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Summary The paper describes an algorithm for calculation of capacitances and charges on conductors in systems with earth wires
and in double-circuit overhead lines with respect to phase arrangement. A balanced voltage system is considered. A suitable

transposition of individual conductors enables to reduce the electric and magnetic fields in vicinity of overhead lines and to limit the
inductive and capacitive linkage. The procedure is illustrated on examples the results of which lead to particular recommendations

for designers.

1. INTRODUCTION

Overhead lines (HV and EHV) for high power
transmission are often realised as double-circuit lines.
Due to the geometrical small distance of parallel lines
there may occur relevant inductive and or capacitive
couplings either among the conductors of one line or
among the conductors of both lines. To reduce the
influence of capacitive and inductive linkage and their
dependence on geometrical non-symmetry these lines
are usually designed as transposed. However respecting
concrete phase arrangement of conductors of the lines
the transposition can have different efficiency. Via
suitable distribution of the phases on each conductor
one can reach a reduction of electrical and magnetic
field near the ground [2], {5] and so to reduce negative
impact of lines on the surroundings. Also there is
possible to reduce inductive voltage drops of the line
(1], (31, [4].

This paper describes an algorithm for calculation of
charges of conductors and of capacitive linkage in
systems with neutral conductors respecting the
geometrical non-symmetry of the lines. An influence of
distribution of the phases on magnitude and non-
symmetry of the linkage is investigated also for the case
of sinusoidal steady state and a balanced voltage
system.

2. CAPACITIVE COUPLING IN M-PHASES
SYSTEMS WITHOUT NEUTRAL
CONDUCTORS
It is well known that relations among voltages and

charges of the conductors (see Fig.1) can be described

using potential coefficients ¢ and capacitance ones /3

(0 U, =Aq
where ng[UIO,UEO”,UMD], Uy is a phasor of a

phase-to-neutral voltage of conductor i, q' =1[q1,....qu

g; is a phasor of a charge of conductor i

A (MM) = {a;} is a matrix of potential coefficients

depending on a geometrical configuration of the lines
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b; is a distance between conductor i and the image of

conductor j (the method of images), d; is a distance

between conductors { and j. From the matrix of
capacitance coefficients

(3) B={3,}=A"

we can determine partial capacitances among the phase
conductor C; and capacitances of conductors against
the ground C; (see Fig.2) from the formulae
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Fig. 1. Conductors of M-phases system.

P=0

Fig. 2. Partial capacitances of M-phases system.

For the three-phase systems there is usually defined
an effective capacitance between the conductor and the
ground respecting as well as self as mutual
capacitances. A formulae usually used in power
engineering is derived on an assumption of geometrical
symmetry of lines. Mutual capacitances in delta
connection are transposed into star connection with
assumption that star point is grounded.

Than effective capacitance of the phase conductor
against ground is

s) C,=C,+3C,
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The effective capacitance C, is used as for solution
of fault conditions as for determining so called charging
(capacitance) current caused by conpection of an
unloaded line to a voltage source. This current and the
total reactive power supplied by capacilances 1s given
for phase-to-neutral voltage U accordingly to equations
(&) I=juCU 0 =3wC,U"

3. M-PHASE SYSTEM WITH NEUTRAL

CONDUCTORS

Let us assume a system of M phase conductors with
N neutral conductors (see Fig. 3). In the similar way to
eq. (1) we can describe a relation among phase-to-
neutral  voltages and charges of all conductors
respecting the fact that U; = 0 for i = M+1, ..., M+N
(neutral conductors are grounded) by matrix equation
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Fig. 3. The system of M phase conductors with N
neutral conductors.

From the second row of the eq. (7) we can obtain
the charges of neutral conductors

(& Ay TAWgy =0
= qny = _A;\}avA vt Qs

after substitution into eq. (7) we will get a relation
among voltages and charges of phase conductors

v - _ -l

9 U,-w - (A A AA’;\’AJM )q M
Now a matrix of capacitance coefficients is defined by
following equation

; — _ i ]

(10) B= (Amf AM.\‘A;\*’.VAP{M )

a matrix of charges of phase conductors will have the
form

(1D q, =BU,, .

The following relation can determine the charges of
neutral conductors

(12) qy =-AA,BU, .

