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Summary The paper deals with the modelling and simulation of physiological fluid systems, especially the human vascular system. The
described procedures are based on the electromechanical analogy making possible the application of electromagnetic theory.
The physiological fluid segments are represented by the analogical equivalent electric transmission line sections. According to this
analogy the electromagnetic propagation characteristics describe the mechanical properties of flowing fluids. The introduced modelling
and simulation procedures enable to describe and visualize all states of dynamics of physiological processes, especially of the human
haemodynamics. The obtained results serve as an important tool for non-invasive computer aided diagnostics.

Abstrakt Clanok pojednava o modelovani a simulacii sustavy fyziologickych tekutin, hlavne Tudského cievneho systému. Opisany
postup sa zakladd na elektromechanickej analdgii umoziiujucej aplikaciu elektromagnetickej tedrie. Segment fyziologickej tekutiny je
reprezentovany analogickym ekvivalentnym Gsekom elektrickej prenosovej linky. Podla tejto analdgie elektromagnetické prenosové
charakteristiky opisuju mechanické vlastnosti prudiacich tekutin. Uvedeny postup modelovania a simuldcie umoziiuje opisat’ a zviditelnit
dynamické stavy fyziologickych procesov, osobitne dynamiky F'udského krvného systému. Ziskané vysledky sluzia ako dolezity nastroj

pre neinvazivnu poéitatovi diagnostiku.

1. INTRODUCTION

The most important physiological values of the human
vascular system are the blood pressure, volume and flow,
which can be represented by the electric potential, charge
and current. The physiological system or its part can
be represented by an electric equivalent model, created
by a section of distributed parameters circuit. According
to the transmission lines theory there have been used
the differential equations for the mathematical inter-
pretation of the electric model of the vascular system [1],
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Fig. 1. The vessel segment and its electric model.
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where P is the potential, / is the current, Z; () is the flow
impedance in longitudinal direction and Y, (w) is the flow
admittance in transversal direction.

The equivalent electric model, Fig. 1, could be expressed
by the transmission parameters which are the wave
(characteristic) impedance Z, and the propagation factor y
in the form of input and output values according to the
following equations

P =P,coshyz+Z,1I,sinhyz, 3)

[, =(P,/Z,)sinhyz+1,coshyz. 4)

Fig. 1. represents the short homogeneous vessel segment
with its length / which complex impedance of the blood
flow (in longitudinal direction) is given by the relation
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where Z] (w)is given per unit of length, p is the blood

density, w is the angular frequency, r, is the radius of the
vessel, J, , J, are Bessel functions of the first kind.

In the case of the known dilatation of the vessel it is
possible to calculate the wave propagation factor y and
the wave impedance Z, from the relations
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where Y,’(a)) gives the elastic losses caused by the vessel

y=yZ/(0)Y(0) and Z, = . (6)

cross section (in transversal direction).

In order to calculate longer homogeneous vessel segments
we can involve them into the two-port circuit, the input
and output quantities of which are given by the secondary
transmission parameters of an electric line (yand Z,).
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According to the expansion of Bessel functions J, and J,
the longitudinal impedance can be created by the cascade
connection of resistances and inductances which are
dependent on the vessel geometry, mainly on its radius r,
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The expression (7) can be transformed to the chain

fraction [3]
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which can be expressed in the form
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This mathematical form can be interpreted as the
impedance of the circuit at Fig. 2
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The cascade elements R) and L, will have values
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Fig. 2. The complex flow resistance equivalent

Fig. 3. The dynamic equivalent circuit
of the vessel segment.
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Inthe case of the stationary flow (@=0), only the
resistance R will be present in the scheme.

By multiplication of the expression (9) by the segment
length / we get the flow resistance of the segment.

The complex vascular tree consists of many various
vessels both of homogeneous and non-homogeneous
cross-section lines. For calculating reasons of the complex
model the simulation of vessel tree branchings is
performed by the adequate switching of the various vessel
segments.

The system dynamic behaviour depends on the
morphology and topology properties, but also on the non-
linear characteristics due to the non-linear vessel walls
resistance.

The dynamic equivalent representation of a vessel
segment is shown in Fig. 3, where inductivities and
resistances in the longitudinal direction represent the flow
(hydraulic) resistance of the blood. The non-linear vessel
wall properties are represented by the capacity, loss
resistance and controlled source representing the
hydrostatic pressure, which are placed in transversal
branch.

The whole vessel tree has been replaced by the cascade
connection of many vessel segments given by Fig. 3. The
combinations of the time-discrete particular systems
enable to determine the fluid mechanics in segments
in the whole vascular system.

2. SYSTEM MATHEMATICAL
REPRESENTATION

For the aim of the mathematical system description
the modelling and following simulation have been
performed in the state space. The non-linear processes
have been described by means of both the continuity and
the motion equations involving also the pressure-volume
relations of vessel walls. The all mentioned influences
result in usual differential equations and the corresponding



Advances in Electrical and Electronic Engineering

40

equivalent electric image. According to the loop and node
equations the time-continuous state space can be
described. Using the equivalent transformation the general
time-discrete system description has been used in this
case.

On base of the electric transmission lines theory the vessel
tree system has been divided into single segments
represented by their equations. The input periodic or non-
periodic impulse sequences produce transmitted pulses,
which propagate along the vessel tree with its various
inhomogeneities, eg branchings or stenosis and the
multiple reflections determine the system dynamics. Using
the state space methods the continuous distributed
parameters systems are required to be transformed in the
concentrated form. Forthereason of an efficient
numerical calculation the time continuous system
representation was transformed into the time-discrete
form.

