
THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 10 | NUMBER: 2 | 2012 | JUNE

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 81

IMPLEMENTATION OF DIFFERENT VARIANTS OF TABLE-BASED

FREQUENCY SYNTHESIZERS WITH QUADRATURE OUTPUT IN

VHDL

Daniel KEKRT1, Milos KLIMA1, Radek PODGORNY2, Jan ZAVRTALEK2

1Department of Radio Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague,
Technicka 2, 166 27 Prague, Czech Republic

2Department of Telecommunication Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague, Technicka 2, 166 27 Prague, Czech Republic

kekrtd1@fel.cvut.cz, klima@fel.cvut.cz, zavrtjan@fel.cvut.cz, radek@podgorny.cz

Abstract. This article describes the modelling and
implementation of two different variants of direct
frequency synthesizer, and evaluation of the performance
of the finished design, in terms of memory and speed
efficiency. The frequency synthesizer requirement comes
from our complex radio transmission system design. The
research activity has been focused on finding an optimal
balance between simplicity, speed and memory
consumption. The modelling was done in MATLAB
environment in floating-point and fixed-point arithmetic,
and the actual design was implemented and synthesized
using the Xilinx ISE suite. The output has been connected
to our customized radio front-end built on the Texas
Instruments TRF2443 chip. The front-end output signal
has been captured and compared with simulation results.

Keywords

Direct frequency synthesis, FPGA, logic synthesis,
memory efficiency, VHDL.

1. Introduction

With improvements in the performance of FPGA (Field-
Programmable Gate Array) devices, it becomes important
to implement the basic radio system parts in a digital
domain. This enhances circuit design simplicity and also
offers numerous opportunities for the later modification
of the entire system into specific real-world scenarios.
Multiple parts of the radio system can be implemented in
a single chip, thereby enhancing the overall efficiency in
hardware design.

 As a part of complex radio transmission system
design, we have implemented a direct quadrature
frequency synthesizer in VHDL language for the Xilinx

Virtex6 FPGA device, i.e. a synthesizer with the fixed
table (sine 1st quadrant table and full sine table). The
theoretical part of the paper is dedicated to the precise
description of the synthesizer transformation into the
fixed point arithmetic. The practical part describes the
implementation of the designed synthesizer circuit
structure in VHDL language.

2. Direct Frequency Synthesizer
Model

The frequency synthesizer supports multiple functions in
the radio front-end of the digital transmission system. In
particular, it reduces the frequency offset on the detection
side that arises when the transmitter f(t)(t), or receiver
carrier’s frequency, f(r)(t), is not absolutely stable and
slightly fluctuates in time. The frequency difference,
fΔ(t) = f(t)(t)-f(r)(t), causes that the received signal, r(t), to
be parasitically modulated by a harmonic signal,

  ,2 ttfje  of low frequency, even after analog quadrature
demodulation. The impact is, that in the case of linear
digital modulations it results in the rotation of
constellation plane around its center. In order to mitigate
this problem, it is necessary to mix the received signal

once more with the anti-phase frequency  ttfje  2 .
When this frequency is low, it is possible to perform the
signal processing digitally in FPGA or in DSP directly, in
the receiver (after sampling of signal r(t) at the frequency
TP satisfying the sampling theorem).

 The functional block in the digital domain that
suppresses the undesirable parasitic modulation is called
the frequency offset synchronizer; it is composed of three
functional parts. The first part, a digital mixer, is simply a
pair of two multipliers - one multiplier is for the in-phase
signal component r[n], and the second one for the
quadrature component. The second block is an offset

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 10 | NUMBER: 2 | 2012 | JUNE

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 82

estimator that performs the computation of fΔ[n]\ from the
received signal using prior knowledge of stochastic
properties of an implemented modulation. The last block
is a frequency synthesizer. The phase increment samples
of estimated parasitic frequency are taken on its input
from the digital integrator output of the offset estimator.
It generates from them the frequency

    PnTnfn  

  2 which is then fed into a digital
mixer.

