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Abstract. The control of Inverted Pendulum (IP) is a 
hugely complex task. A great deal of nonlinearity is 
present inherently and as well as affected by the 
surrounding external conditions. The sliding mode 
controller (SMC) is very robust inherently. It is used in 
this paper to control the IP. This paper examines the 
designing of sliding mode controller (SMC) for a linear 
inverted pendulum (IP). The paper highlights the 
important features of the sliding mode and also throws 
ample lights on the designing guidelines. The paper puts 
special impetus on the mathematical modeling of the 
controller. The robustness of the design of SMC with 
proportional control is amply displayed with the help of 
simple mathematics. It gives rise to a controller which 
can control a highly nonlinear system like IP quite 
efficiently. The performance of the SMC is compared 
with fuzzy and PID controller. The edge this controller 
poses is the key aspect of this paper. External 
disturbances and internal inaccuracies are also 
introduced to the system to bring out the robustness of 
the controller to the fore. Background on sliding mode 
and the pendulum are provided. Simulation results are 
displayed in a vivid manner and explained suitably. 
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1. Introduction 
In the field of control engineering, Inverted pendulums 
(IP) are one of the most commonly studied and at the 
same time IP represents one of the most difficult system 
to control. Various types of IP are available now days 
and they are namely linear, rotational, single joint or 
multi joint. In this paper for the case study and establish 
the method of designing we have considered a linear 
single joint inverted pendulum as seen in Fig. 1. A pole, 
hinged to a cart which moves on a track whose length is 
limited and balanced upward by a horizontal force 

applied to the cart via a motor. The cart is simultaneously 
motioned to an objective position on the track. Here the 
tricky part is, the control action has to be limited as, and 
the motor that has been used also has a saturation effect. 
The scope of this paper is to introduce a new Sliding 
Mode technique for an inverted pendulum and balancing 
the pole upwards, while minimizing the swing-up time. 
Many types of controllers have been tried on the 
pendulum such as: genetic Algorithm, fuzzy logic, and 
neural networks. Our work is totally based on the 
physical parameter’s that are available for the model of 
the linear inverted pendulum developed in [l]. An 
inverted pendulum system being a static unstable system 
has become a highly researched topic in control field for 
the similarity in various complex situations like control 
of helicopter, launching of space shuttle, operation of 
satellite and the stability of robot. Sliding mode control 
(SMC) is a typical nonlinear control which generated a 
huge interest since the publication of the pioneering 
paper with significant results and suitable. SMC systems 
demonstrate great control performance and have no 
relationship with the plant parameters and disturbances. 
Also it has some advantages such as quick response, 
insensitive to parameters variation and disturbance .The 
plants are not needed to be identified online. 

The main objective is the angle stabilization of the 
pendulum under the uncertainties. The system becomes 
less sensitive to parameter   variation and external 
disturbances by implementation of a suitable sliding 
mode controller. Inverted   pendulum because of it’s 
highly nonlinear characteristics, system imprecision may 
come from actual uncertainty about the plant (e.g., 
unknown plant parameters), or from the purposeful 
choice of a simplified representation of the system’s 
dynamics where order of the system is reduced for 
simplification. 

The resulting modeling inaccuracies have strong 
adverse effects on nonlinear control systems. In this 
paper we demonstrate the approach to deal with model 
uncertainty by implementing robust controller like sliding 
mode controller. It is seen that by incorporating a 
proportional gain, settling time for the system can be 



POWER ENGINEERING AND ELECTRICAL ENGINEERING  VOLUME: 9 | NUMBER: 2 | 2011 | JUNE 
 

© 2011 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 85 

reduced to a great extent. A comparative study is also 
presented. The proportional sliding mode controller 
(PSMC) design systematically reduces the problem of 
maintaining stability and consistent performance on the 
face of modeling imprecision. The objective of the paper 
is to design a switched control along with a suitably 
designed proportional gain that will drive the plant state 
to the switching surface and maintain it on the surface 
upon interception. Lyapunov stability criterion is used to 
clearly bring out the issue of the stability which is 
ensured in much faster time than some other controller. 
In this paper we considered an uncertain-dynamical 
system in interfered condition. The is designed based on 
proportional mode which is incorporated with the sliding 
surface to achieve a better dynamics. The proposed 
control scheme performance is compared with the PID 
and FUZZY design methodology, to show the 
effectiveness of the control design. 

