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Summary In the theory of electrical or electromechanical circuits different methods are known for construction of mathe-
matical model. In this paper another, alternative method is introduced that is based on Hamilton variational principle that is 
generally valid in physics. 
 
 
1.   EXAMPLE  AS  AN  INTRODUCTION 

The analysis of a capacity circuit according 
Fig. 1 is done in a non-traditional way based on the 
minimum energy principle. According to this prin-
ciple the voltage in the branches of the circuit is 
distributed so that the energy of electric field is 
minimal. 

In the circuit theory different topological 
qualities of the circuit are examined (see e.g. [6]). 
One of these qualities expresses that introducing 
into the graph of circuit one of its trees and knowing 
the voltage on the passive branches of this tree, we 
can identify the voltage on the remaining branches 
of the circuit. This knowledge is now applied on the 
circuit in Fig.1. Let us take a tree (v1, v2, v6); in his 
passive branches there are voltages U1, U2 . With 
help of these voltages, applying the voltage 
Kirchhoff`s Law, we can easily define the remain-
ing voltage U3, U4, U5.  
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Fig. 1.  To the example 

 
The energy of the electric field of the whole 

circuit (i.e. the sum of energies of its capacitors) can 
be expressed using branch voltages U1 and U2 : 
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For  the  numerical  values  of  parameters  of 
branch elements: C1 = 2 µF, C2 = 5 µF, C3 = 1 µF,  
C4  = 4 µF, C5  =  3 µF, U0  = 100V  the expression 
for  energy is       
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 Now the principle of minimum energy is used. 
The dependence We = f(U1, U2)  is expressed in Fig. 
2. This function gets to its minimum at the point with 
the coordinates U1 = 38,095 V and U2  =  42,857 V. 
This branch voltages, together with remaining volt-
ages U3  =  U1 – 100  = – 61,095 V,  U4  =  U2  –  100  
=  – 57,143 V and  U5  =  U1  – U2   =  – 4,762 V  are 
the solution of the circuit. 

 

 
Fig. 2. Energy of electric field as a function 

 of  branch  voltages  U1  and  U2 

 
Minimum of function We = f(U1, U2)  could be 

of course defined more easily, in a usual way for 
seeking the extreme: 
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The above mentioned result is found by the so-
lution of these equations. It surely the minimum as 
we can see from the following inequalities. 
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We obtain the same result by solving the circuit 

using some of the known methods, e.g. node-voltage 
method or Thèvenin´s theorem. 

The reader is probably confined by the follow-
ing facts: 
� A general physical principle valid not only in 

electrical engineering is used for the analysis of 
the circuits; in electric circuit theory it is not 
usually used. 

�   It is interesting that minimising one scalar 
function, which expresses energy of the circuit, 
can do the analysis of however complex sys-
tem. 
But the reader might be annoyed that the 

minimum principle, on which the solution of our 
example is based, was not sufficiently explained 
here. We will make it up in the following chapter. 
We will show that the principle is more general 
than we can judge from the given example. Also 
the class of solved problems is much wider than 
this example shows. Besides electric circuits it is 
also possible to design electromechanical and mag-
netic circuits using minimum principle energy. 
Also non-linear circuits can be considered. 

 

2. KNOWLEDGE  FROM  ANALYTICAL 
MECHANICS  AND  ITS  APPLICATION 
IN ELECTRICAL  ENGINEERING 

 
2.1. Double conception of classical mechanics;  

Hamilton variational principle 
 

Classical mechanics studies the movement of 
set of material points. It is based on Newton`s laws, 
in which the basic quantities are force, velocity and 
momentum.. These are vectors and that is why 
Newton`s mechanics is sometimes called vector 
mechanics. Applying Newton` s laws on the exam-
ined set we obtain movement equations, these dif-
ferential equations whose integration determines 
the trajectories of given material points. Newton’s 
contemporary Gottfried Wilhelm Leibnitz and after 
him especially Joseph Louis Lagrange showed a 
different conception: The described the movement 
of mechanic systems using scalar quantities, e.g. 
work, kinetic energy etc. Application of this ap-
proach led to analytical mechanics [1], [3], [8]. 
Vector mechanics is advantageous with the systems 
consisting of fewer material points (e.g. examining 
the movements of planets), but less advantageous 
with multi-point systems. There is no discrepancy 
between vector and analytical mechanics; one can 

be derived from the other. Method difference be-
tween both theories is in the way of the motion 
equations is defined, not in the equations. 

William Roven Hamilton formulated an impor-
tant column of analytical mechanics in 1834.  It is 
called Hamilon ś principle (the principle of least 
action). It says that from all possible movements of 
conservative mechanic system in any time interval 
such movement occurs for which the functional 
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reaches extreme (steady) value. The trajectory for 
which the extreme is realised is called extremal tra-
jectory (stationar line) of functional S.   Quantity L  
is called Lagrange`s function - shortly Lagrangian. 
For a linear isolated mechanic system the Lagran-
gian is defined follows: 
 

           L T U= −                        (4) 

where  T  is kinetic  energy and  U  is potential en-
ergy. 