 Another application area is a frequency
multiplexing system, for transmitting several signals.
Here, a set of digital synthesizers in the digital domain
creates a hierarchy of sub-carriers that are modulated by
different transmitted signals. The whole wave packet is
then modulated onto a single carrier. There is a
complementary receiver block of the same set of
synthesizers that demodulate the received signal back to
the original components.

 The last major area of application is modeling of
terrestrial flat or frequency selective Rayleigh channel
with fading. The channel fading is simulated using Jake's
simulator composed of a set of frequency synthesizers.

 The synthesizer output can be described by
Eq. (1):

][][njeny  , (1)

Where φ[n] is the current content of the phase
accumulator that performs the following integration

][][]1[nnn   , (2)

φΔ[n] represents the input phase increments. Let us denote
the initial accumulator value as φΔ[0]=φ0. According to

the method of calculating the nonlinearity  .je , the direct
synthesizers can either be the sine table or the polynomial
ones. In both cases, the entire period of the harmonic

function parts of the nonlinearity of  .je is expressed
using a quarter period of a sine function. Depending on
the value of the highest two bit number φ[n], which is
called as a quadrant indicator, the quarter period may be
either mirrored or assigned a negative sign.

 Values of the quarter period sampled by
specifically selected phase step are stored in the table in
the memory synthesizer. This implementation approach
contributes mainly to the enhancement of the speed and
simplicity of the system design. On the other hand,
disadvantages include both higher memory requirements
and certain restrictions on generated frequencies resulting
from the fineness of the phase step. On the contrary, it is
a case of polynomial variant, where the sinus quarter
period is replaced by a solid or semi-continuous
polynomial approximation. There is a greater delay
between samples y[n] and φ[n], because the calculation of
the polynomial values takes some time, but the frequency
accuracy is much bigger.

 We begin to describe the implementation of a
simpler synthesizer with the sine table. We characterize

the synthesizer whose phase accumulator has a bit width,

bN . For the output, the following relation holds,

 1,...,0   Mq , where



bN

M 2 . The quarter

period must have just
4
M

M  so that the entire signal

comes out a total of Mφ phase values. Equation (2) (in
floating point operations) can also be expressed in an
analogous form:

 Mnnn qqq 4mod][][]1[  , (3)

for fixed point operations. The input
 12,...,12,2  mMMq (in the form of phase

increment) then allows to change the current value of the
phase φq[n] according to the sampling theorem at
maximum half period forward or backward. The values of
the quarter sine table stored in memory of the synthesizer
are determined by the Eq. (4)

 10iff
2

sin)12(
2

1
][1 














  M

M
b bN

q 





, (4)

where Nb+1 is a number of bits for quantization of the
output signal

])][([])[(][nfbngny qqqq  . (5)

The functions f(.) and g(.) transform a stored quarter
period bq[l] depending on which quadrant the synthesis is
currently running at. The function f(.) mirrors a table if
necessary, and function g(.) changes its sign.

3. Circuit Structure

The memory synthesizer together with a detailed
description of its outputs is shown in Fig. 2. The circuit
implementation is shown in Fig. 1. There are two parallel
sections in the design. The first section is used to generate
the sine; the second one generates the cosine. Both
branches share one phase accumulator and a memory of
the quarter sinus period, which is accessed once per clock
cycle ComplexEnvelopeClock (during this period,
each of the sections read one sample from a memory).
The memory size has been selected as M = 256. It
corresponds to the minimum phase step
φΔmin = 0,00613592 [rad]. Hence, the input of the block
has a form of the phase increments signal in two's

complement  ntc
q with a maximum width of 10 bits

(the introduced scalar will be considered as a decimal
representation of binary numbers in two's complement
notation, i.e. as a whole positive number). It is described
in the scheme as PhaseIncrementIn and
subsequently it is added to the current content of the
phase accumulator. Its 10 bits wide output is then split
into two parts. Lower 8 bits are the bases for calculating
the address of a sinus quarter period memory and upper
two bits represent a quadrant pointer. Since the cosine is

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 10 | NUMBER: 2 | 2012 | JUNE

