression 
 

and the potential of nodes at the upper edge (i = 1) 
each having three neighbours, respectively of the left 
upper corner (i =1, j =1) node which has only two 
neighbours is 

high conductivity grains normal conductivity matrix 

E1 E2 

 
Fig. 1.  Figuring  the “conductivity” structure of a thin 
sheet and placement of  two electrodes E1 and E2, used  
to measure the resistance or conductance in-between.  
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where GTi,j a GLi,j  are the local conductivities in 
transversal and longitudinal directions (relative to 
the electrode position, compare Fig. 2).  For other 
edge and corner nods similar expressions are easily 
obtained. The mesh (of resistors) is organized in 
such a way that matrix GT is I-1×J  while matrix GL 
is I×J-1. 

In the case of isotropic conductivity there would 
be no difference between GT and GL elements, of 
course unless their values are not (random) position 
dependent from some other reason. In general 
formulae (1) to (3) are consistent with electrically 
isotropic and non-homogeneous sheets; and in a 
special case: with homogeneous but anisotropic (all 
the GTi,j are same, all GLi,j are same, but GTi,j ≠ 
GLi,j), or homogeneous and isotropic (all of GTi,j = 
GLi,j). In the last case the formulae (1) to (3) will 
change to 

1, 1, , 1 , 1
, 4

i j i j i j i j
i j

ϕ ϕ ϕ ϕ
ϕ + − − ++ + +

= , 

2, 1, 1 1, 1
1, 3

j j j
j

ϕ ϕ ϕ
ϕ − ++ +

=  and 2,1 1,2
1,1 2

ϕ ϕ
ϕ

+
= , 

what are terms well known as the numerical solution 
of Laplace equation ∆ϕ = 0, in an homogeneous, 
isotropic 2D surrounding. Let us note, that terms (2) 
and (3) are in fact reflecting the so called Neuman 
boundary condition (anticipation that only tangential 
component of current at the edge of conducting area 
exists) and are thus given by extrapolation in the 
vicinity of the border, where the required invariant 
normal component of the potential is essential. By 
other words, if in (1) for  i = 1,  ( ie on the upper 
border) we shall introduce an „mirror assumption“ 
according to which in the outside points behind this 
border (in an extended matrix index i = 0 would be 
appropriate), it will hold 0, 1,j jϕ ϕ= , and also GT0,j= 

GT1,j and we get (2) directly from (1). Similarly one 
can attain (3). 

 

To solve linear set of equations (1) to (3) one 
can advantageously use an iteration (relaxation) 
method. After creating initial matrix of the potential 
values (could be of zero, or randomly distributed,  or 
similar) a new matrix is calculated, meanwhile in the 

procedure it must be taken into account if the actual 
element of matrix is not that of the node under the 
electrode or the edge or corner node or eventually if 
it belongs to an internal node. After a sufficient 
number of the steps, when the matrix elements (node 
potentials) are changing only slightly, the procedure 
is finished. However, for solving the above set of 
equations we have used two different procedures. 
One of them (A) allowed arbitrary placement of the 
electrodes (in interior of the sheet) second (B) 
allows only to put them on the sheet edges. The first 
method (A), in which the iterations were performed 
left to right and then down in the matrix as a whole, 
usually needed more iterations and, in some cases 
gave somewhat different values of the total sheet 
conductance when computed from the “currents” of 
the first or the second electrode respectively. The 
second (B), uses rather a sophisticated way in which 
the iterations along the border and in interior of the 
sheet are performed as two separate procedures and 
not always node repeated one directly after another. 
Using the latter treatment, after the same number of 
iteration cycles as in the previous one, the results 
received at both electrodes were much closer to each 
other, unless  the length of individual electrodes was 
markedly different. These differences faded away in 
both methods when a finer mesh was introduced, 
nevertheless on account of inconvenient computing 
time consumption. The results presented in this 
paper were obtained in the MathCad  [4] environ-
ment. Typical were J = 61, I = 41, and several 
hundreds of iteration steps. To approve the 
refinement of the mesh we have used in some 
instances as high values as J = 601, I = 401, and 
sometime also extended iterations up to several 
thousand of cycles. 

 
An important feature of the model is the way 

how we inject the grains with a higher conductivity 
into original homogeneous sheet, and how this will 
be reflected by the magnitude of the conductances 
(resistors) in the mesh. One of the used modes (in 
Variant 1) prescribed the inclusion of a quaternion 
(4 resistors from Fig. 2) with a higher longitudinal 
and transversal conductivity to every k–th cell 
counting in transversal direction, and inclusion of 
the same into every m–th cell, counting in 
longitudinal direction. If k = m the cells with a 

i, j i, j+1 

i-1, j 

i+1, 
j 

GL i, j-1 GL i, j 

GT i-1, j 

GT i, j 

i, j-1 

 
Fig. 2.  A cell simulating local conductivity structure  

 
 

Fig. 3.  Depicting random distribution of grains with a 
higher conductivity (represented by cells from Fig. 2) as 
the  scattered crosses in the original matrix background.  
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higher conductivity form a square mesh, which is (in 
comparison with the basic grid) the more sparse, the 
greater are the numbers (k, m). If k, m= 1, all the 
resistors (local conductances) in mesh are of the 
high values and the „background“ with a lower 
conductivity disappears. Normally one would of 
course rely rather on a random distribution. 
 