The mathematical description of haemodynamics
follows from the state space that enables very easy
representation of the physical continuities and it
offers suitable tool for the numerical analysis and
simulation. But there exist limitations for its use,
because only the systems with concentrated
parameters can be calculated in the state space as the
connection between the excitation and the response
can be described by the usual differential and
difference equations. The fluid mechanical systems
are continuous ones with distributed parameters and
they have to be characterized by partial differential
equations. In general concentrated elements systems
are represented by the following differential
equations

d%(1) _Am)

dt 9)

y(t)=g(x,u,1) .

The state of such system is determined by the state values
x; (¢). It describes the influence of the input values u; (£)
so that it is possible to calculate in every time the output
values and the state values from the previous state and
from the input values.

The properties of non-linear and time-dependent systems
can be approximated piece-wise as linear and time-
independent systems. The linear differential equations
system in the basic form can be used

4¥0) _ pay+ Ga),
di (10)

y(t) = Cx(1) + Du (1),

where F, G, C and D are the system matrixes.

The transformation of the time-continuous systems into
the time-discrete form can be expressed for the discrete
time interval # = k A ¢ by the following relations

X(tk+1)=AXx(k)+Bu(k), o
y(k)=Cx(k)+Du(k). (b
The calculation of the time-discrete system matrixes A, B,
C and D from the time-continuous descriptions can be
performed eg by the linear or equivalent transformations.
The described method was used for the calculation of one
vessel segment equivalent circuit according to the Fig. 3.
The independent loops and nodes equations can be
expressed by the time continuous system representation.
The state values x; are chosen in order to characterize
the state of the linear and independent energy sources.
The one capacity current and two inductivity voltages
create the input values of the linear equations system,
which describes entirely the dynamics of the analogous
electrical circuit.
After determination of all matrixes elements we perform
the transformation into the time-discrete system by means
of the equivalent transformation. According
to the equivalent transformation the time discrete matrixes
A and B are given by the next equations

A=la,; @y dy =\|J(At), (12)
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B=|b, b, by b,|= [y()Gadt, (13)
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where  (£) is the transformation matrix.

For the single matrixes elements a; and by are valid
the following relations

Ay = Zkil(j e)L/A’ > (14)
j=1

by = i[g”k i(%(@m' _ I)B ’ (15)
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where A; are the eigen-values of the matrix F and ky; are

the values resulting from the relation for the elements
of the transformation matrix
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In this way the equivalent time-discrete system
description ofthe single vessel segment was
calculated. Following from the linear basic systems
the non-linear system properties of vessel segments
will be transformed and involved into the described
model as non-linear parts of systems. Block
representation of the realization of one vessel
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segment in time-discrete area is given by Fig. 4. [5],
[6].

The system matrixes are dependent on the values
of the equivalent circuit elements R;, R,, L;, Ly, L3, G
and C. In general the elements values are the
functions of the time but within one time interval A ¢
can be considered as constants. The time-discrete
system matrixes change their values in dependence
on k, but they are taken as constants within one time
interval. The non-linear properties are represented by

f(x;) unit [4].
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Fig. 4. Block representation of the time-discrete
realization of the vessel segment.

The described method for the modelling of single vascular
segments enables to create the modelling methods
of the vascular network space structures. The model
description of the network topology was obtained by
means of angiographic representation. The base of the
realization of the stochastic topology model consists in the
growth of an initial tree of a real vessel tree. The growth
algorithms describe the growth within the determined
volume under hypothetical optimization criteria. The aim
of the modelling is to keep both the real input behaviour
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Fig. 5. Virtual morphological model of the human
circulatory system.

and the division of the pulsating blood flow in various
perfusion areas [2]. The backward influences of control
processes on the blood flow dynamics in the big vessels
have been simulated and the local blood division up to the
capillary level can be also represented in this way.

3. SIMULATION RESULTS

The entire tree of the morphological model of the human
circulatory system, Fig. 5., consist of 4105 segments and it
is divided into sub-trees of organs according to the
functional aspects.

The signal source simulates the heart output under usual
conditions (75 beats per minute, heart mean volume
HMV=5800ml/min) [4]. The typical simulation results
of blood pressure and blood flow characteristics in
selected vascular levels are shown in Fig. 6 and 7. Fig. 6
shows the pressure-pulse propagation from the heart to the
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Fig. 6. Pressure-pulse wave propagation
under usual conditions.
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Fig. 7. Pressure-pulse wave propagation with
60% stenosis.

foot, Fig.7 shows the same dependence but with a
simulated 60% stenosis in the Arteria illiaca externa. Both
results were obtained for a standing position, so that
hydrostatic pressure component is added, leading
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to an increase in the arteria elasticity module in the lower
extremities. The pulse propagation in vessel tree with
stenosis shows the pathophysiological deformation of the
pressure pulse wave.

4. CONCLUSION

The modelling and simulation method of dynamic
physiological fluid systems using electromagnetic theory
of transmission lines have been introduced and performed
in the paper. According to the described propagation
properties both the electric and the mathematical models
of the vascular system were created. The successful
imitation of blood pressure and blood flow characteristics
leads to the conclusion that the simulation procedure is
theoretically able to describe all states of human
haemodynamics adequately. Therefore the simulation
method in combination with the experiments (e.g.
angiological measurements) represents the computer aided
modelling technique for non-invasive investigations of
fluid physiological systems, or for non-destructive
evaluation of fluid mechanical systems in general.
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