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 83

shifted to sine by one quadrant 







2


, it is necessary to

increment its quadrant pointer in its branch. In contrast,
the quadrant pointer is left unchanged in the sine branch.
The value of the lowest bit of both quadrant pointers (9th
bit) decides in the calculation of address whether or not

the 8-bit base  naub
 will be mirrored (the scalar will be

considered as a decimal representation of an unsigned
binary number, i.e. as an integer). When the 9th bit has

log. '1' the 8-bit base  naub
 is mirrored. The mirroring

process is implemented by using the XOR gate, where the

base is negated, and the adder that gets incremented. This

will give the address    naMnA ubub  . When the 9th
bit is log. '0 ' the base is left unchanged and becomes

directly to be resulting address    nanA ubub  . The
upper bit of both quadrant pointers (10th) indicates a sign.
The top carry bits of adders are generated by mirroring

the base  naub
 and they will be denoted as the saturation

bits. When the saturation bit has log. '1', the
corresponding part is just at its maximum, i.e., at +1 or -
1.

Fig. 1: Synthesizer structure.

Fig. 2: Synthesizer schematic sign.

Fig. 3: Signatures of control and data inputs and outputs of circuits

used.

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 10 | NUMBER: 2 | 2012 | JUNE

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 84

Fig. 4: Logic and arithmetic circuits used.

 The calculated address pairs  nAub
sin and  nAub

cos
together with the sign and saturation bits are buffered by
a pair of 10 bits wide addressing registers.

 It is clear (from Eq. (4)) that in the memory is

stored only the sine table from 0 to min4 
 and the

sine maximum +1 is missing there. It is therefore
necessary to generate it, if necessary. The saturation bits
connected to a pair of OR gates behind the output
registers are there for that purpose. The rest of the
structure performs a sign change of a function if
corresponding sign bit is in log. '1'. The total delay of the
signal in the synthesizer is two clocks of
ComplexEnvelopeClock.

4. VHDL Implementation and ISim
Simulation

We have implemented the design in VHDL [3], [4] and
synthesized the design using the Xilinx ISE 12.3 design
suite.

 The VHDL entity and signals are shown:

entity fsynth_t is
generic (
 sample_w: integer;
 sample_count_w: integer;
 input_w: integer
);
port (
 reset: in std_logic;
 clk: in std_logic;
 input: in std_logic_vector(input_w-1
downto 0);

sinoutput: out std_logic_vector(sample_w-1
downto 0) := (others => '0');
cosoutput: out std_logic_vector(sample_w-1
downto 0) := (others => '0');
mem_sin_addr: out
std_logic_vector(sample_count_w-1 downto 0);
mem_sin_data: in std_logic_vector(sample_w-1
downto 0);
mem_cos_addr: out
std_logic_vector(sample_count_w-1 downto 0);
mem_cos_data: in std_logic_vector(sample_w-1
downto 0)

);
end;

 We used the VHDL's feature of generic
declarations. Therefore, the synthesizers can be easily
modified for different bus widths and precision. The
entity contains ports for input, quadrature output, clock
and reset and buses for interfacing with memory
containing sine samples, which is external to the
synthesizer.

 The two variants of main processes are shown:

process(clk, reset, input)
variable ph: unsigned(sample_count_w-1 downto
0) := (others => '0');

begin
 if reset='1' then
 sinoutput <= (others => '0');
 cosoutput <= (others => '0');
 ph := (others => '0');
 mem_sin_addr <= (others => '0');
 mem_cos_addr <= (others => '0');

 elsif rising_edge(clk) then

mem_sin_addr <= std_logic_vector(signed(ph)
+ signed(input));
mem_cos_addr <= std_logic_vector(signed(ph)
+ signed(input));

 sinoutput <= mem_sin_data;
 cosoutput <= mem_cos_data;

 ph := unsigned(signed(ph) +
signed(input));
 end if;
end process;

process(clk, reset, input)

variable ph: unsigned(sample_count_w-1 downto
0) := (others => '0');

variable sin_addr: unsigned(sample_count_w-1
downto 0) := (others => '0');

variable cos_addr: unsigned(sample_count_w-1
downto 0) := (others => '0');

variable sin_qp: unsigned(1 downto 0) := (

 others => '0');

variable cos_qp: unsigned(1 downto 0) :=
(others => '0');