Lagrangian  L  is thus the function of position 
and velocity.  Quantity S  is called action functional 
(or shortly action or effect). For the solved problem 
we define a corresponding Lagrangian (it is we de-
scribe the problem using scalar function) and we 
require the action functional S to be in its extreme 
value. From this condition we obtain the equations 
of the system. Hamilton`s principle can be then de-
scribed by a mathematical relation 

 
    0Sδ =  

where  δS  identifies the variation of action func-
tional  S . 

The mathematical tool for problems of this type 
is calculus of variations [2], [12]. Formulation of 
Hamilton’s Principle was modify by various authors 
(e.g. P. L. Maupertus, C. G. Jacobi, H. Hertz) [10]. 

Hamilton`s principle provides elegant and brief 
formulation of dynamical laws. It expresses a gen-
eral idea, according to which physical phenomena 
take a course in the simplest and most economical 
way. Its validity is universal; it is not valid in me-
chanics only, but also in other areas of physics and 
thus in electrical engineering. 

Lagrange`s analytical mechanics was completed 
in the first half of the 19th century (Hamilton`s prin-
ciple was formulated in 1834), it is in time when the 
theory of electromagnetism was incipient. But even 
then the idea of using the method of analytical me-
chanics for mathematical modelling of electric and 
magnetic phenomena existed. The first one was 
probably William Thompson (Lord Kelvin), who in 
1848 showed that an isolated electrostatic system 
can be described by potential function, whose 
course corresponds with the minimum of energy of 
electrical system - Thomson`s Principle of Energy 
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Minimum. Thompsons`s ideas are further devel-
oped by James Clark Maxwell, who (in1873) in his 
famous work Treatise on Electricity and Magnet-
ism [5] applied variational principles on the sys-
tems with concentrated parameters, it is on electric 
circuits. The potential energy in mechanics corre-
sponded with electric energy and kinetic energy of 
magnetic field. Later Herman Helmholtz (1893) 
showed the possibility to use Hamilton` s principle 
in electromagnetic field theory; Maxwell`s equa-
tions are also derived from this principle. Nowa-
days for numerical solution of electromagnetic 
fields most often the Method of finite elements is 
used, based also on variational principle. 

It will be shown now how Hamilton`s princi-
ple can be used in the theory of electric circuits and 
electromechanical systems. 

 
2.2.     Generalised coordinates, couplings 

        Lagrangian is function of time and mechanical 
or electrical quantities, possibly their first deriva-
tions. These quantities are called generalised coor-
dinates and labelled  q1,… qN . Their first deriva-
tions are q1´,…, ´

Nq  are called generalised veloci-
ties.  So  

      ´( , , ),j jL L q q t=               j = 1,…, N 

Maxwell drew on analogy with analytical me-
chanics and as generalised coordinates introduced 
these electrical quantities: charges were generalised 
coordinates, currents as generalised velocities and 
magnetic induction fluxes as generalised momen-
tum. In this analogy potential and kinetic energy in 
mechanics correspond with energy of electric and 
magnetic field. From geometrical point of view 
generalised coordinates in N-dimensional configu-
ration space describe the examined object.  
        Dynamic behavior of considered system is 
limited by certain conditions for generalized coor-
dinates. These conditions are called constraints. If 
they are in form of algebraic equations they are 
called holonomic constraints. If they are expressed 
in another mathematical form (e.g. inequalities, 
differential equations etc.), they are called non-
holonomic constraints. If the constraints do not 
depend on time explicitly, they are called scler-
onomic, if time participates in constraint condi-
tions, they are referred to as rheonomic. An exam-
ple of holonomic and at the same time scleronomic 
constraint is in the mathematical pendulum: the 
position of the weight is defined by vector r, posi-
tion of its suspension by vector a. The length of the 
pendulum being  l , the following is valid: 
  2 2( ) l−r a =   

Another example is a point whose position is 
defined by vector r. The point can move in space 
but must not penetrate in the sphere with radius a, 
whose center is defined by vector r0. Motion of the 

point is then defined by non-holonomic scleronomic 
constraint condition 

 
  2

0( ) a− ≥r r  
 

In electric circuits there can be constraints de-
duced from Kirchhoff`s laws that express relations 
in the topological structure of the circuit, e.g. in the 
incidence between branches and loops. These con-
straints are characterized by incidence matrix of the 
circuit. There are mostly holonomic constraints. A 
system with n constraint conditions is called a sys-
tem with  s = N –  n  degrees of freedom. From 
geometrical point of view holonomic constraints can 
be interpreted as surfaces in space, on which the 
particles of the system can move. These constraints 
reduce the N-dimensional configuration space to its 
s-dimensional subspace. 
 