In accordance with relations (4) we can from eq.
(10) define partial capacitances of phase conductors; by
this way we get a set of capacitances corresponding
with Fig. 2. The obtained capacitances C; however

ST AN

respect not only the capacitances against earth but also
the linkage of phase and neutral conductors.

Example: For the three-phase system (see Fig. 4a for
proportions of tower, phase conductors are signed as 1,
2. 3, neutral conductor as 0) determine the effective
capacitance C,, charging current and reactive power
supplied by capacitances. The length of the line is
£ = 10 km and the phase-to-neutral voltage U = 110 kV,
We will perform the calculation by both ways
a) without respect to the capacitive coupling 1o
the neutral conductor
b) with respect to the capacitive coupling Cyp, Cag,
Csg (see Fig. 4b)

e

268 m
34.5m

D=0
Fig. 4a. Example — arrangement of conductors.
Solution:
case a)
we will perform the calculation using eq. (2) ~ (6), and
substituting into eq. (5)
: S T
(13 G = ”;;(*:"n + 0o +Cy ) Cy = g(ﬁ G+l )
we partially respect the geometrical non-symmetry of
the line.
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Fig. 4b. Partial capacitances in the three-phase system
with the neutral conductor.

case b)
we will perform the calculation using the equations (2).
(10), (4), (6), and effective capacitance of each phase
conductor we calculate as follows
. , C O
14 C,=C,+C, +C,+-—2L2%
‘ Cﬂi

i=1,2,3% j=231 k=312.

The charging current of the conductor { and the total
reactive power are determined accordingly to eq. {6):
these results are summarised in Tab. 1.

3 3
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Tab. 1.

/= 10 km Ci |Gy |G ] Q
[nF] |[nF] |[nF] |[A] |[kVAr]

ad ) 492 1123

3 conductors 1450 1 9.6 | 82,1 |2.84 | 936
4972 1123

ad b) 51.8 1110 [ 80,8 12,79

4 conductors | 504 | 90 859 [297 | 941
51,8 | 11,0 1808 12,79

4. CAPACITIVE COUPLING IN DOUBLE-

CIRCUIT TRANSMISSION LINES

In the paper [1] we did show that a transposition of
conductors  of the double-circuit lines cannot be
effective equally in all cases as a consequence of a
geometrical non-symmetry of an inductive linkage.
Using the algorithm which was derived above we will
now analyse the capacitive linkage of double-circuit
lines — see Fig.5. The phase conductors of line K are
signed 1, 2, 3 and ones of line L are signed by 4, 5, 6,
the neutral conductors are signed as 7, 8.

line K line L

f 0,
carth wires
i/
7
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Ah We W
3 d,jmw &?:t 6 J
42—
d,

Fig. 5. Arrangement of conductors of double-circuit
lines with earth wires.

On assumption of sinusoidal steady state we can
use, for time variant values. a mapping into complex
plane. The phasors of phase-to-neutral voltages for
variant arrangements of phases we express by columns
of a matrix P (see [1])

o

2 2
sa a a

S.g

Similarly to eq. (11) we will determine «
conductors of lines K and L

an s Bl\k Bmlr l
Qy =
U Bm B, |

e

i BKKBF\L} E}i . 34:0
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es of phase

submatrices Bgx a By express the relation between
charge and phase-to-neutral voltage on lines K. L, resp.,
submatrices Byga Bix describe capacitive coupling

phase conductors

between lines K and L. Then we can determine charging
currents from the formula

]

As a consequence of the geometrical non-symmetry
there is a capacitive coupling non-symmetry and
therefore for a balanced voltage system is the set of
currents and charges unbalanced, which we can express
by formula
(19a) ¢, +q,+q,#0;
If we will denote
(19b)  qo, =q, +q, +q, ;

oo =4, T4s T4,

then charges induced in the neutral conductors and on
the ground surface will be g, = g1 + gcz, The charges
on the neutral conductors can be evaluated from the eq.
(12), their value is proportional to non-symmetry of the
capacitive linkage and can be used to determine optimal
conductors transposition. Values of the charges of
neutral conductors are listed for six basic arrangements
according to eq. (16) in tab. 2a for the case of the tower
Soudek and in tab. 2b for the case of vertical conductors
arrangement. The phases are denoted by general
symbols e, 7 and ,,x*. The total inductance of the
neutral conductors and values of electric field strength
in height 1,2 m above the ground are also listed in these
tables — they were calculated in the paper [3]. From the
comparison with these results follows that optimal
transposition of conductors in double-circuit lines is
also minimizing not only non-symmetry of inductive
and capacitive linkage but also the electric field strength
E in height 1,2 m above the ground.