variable sin_out: signed(sample_w downto 0)
:= (others => '0');

variable cos_out: unsigned(sample_w downto 0)
:= (others => '0');

variable tmp_vect: unsigned(sample_count_w-2-
1 downto 0) := (others => '0');

variable tmp_vect2:
std_logic_vector(sample_w-1 downto 0) :=
(others => '0');

begin
 if reset='1' then
 sinoutput <= (others => '0');
 cosoutput <= (others => '0');
 ph := (others => '0');
 mem_sin_addr <= (others => '0');
 mem_cos_addr <= (others => '0');

 elsif rising_edge(clk) then

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 10 | NUMBER: 2 | 2012 | JUNE

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 85

 ph := unsigned(signed(ph) +
signed(input));

 sin_addr := ph;

tmp_vect := (others => ph(sample_count_w-
2));
sin_addr := "00" &
(sin_addr(sample_count_w-2-1 downto 0) xor
tmp_vect);
sin_addr := sin_addr +
unsigned(ph(sample_count_w-2 downto
sample_count_w-2));
sin_qp := sin_addr(sample_count_w-1 downto
sample_count_w-1-1);

 cos_addr := ph;

cos_qp := cos_addr(sample_count_w-1 downto
sample_count_w-1-1) + "1";

 tmp_vect := (others =>
cos_qp(0));

cos_addr := "00" &
(cos_addr(sample_count_w-2-1 downto 0) xor
tmp_vect);
cos_addr := cos_qp(1) &
(cos_addr(sample_count_w-2 downto 0) +
unsigned(cos_qp(0 downto 0)));
cos_qp := cos_addr(sample_count_w-1 downto
sample_count_w-1-1);

 sig_sin_qp <= sin_qp;
 sig_cos_qp <= cos_qp;

mem_sin_addr <= std_logic_vector("00" &
sin_addr(sample_count_w-2-1 downto 0));
mem_cos_addr <= std_logic_vector("00" &
cos_addr(sample_count_w-2-1 downto 0));

 tmp_vect2 := (others =>
sig_sin_qp(0));

sin_out := signed("0" & (mem_sin_data or
tmp_vect2(sample_w-1 downto 0)));

 tmp_vect2 := (others =>
sig_sin_qp(1));

sin_out := signed(std_logic_vector(sin_out)
xor tmp_vect2);
sin_out := sin_out + signed(sig_sin_qp(1
downto 1));

 tmp_vect2 := (others =>
sig_cos_qp(0));

cos_out := "0" & (unsigned(mem_cos_data) or
unsigned(tmp_vect2(sample_w-1 downto 0)));

 tmp_vect2 := (others =>
sig_cos_qp(1));
 cos_out := cos_out xor
unsigned(tmp_vect2);

cos_out := cos_out + unsigned(sig_cos_qp(1
downto 1));

 sinoutput <=
std_logic_vector(sin_out);
 cosoutput <=
std_logic_vector(cos_out);
 end if;
end process;

 Both processes are typical clocked circuits with
asynchronous reset. An important part of reset is the
setting of memory addresses to zeros for both cases. It is
necessary because the synthesizer needs the data from
memory ready (the memory is clocked) in the very next
cycle after the reset is released.

 The simple variant is first and it is quite self-
explanatory - the ph variable holds the current phase

pointer and is combined with the input to address the
memory containing the whole period of sine signal. This
solution contains only a minimum logic circuitry needed
to perform the correct memory addressing and relaying of
output. The main disadvantage is the requirement of a
large memory size that is needed to contain the whole
sine period. The size of the memory, of course, rises with
added precision in both time and amplitude.

 The second variant logic scheme is much more
complex, but we only need one quarter of the sine which
subsequently leads to lower memory requirement. The ph
variable is used as in the first case, but it is not used to
address the memory directly. Instead of that, the two most
significant bits are used to determine which quarter of the
sine should be used and whether to invert the result sign.
We call it as the quadrant pointer. Corresponding
variables have the _qp suffix. The temporary vectors are
used because of VHDL’s inability to perform some types
of conversions. The usage of other variables is mainly
given by the programming comfort and could be avoided,
but the code's readability would drop.