 
Fig. 1: Pendulum configuration. 

2. System Model [1] 
Figure 2 shows an inverted pendulum. The aim is to 
balance the bob of the pendulum to the upward desired 
equilibrium position without the pendulum falling. The 
base is driven by a DC motor, which is controlled by a 
controller (analog SMC in our implementation). The base 
x position and the pendulum angle θ are measured and 
supplied to the control system. A disturbance force can 
be applied on top of the pendulum. 

 
Fig. 2: Inverted pendulum. 

A mathematical model of the system has been 
developed, The Free Body Diagram of the system as 
shown in Fig. 3 is used to obtain the equations of motion. 
Since there is no motion in vertical direction, thus the 
sum of the forces acting on the cart in the horizontal 
direction will give us the equation of the motion 

 
Fig. 3: Free body diagram. 

 uNxbxM   . (1) 

The moment on the pendulum will create a force 
which will act in the horizontal direction and is given by: 

  IrF  , (2) 

hence, 
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The horizontal component of this force acting in 
the direction of N is   cosml . 

Similarly the centripetal force acting on the 
pendulum is given by: 
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The component of this force acting in the direction 
of N is   sin2ml . 

Therefore from the free body diagram the sum 
total of forces that are acting in the direction of N is 
given by 

     sincos 2 mlmlxmN  . (5) 

Substituting N in (1) gives us the first equation of 
motion which is given by: 

       umlmlxbxmM   sincos 2 . (6) 

Now the forces acting perpendicular to the 
pendulum are summed up and then equating all the 
vertical component we get 

         cossincossin xmmlmgNP   . (7) 
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The sum of the moments around the centre of the 
pendulum is given by: 

      INlPl  cossin . (8) 

Eliminating P and N From (7) and (8). The 
dynamic equation is given by: 

       cossin2 xmlmglmlI  . (9) 

Hence the sets of state dynamic equation for the 
linear 1 stage Inverted Pendulum are given by: 

       umlmlxbxmM   sincos 2 . (10) 

       cossin2 xmlmglmlI  . (11) 

Putting the value of  x  from (10) into (11) we 
get: 
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Considering the friction b = 0. 

3. Back Ground of Sliding Mode 
Sliding mode is a nonlinear control strategy which is a 
special form of Variable structure system. Unlike other 
nonlinear control like state feedback law etc it’s not a 
continuous control law but a discontinuous one [2]. 

A control system can be described as: 

 tuxfx ,, RtRuRx nn  ,,  

The switching function is given by v = cx1 + x2 
and the line v = 0 is the surface on which the control u 
has the discontinuity as seen in Fig. 4. The discontinuous 
control may be considered as: 

0<

0>

,

,

v

v

u

u
u











. 

 
Fig. 4: Sliding mode control. 

It is seen clearly that the state reaches the switching 
line in finite time. The state crosses the v=0 line resulting 
in the value of u being altered from u+ and u- . The system 
parameter and C will decide whether the trajectory will 
continue in the other side of v< 0 or not. There can be the 
other situations where trajectory will recross the 
switching line for sliding motion to occur when 
following conditions are met. 

0vLt   and 0>vLt  

 0v     0v  

Let a Single input nonlinear system be defined as 
x(n) = f(x,t) + b(x,t)u(t), where x(t) is the state vector , u(t) 
is the control input and n is the order of differentiation. 
Though f(x,t) and b(x,t) are nonlinear in general but are 
bounded in the sense that their bounds are known [4]. A 
surface which varies with time is defined in state space 
and equated to zero, is given by 
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Here δ being positive considered as Bandwidth 
(BW) of the system and      txtxtx d~  is the error. 