 
 

Another way (Variant 2) for alternative use may be 
explained as follows. In Fig. 4 there are shown four 
quadrants of an area to be represented by one cell of 
(four) resistors. The dimensions of the suppositional 
grain in each quadrant (1 to 4) are generated as  

 

 

Parameters L, l and T, t determine to what extent 
these are random or regular. When the random 
number generation is suppressed (l = 0, t = 0) the 
“reduced” dimensions L, T ≤ 1 are deterministic. If 
only random “growth” is desired (L= 0, T= 0) values 
of  l, t ∈ (0,1) are the appropriate seed. Note that 
each quadrant is large 1×1. Now, according to 
scheme in Fig. 4 we have 
 

 

providing that individual resistors are proportional to 
areas depicted in Fig. 4, and combined in series 
and/or in parallel accordingly. Parameter k = 1− ε 
where the ratio ε = low_conductivity / high_conductivity 

stands for the material properties. To get from (5) 
only four resistors describing one cell (like in 
Fig. 2), we add the interior (igl, igt) conductances in 
each (i, j) cell individually, whilst the edge (egl ,egt) 
elements are composed from the adjacent areas with 
centres at: i, j and  i+1, j and i−1, j and i, j+1 and 
i, j−1, taking a special care of those  belonging to the 
edge or corner areas. An example of GL and GT 
matrix for I = 5 and J = 7 is given below for T = L = 
t = l = 0.5 
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the same, in case T = L = t = l = 0 corresponds to 
matrices with original conductances (with no newly 
created grains) 
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while in case of  T = L = 1 and  t = l = 0, the whole 
sheet has been changed to a homogenous one grain 
state with a higher conductance. In these examples 
ε = 1/2.  
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In the cases, with even distribution, the edge 
elements are one half of those in interior as they 
appropriately pertain to the occupied areas, compare 
Fig. 4. 
 
3. TESTING THE MODEL 

 
  The reliability and exactness of the used numeric 
procedure (the mesh density, number of iterations 
etc) was tested by comparing the numerical solution  
with several cases of known potential distributions. 
Two of them are given below, both described by 
equal and unit GL and GT matrices. 
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Fig. 4.   To modelling of random distribution of grains with 
higher longitudinal conductivity (up), and higher transversal 

conductivity (down) , in all four quadrants of a cell.  
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 • In the first case we considered two electrodes on 
the opposite edges of a rectangular area with 2:3 side 
ratio. After about hundred of iterations the numerical 
result in method A (in matrix 61×41) agreed with the 
theoretical value to six decimal places. Using 
method B, gave somewhat worst results (matching 
to 2 digits in a matrix 61×41 and to 3 digits in a 
matrix 601×401). 
 • The second test was in determining the resistance 
between two adjacent points of an infinite square 
mesh with equal resistors R (possible only in method 
A). Theory gives a simple result R/2, and after 
around 600 iterations in a mesh  of 61 × 41 elements 
the result was as close as 0.99953 of this value. 
 
4. EXAMPLES OF SIMULATION RESULTS 
 
Variant 1   To explain what a behaviour one can 
expect with a random distribution as depicted in 
Fig. 3. It is essential to check a situation with even 
distributions of type: k/m = 1/1,1/2, 2/1, etc as given 
in table  below. The values given in table are 
conductances GE1

/GE2 as determined from the 
“currents” of first and second electrode respectively 
(should be equal) after 100 and 1000 iterations. 
Small numbers k, m mean higher density of the high 
conductivity cells. 
 
 
 
 
 
 
 
 
 

 
 As expected, a sparse distribution of the higher 
conductivity cells leads to a lesser net conductance. 
However, distributions 1/2 and 2/1 which are of 
“equal surface density” result in markedly different 
net conductance due to formation of the current 
conducting paths in case 1/2, in contrast to case 2/1, 
when these paths are perpendicular to the main 
current stream. The difference at 2/3 and 3/2 is of 
course not so pronounced. Even in a case of random 
distributions under certain circumstances, particular-

ly at the beginning of grain creation this may be an 
useful indicator.  
 

Variant 2    With parameters L = 0.9, T = 0.1 and 
l = 1, t = 1 we get GE1=2.859, GE2=2.582 after 1000 
of steps in 21×21 matrix (Fig. 5) while in 201×201 
matrix with the same parameters GE1= 3.026 and 
GE2=3.033 after 100 steps (other random instance). 

 

With parameters L = 0.1, T = 0.9 and l = 1, t = 1 we 
get GE1=5.792, GE2= 5.169, after 1000 of steps in 
21×21 matrix (Fig. 6) while in 201×201 matrix with 
the same parameters GE1=7.936 and GE2 = 7.928 
after 100 steps (again, a new random distribution 
instance). For comparison if L = 0.5, T =0.5 and 
l = 1, t = 1 GE1= 3.821 and GE2 = 3.943 while with 
no random distribution GE1= GE2 = 1.47293 with a 
negligible mismatch of 10-12. The shown data were 
computed at ε =1/40, perhaps a seldom value in 
practice while ε = 1/2  is more realistic one.  
 
5. CONCLUSION 
 

It is believed that the conductance measurements 
may give a useful piece of information about the 
grain growth despite that changes are expected be 
much less that shown here, to clarify the principles. 
At least, one can well expect to measure different 
conductance dependences in the course of the phase 
transition in thin sheets during their preparation. A 
better understanding of the effects, the distribution 
of the newly creating phase - with a different con-
ductivity than has the original matrix - may have on 
the net conductance (resistance) of the samples is 
thus of primary importance. 
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Fig. 5.  Distorted potential distribution with grains 
developed most in longitudinal direction.   

 
Fig. 6.  Distorted potential distribution with grains 

developed most  in transversal direction.   