 In order to be able to communicate with the
device, a set of memories and UART controller are also
implemented. This fact, of course, raises the number of
used flip-flops. The implementation contains a memory
made of FPGA slices for simplicity. The final production-
grade system will contain the memory as a block-RAM.
We also plan in the final design to slightly change the
structure, so it can be implemented as a single-clock
synchronous system.

 The prepared data set from MATLAB has been
downloaded to the synthesized design using a custom
Python utility which communicates using our proprietary
protocol over USB.

5. The TX Path Circuit Structure

A TX path is a transmitter part of transceiver on Fig. 5
and 6. The input signals are I, Q modulation data and
output signal is a RF signal connected either directly to
an antenna or to an up-converter.

 The path consists of:

 digital I/O interface,

 dual channel DA converter & Clock generator,

 IQ modulator,

 TX LO Synthetiser & Reference frequency
generator,

 digital variable attenuator,

 microcontroller.

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 10 | NUMBER: 2 | 2012 | JUNE

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 86

Fig. 5: Front side of the radio front-end.

Fig. 6: Back side of the radio front-end.

 Some TX path parameters are listed in Tab. 1. The
digital I, Q modulation signals are transferred from the
FPGA to the digital I/O interface in two's complement
form. The functions of the I/O interface include: (1)
terminating TX data bus to reduce digital noise, (2)
distributing TX data clock and sync signals between DA
converter and FPGA and (3) providing connection
between the microcontroller and FPGA.

 TX data are then transferred to the Dual channel
DA converter, which performs the digital 1x/2x/4x
interpolation and conversion to analogue I, Q signals.
Both DA converter channels have digital gain control,
allowing compensation of gain mismatches of I, Q paths.

 In order to achieve optimal performance of the DA
converter, DA Clock generator with <1ps total clock jitter
is used. Therefore, the TX path SNR degradation due to
total clock jitter is negligible.

 The I, Q signals pass through the 1st order low-
pass filter to the IQ modulator. A TX carrier is generated
by TX LO synthesiser, which is composed of a high-
frequency voltage controlled oscillator (VCO, around
2720 MHz), integer phase locked loop (PLL) and
programmable 8/16 output divider which generates TX
carrier. It is possible to generate the TX carrier in the
frequency range from 165 to 175 MHz, resp. from 330 to
350 MHz.

 The IQ modulator drives a variable attenuator

followed by the output amplifier.

 All TX path blocks are controlled by the
microcontroller, which provides following functions: (1)
controls the TX path blocks, (2) communicates with
FPGA, (3) provides TX path calibration, (4) allows
connection to a PC for debugging purposes.

Tab.1: Radio front-end parameters summary.

DA converter (Analog Devices AD9861)

parameter value unit

Resolution 10 bits
Data clock rate 50 MHz

Interpolation factor 1/2/4 -
DAC update rate 50/100/200 MHz

SNR 60.8 dB
SINAD 60.7 dB
SFDR 76 dBc

DA Clock generator (TXC 7C-50.000MBB-T)

parameter value unit

Frequency 50 MHz
Frequency stability

(-10 to +70 ºC)
±50 ppm

Aging max. ±3 ppm/year
Total clock jitter <1 ps
Transmitter (Texas Instruments TRF2443)

parameter value unit

TX frequency range, div 8 330 to 350 MHz
TX frequency range, div 16 165 to 175 MHz

Output power on RF-TX connector -25 to +10 dBm
Carrier leakage -55 dBm

Output noise floor -139 dBm/Hz
Uncalibrated side-band suppression -50 dB

TX Reference frequency generator TXC 7C-20.000MBB-T

parameter value unit

Frequency 20 MHz
Frequency stability (-10 to +70 ºC) ±50 ppm

Aging max. ±3 ppm/year

6. Results

The finished design was synthesized for the Xilinx Virtex
6 FPGA and tested on the real hardware. The final design
contains approximately 3000 slice registers, 10000 slice
LUTs - approximately 6000 is used as a memory for the
memory-intensive case. For the quarter-sine version, the
memory consumption is reduced by three fourths. The
total number of LUTs used for either case is roughly
comparable so the only real difference is the memory
requirement. These numbers are skewed because of the
peripheral structures we had to implement as well, in
order to be able to communicate with the device and
read/write memory contents. We have successfully
verified the design using the measuring workbench
shown in Fig. 5 and we consider it to be fully functional.
The operating frequency was 100 MHz, but the
synthesizer in Xilinx ISE 12.3 timed the circuit to be able
to run up to 320 MHz. The measured waveforms and
spectra are shown in Fig. 7 and 8.