2.3.    Euler-Lagrange equations 

        In analytical mechanics textbooks (see e.g. [1], 
[3], [8], [10]) it is proved that for conservative sys-
tem with holonomic constraint, in time 1 2,t t t∈  the 
curve  qj(t)  satisfy the Hamilton`s principle  (i.e. 
extremal of  functional S) only if it is the solution of 
the equation 
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where  s   is the number of degrees of freedom. 
       Equations (5) are called Euler-Lagrange equa-
tions. They represent a system s ordinary differential 
equations  second order. 
        For electric circuits these relations are not suf-
ficient, as these circuits are not generally conserva-
tive. For non-conservative systems that contain 
outer forces, sources of energy and elements in 
which a part of the energy is irreversible trans-
formed into thermal energy (i.e. dissipating ele-
ments, in mechanics it is e.g. friction, in electric 
circuits these are resistors) it is generalized (see e.g. 
[3], [4], [9], [10], [11]) in the equation: 
  

where  R  is so called Rayleigh dissipating function. 
        By experiment it is possible to prove that with 
sufficient exactness the following is valid 
 

where:  rj   is parameter of dissipating element and 
            Qj  is generalized force (i.e. outer force in 
mechanics or source parameter in circuit). 
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3.  EXAMPLES  OF  FORMULATION  OF 
EQUATIONS  FOR  CIRCUIT ANALYSIS 

 
3.1.  Capacity  circuit 

        Capacity circuit according Fig.1 was solved in 
the introduction with reference to "principle of en-
ergy minimum". Now let us observe the principle in 
context of knowledge provided in the previous 
chapter. The circuit contains only electric field en-
ergy,  T  =  0,  and Lagrarian L  = – U.  It is evident 
that Hamilton`s principle is in our case an expres-
sion of "minimum energy principle". 
        Equation (2) can be also obtained from Euler-
Lagrange equations. The circuit is conservative and 
in a steady state, thus equation (5) is valid, in 
which time derivation is zero. By application of the 
voltage Kirchhoff`s law on the independent loops 
the following is obtained 
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Regarding these holonomic scleronomic con-
straint conditions, the circuit has s = 2 degrees of 
freedom, which means it is possible to describe it 
by two generalized coordinates. As constraint con-
ditions are known for branch voltages, and as 
charges q ≈ U, we can introduce branch voltages as 
generalized coordinates: q1  ≈  U1,  q2  ≈  U2 , thus L  
=  – We , where equation (1) is valid for We. Substi-
tuting into equation (5), we get equation (2). 
 

3.2. Linear  circuit 

             For linear circuit according Fig. 3 with help 
of Kirchhoff’s current law at independent nodes B1 
and B2 we obtain holonomic scleronomic constrains 
conditions in the form  
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Fig. 3. To the example 

Since 
 4 1 2 5 2 3,i i i i i i= − = −  

the circuit  has s  =  3  degree of freedom. We use as 
the generalized coordination the charges q1 , q2 , q3 
whence the currents 

  31 2
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d d d
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i i i
t t t
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        Magnetic field energy is 

             2 2 2
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electric field energy is 
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and dissipative function is 

 2 2 2
1 1 2 2 3 3
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         With substitution this magnitudes into eq. (6) 
and for Qj (j = 1, 2, 3) we put u0(t), 0, 0, we obtain 
the circuit equation 
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          The initial condition (0), (0), 1, 2, 3j jq q j′ =  we 
determine from steady state solution of circuit 
closely before transient state.   
 
3.3. Electromechanical circuit  –  actuator 

       In circuit from Fig. 4 is the armature with mass 
M, the coefficient of damping is B and the coefficient 
of spring is K. The energy of spring is zero with area 
gap x = b. At the armature act the force f(t) and 
weight Mg (g is the acceleration of gravity). The 
resistance of the coil is Ra and inductance is 

2
0 N S

L
x

µ=  

if in magnetic circuit is µ →∞  and the magnetic 
leakage is inconsiderable; S is the cross-section of 
the armature. 
       The degree of freedom is s = 2 and any con-
strains conditions. We used following generalised 
coordinates and generalised forces: 
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Fig. 4.  Electromagnetic actuator 

   
� mechanical (j =1):  

           q1 = x … travel of armature � 
        1q x ν′ ′= =  … velocity of armature 
        1 ( )Q f t= … drawing force of armature 

� electrical (j = 2): 
          q2 = q … charge  � 
         2q q i′ ′= =  …  current 
         2 0 ( )Q u t=  
 
  We obtain 
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        We compute  L T U= −  and after substitu-
tion into eq. (6) is the equations for transient state: 
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4. CONCLUSION 

         When designing a mathematical model for 
given electrical or electromechanical circuit there 
are methods based on Kirchhoff`s laws, in electro-
magnetic circuits also on Newton`s laws, that are 

analyzed in detail and nowadays commonly used. 
The submitted article calls attention on an alternative 
way of deriving motion equations of considered 
system. It originates in the idea that the circuit is a 
physical object for which Hamilton`s variational 
principle is valid. The idea of its application on ex-
amination of electromagnetic phenomena can be 
found in the early stage of the development of this 
field. Despite the attempts of many writers this ap-
proach has not yet been anchored in common electri-
cal engineering practice.  
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