The total reactive power supplied by capacitances
on line K is
20) 0 =ImfUi 1, f=

=ol* Ir’m{p;(BKK;)K +Bp )

where the symbol U” denotes a matrix associated with
the matrix U , the matrix with complex conjugated
elements. The reactive power supplied on line L s
similarly

en o g = Ia‘n{% EL}:
=oU* Im{ﬁ(BLKE“& +B,, p___l:)} :

where py . pp resp., are defined by row &, [ resp., of the
matrix P

q,+q;+q, #0

o a a’ |
I a’
(22 pt - a’* 1 a
S a 1 a°
a a1
a’ a 1

From the eq. (20) and (21) follows that a change
(increase or decrease) of the reactive power due to
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capacitive linkage between lines Kand L. can be
expressed by the following relations

23) !

AQy =0l Im{pyBy p.J -
AQL = (UUE Im {p; B[R&x} ’

A change of the charging current caused by capacitive
coupling between lines K and L can be evaluated from

the eq. (18)
4 Al = juwUB,, p, Al = joUB,, p,
Tab. 2a.
Tower Soudek q M E
110kV [WwC/m] | [uH/m] | [kV/m]
* ®
(] -] 0,047 0,05 04
® x
" @
o x
@ ©
x ° 0,092 0,14 0,7
o @
® x
x [+]
] x 0,130 0,22 1.4
® ®
*® *
o ® 0,177 0,27 1.0
® [*]
»® *
o ] 0,183 0,28 1.5
@ @
Tab. 2b.
Vertically arranged
ccmductors ’ q M ’ EH
400kV [puC/mj {h/m] [kV/m]
» ®
© o 0,166 0.04 1.2
@ x
* ®
o x
. 0309 0,15 19
x )
o ®
& o
*® )
o x 0,432 0,25 3,7
o @
% x
] L4 0,599 0,28 2.6
® o
x ®
o o 0,618 0,30 38
® ®

Example: For three types of double-circuit overhead
lines placed on towers Soudek (110 kV), Donau
(440 kV) and vertically arranged conductors (440 kV)
we calculate the reactive power taken-off in different
arrangement of phases:
a) without respect to capacitive coupling between
lines K and L
b) with respect to capacitive coupling between lines K
and L
From obtained results (tab. 3) is visible that the
non-symmetry of capacitive linkage between the lines
causes in either increase or decrease of total reactive
power in dependence on the phases configuration. The
arrangement for minimum of the reactive power is in a

good agreement with the configuration for minimal

charges on neutral conductors.

Tab.3.
Without linkage Respecting the linkage
of Kand L of Kand L N
0 Q [MVAr] difference
{MVAI] Qmm Qmax ”\V Ai‘} i % jw
Soudek
110 kV 1.06 1,01 1,09 78 7’?
Donau . 5 o , :
440 KV 12.26 12,12 112,34 217 1.8
Vertically
arranged 1290 | 1227 [1327] 995 | 8.
conductors
440 kV

5. CONCLUSION

In this paper the algorithm for calculation of the
capacitive coupling in the systems with neutral
conductors is presented. The geometrical non-symmetry
is taken into account. The method is applied on double-
circuit lines; the analysis of influence of phase
conductors arrangement on relevant lines parameters
(partial capacitances, charges of phase conductors and
of neutral conductors, charging current and reactive
power supplied by the capacitances) is carried-out.
Based on the performed calculations one can posit a
recommendation for optimal design of transposition of
conductors in the double-circuit overhead lines.
Presented results coincide with previous works of
authors which were focused on evaluation of an
influence of appropriate transposition of conductors in
double-circuit lines on inductive coupling and on
distribution of electrical and magnetic fields near earth.
According to the suggested algorithm such an
arrangement of the phase conductors can be found
which minimize above-mentioned values.
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