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 10 | NUMBER: 2 | 2012 | JUNE

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 87

Fig. 7: Measurement – time domain.

Fig. 8: Measurement – spectral domain.

 We have verified the circuit functionality using
Tektronix DPO 4032 oscilloscope and Rohde&Schwarz
FSL6 spectral analyzer.

7. Conclusion

The key benefit of the described direct quadrature
frequency synthesizer with a sine table is the speed
(overall structure delay is 2 clocks for both variants) and
the frequency stability which is, by the way, a positive
feature of all direct synthesizers. However, it requires
relatively large amount of memory. The memory should
not only be large enough to accommodate a complete
quarter period, but also sufficiently quick to be able to
serve a double read requests on different addresses in one
clock cycle. This is not possible in our Virtex6 FPGA so
we opted for doubling the memory. In such a way, we can
accommodate the need for two reads in a single clock. It,
of course, doubles the amount of needed memory.
Another limitation arises from a selected minimum phase

step, min , that clearly sets a range of the generated
frequencies. So when the required memory size and
corresponding frequency accuracy is not appropriate or
speed is not crucial the polynomial implementation is
more convenient. This structure has overall delay 3
clocks in the case of quadrature approximation a 4 clocks
with cubic approximation.

Acknowledgements

This research work has been supported by the research
project G1 1644 "Doplneni vyuky o moderni principy
Turbo kodu a pokrocilych modulaci" of FRVS of Czech
Republic and grant No. SGS 10/275/OHK3/3T/13 (Grant
Agency of the Czech Technical University in Prague).

References

[1] SKALICKY, Petr. Cislicove systemy v radiotechnice. Praha:
Vydavatelstvi CVUT, 2003. ISBN 978-80-01-02854-2.

[2] PROAKIS, J. G. Digital communications. 5th ed. Boston:
McGraw-Hill, 2008. ISBN 978-0072957167.

[3] ASHENDEN, P. J. The designer’s guide to VHDL. San
Francisco: Morgan Kaufmann, 2002. ISBN 1-55860-674-2.

[4] PINKER, J. and M. POUPA. Cislicove systemy a jazyk VHDL.
Praha: BEN-Technicka literatura, 2006. ISBN 978-80-7300-
198-5.

About Authors

Daniel KEKRT, born in Prague in 1981, he received the
M.Sc. degree in electrical engineering from the Czech
Technical University in Prague (CTU), in 2005. He is
now working towards his Ph.D. at CTU. His research
interests include image processing, iterative detection, 1D
and 2D iterative detection networks and joint iterative
synchronization and detection.

Milos KLIMA, born in Prague in 1951, he graduated
from the Czech Technical University in Prague (CTU) in
1974. Recently he is a Full Professor at the same
university as Head of Department of Radioelectronics,
Faculty of Electrical Engineering. He is active in the field
of image processing for multimedia and security
technology. He is a member of IEEE, SPIE and Czech
and Slovak Society for Photonics.

Radek PODGORNY, born in Prague in 1981, he
received the M.Sc. degree in electrical engineering from
the Czech Technical University in Prague (CTU), in
2005. He is now working towards his Ph.D. at CTU. His
research interests include image processing and quality
assessment.

Jan ZAVRTALEK, born in Zlin in 1984, he received the
M.Sc. degree in electrical engineering from the Czech

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 10 | NUMBER: 2 | 2012 | JUNE

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 88

Technical University in Prague (CTU), in 2008, and
M.Sc. degree in econometrics and operations research
from the University of Economics in Prague, in 2010. He
is now towards his Ph.D. in CTU. His research interests

include wireless sensor networking and power
management in radio systems. He is also active in
electronic circuit design.