4. Sliding Surface Design 
As we have seen the dynamic equations are established 
for the system, the states are xx ,  and  , . 

Lets define: 
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The state equation obtained from (12) is given by: 

 

     
   

 
   2222

2222

2
2

22

2

cos

cos

cos

sincossin

mlIlm

Fml

mlIlm

lmmgl
















. (13) 

Let, error dese    

Let, the switching line or the sliding line is 
characterized by: 
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Since θdes is constant, therefore   1s . 

The equation cane written in the form 
FuDS  , where u  and  

1F . 

Hence, 
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Therefore, 
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Let the control action be    ssignuU 0 . 

Hence, 

     FssignuDs  0 . (19) 

Now for the existence of the sliding mode 
    0> uD   and     DCu 0 , where 0>C . 

Then, 
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Therefore, 
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For the rotary inverted pendulum similar 
approaches are already been taken [3]. But this paper 
specifically deals with linear inverted pendulum whose 
system equation are totally different. Moreover the 
system taken is totally nonlinear and doesn’t disregard 
any dynamics of the system. Since the control is 
satisfying the existence of the sliding surface so the states 
will reach the sliding surface in finite time and will slide 
to origin along the switching line as derived. It is seen 
that though the performance of the controller was quite 
robust. 

At this point the paper proposes to improve the 
system performance by incorporating a suitable 
proportional gain in the. Proportional sliding mode 
control (PSMC) achieves the best of both that is the 
system  not only becomes robust but also settles down at 
very short time compared to other controllers. 

5. Simulation 
The plant is designed using Simulink. Then sliding mode 
controller is designed and incorporated to it. Following 
are the Plant and controller parameter: 

 mass of carriage, M = 0,5 kg, 

 mass of the pendulum, m = 0,1 kg, 

 inertia, I = 0,005 kg.m2, 

 length of the pendulum, l = 0,23 m, 

 acceleration due to Gravity,  g = 9,8 m/sec2, 

 frictional coefficient, b = 0. 

At first a PID controller and a Fuzzy controller 
were connected to the plant and output was observed. 
Then to the same plant the conventional sliding mode 
controller was connected, whose output and phase plot 
are shown in the Fig. 5 and Fig. 6. 

 
Fig. 5: Output curve for SMC implementation. 

 
Fig. 6: Phase-plot for SMC implementation. 

PID and fuzzy, both controllers were able to 
stabilize the system but settling time is quite high for PID 
and as well as Fuzzy implementation. To address these 
two areas SMC was designed. The comparison of the 
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simulation results of PID, Fuzzy and SMC is shown in 
Fig. 7. 

 
Fig. 7: Output comparison of PID, fuzzy and SMC implementation. 

 
Fig. 8: Output comparison of PSMC and SMC implementation. 

 
Fig. 9: Output comparison of PSMC implementation with and without 

disturbance. 

Figure 8 and Fig. 9 demonstrate the fact that 
PSMC brings the stability to the plant in much shorter 
time than conventional SMC and at the same time 
highlights the robustness of the controller where in spite 
of introducing a considerable amount of disturbance, still 
could manage to stabilize the system within the almost 
the same settling time as it did when it’s not subjected to 
any disturbances. The immunity from the disturbances, 
parameter inaccuracy and modeling inaccuracy that 
PSMC inherently carries with it gives it a tremendous 
edge from the other controllers as seen in Fig. 10. 

 
Fig. 10: Output of PID, fuzzy and PSMC implementation. 

6. Conclusion 
From the simulation analysis it clearly evident that 
Sliding mode controller is far more robust on the face of 
uncertainty than any other controller. By introducing a 
proportional gain we could retain the essential property 
of robustness and at the same time could enhance the 
system performance by reducing the settling time 
considerably. However further analysis and work can be 
directed upon reducing the chattering which inherently 
comes along with the sliding mode .The chattering may 
cause problem if the frequency of the chattering get 
matched with any un-modeled high frequency 
component. The future scope of work lies in reduction of 
chattering without disturbing the basic nature of the 
controller as such. 
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