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Abstract. This article describes the modelling and 
implementation of two different variants of direct 
frequency synthesizer, and evaluation of the performance 
of the finished design, in terms of memory and speed 
efficiency. The frequency synthesizer requirement comes 
from our complex radio transmission system design. The 
research activity has been focused on finding an optimal 
balance between simplicity, speed and memory 
consumption. The modelling was done in MATLAB 
environment in floating-point and fixed-point arithmetic, 
and the actual design was implemented and synthesized 
using the Xilinx ISE suite. The output has been connected 
to our customized radio front-end built on the Texas 
Instruments TRF2443 chip. The front-end output signal 
has been captured and compared with simulation results. 
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1. Introduction 

With improvements in the performance of FPGA (Field-
Programmable Gate Array) devices, it becomes important 
to implement the basic radio system parts in a digital 
domain. This enhances circuit design simplicity and also 
offers numerous opportunities for the later modification 
of the entire system into specific real-world scenarios. 
Multiple parts of the radio system can be implemented in 
a single chip, thereby enhancing the overall efficiency in 
hardware design. 

 As a part of complex radio transmission system 
design, we have implemented a direct quadrature 
frequency synthesizer in VHDL language for the Xilinx 

Virtex6 FPGA device, i.e. a synthesizer with the fixed 
table (sine 1st quadrant table and full sine table). The 
theoretical part of the paper is dedicated to the precise 
description of the synthesizer transformation into the 
fixed point arithmetic. The practical part describes the 
implementation of the designed synthesizer circuit 
structure in VHDL language. 

2. Direct Frequency Synthesizer 
Model 

The frequency synthesizer supports multiple functions in 
the radio front-end of the digital transmission system. In 
particular, it reduces the frequency offset on the detection 
side that arises when the transmitter f(t)(t), or receiver 
carrier’s frequency, f(r)(t), is not absolutely stable and 
slightly fluctuates in time. The frequency difference, 
fΔ(t) = f(t)(t)-f(r)(t), causes that the received signal, r(t), to 
be parasitically modulated by a harmonic signal, 

  ,2 ttfje  of low frequency, even after analog quadrature 
demodulation. The impact is, that in the case of linear 
digital modulations it results in the rotation of 
constellation plane around its center. In order to mitigate 
this problem, it is necessary to mix the received signal 

once more with the anti-phase frequency  ttfje  2 . 
When this frequency is low, it is possible to perform the 
signal processing digitally in FPGA or in DSP directly, in 
the receiver (after sampling of signal r(t) at the frequency 
TP satisfying the sampling theorem). 

 The functional block in the digital domain that 
suppresses the undesirable parasitic modulation is called 
the frequency offset synchronizer; it is composed of three 
functional parts. The first part, a digital mixer, is simply a 
pair of two multipliers - one multiplier is for the in-phase 
signal component r[n],  and the second one for the 
quadrature component. The second block is an offset 
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estimator that performs the computation of fΔ[n]\ from the 
received signal using prior knowledge of stochastic 
properties of an implemented modulation. The last block 
is a frequency synthesizer. The phase increment samples 
of estimated parasitic frequency are taken on its input 
from the digital integrator output of the offset estimator. 
It generates from them the frequency 

    PnTnfn  

  2  which is then fed into a digital 
mixer. 

 Another application area is a frequency 
multiplexing system, for transmitting several signals. 
Here, a set of digital synthesizers in the digital domain 
creates a hierarchy of sub-carriers that are modulated by 
different transmitted signals. The whole wave packet is 
then modulated onto a single carrier. There is a 
complementary receiver block of the same set of 
synthesizers that demodulate the received signal back to 
the original components. 

 The last major area of application is modeling of 
terrestrial flat or frequency selective Rayleigh channel 
with fading. The channel fading is simulated using Jake's 
simulator composed of a set of frequency synthesizers. 

 The synthesizer output can be described by 
Eq. (1): 

 
][][ njeny  , (1) 

Where φ[n] is the current content of the phase 
accumulator that performs the following integration 

 ][][]1[ nnn   , (2) 

φΔ[n] represents the input phase increments. Let us denote 
the initial accumulator value as φΔ[0]=φ0. According to 

the method of calculating the nonlinearity  .je , the direct 
synthesizers can either be the sine table or the polynomial 
ones. In both cases, the entire period of the harmonic 

function parts of the nonlinearity of  .je  is expressed 
using a quarter period of a sine function. Depending on 
the value of the highest two bit number φ[n], which is 
called as a quadrant indicator, the quarter period may be 
either mirrored or assigned a negative sign. 

 Values of the quarter period sampled by 
specifically selected phase step are stored in the table in 
the memory synthesizer. This implementation approach 
contributes mainly to the enhancement of the speed and 
simplicity of the system design. On the other hand, 
disadvantages include both higher memory requirements 
and certain restrictions on generated frequencies resulting 
from the fineness of the phase step. On the contrary, it is 
a case of polynomial variant, where the sinus quarter 
period is replaced by a solid or semi-continuous 
polynomial approximation. There is a greater delay 
between samples y[n] and φ[n], because the calculation of 
the polynomial values takes some time, but the frequency 
accuracy is much bigger. 

 We begin to describe the implementation of a 
simpler synthesizer with the sine table. We characterize 

the synthesizer whose phase accumulator has a bit width,

bN . For the output, the following relation holds, 

 1,...,0   Mq , where 



bN

M 2 . The quarter 

period must have just 
4
M

M   so that the entire signal 

comes out a total of Mφ phase values. Equation (2) (in 
floating point operations) can also be expressed in an 
analogous form: 

 Mnnn qqq 4mod][][]1[   , (3) 

for fixed point operations. The input
 12,...,12,2  mMMq  (in the form of phase 

increment) then allows to change the current value of the 
phase φq[n] according to the sampling theorem at 
maximum half period forward or backward. The values of 
the quarter sine table stored in memory of the synthesizer 
are determined by the Eq. (4) 
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where Nb+1 is a number of bits for quantization of the 
output signal 

 ])][([])[(][ nfbngny qqqq  . (5) 

The functions f(.) and g(.) transform a stored quarter 
period bq[l] depending on which quadrant the synthesis is 
currently running at. The function f(.) mirrors a table if 
necessary, and function g(.) changes its sign. 

3. Circuit Structure 

The memory synthesizer together with a detailed 
description of its outputs is shown in Fig. 2. The circuit 
implementation is shown in Fig. 1. There are two parallel 
sections in the design. The first section is used to generate 
the sine; the second one generates the cosine. Both 
branches share one phase accumulator and a memory of 
the quarter sinus period, which is accessed once per clock 
cycle ComplexEnvelopeClock (during this period, 
each of the sections read one sample from a memory). 
The memory size has been selected as M = 256. It 
corresponds to the minimum phase step 
φΔmin = 0,00613592 [rad]. Hence, the input of the block 
has a form of the phase increments signal in two's 

complement  ntc
q  with a maximum width of 10 bits 

(the introduced scalar will be considered as a decimal 
representation of binary numbers in two's complement 
notation, i.e. as a whole positive number). It is described 
in the scheme as PhaseIncrementIn and 
subsequently it is added to the current content of the 
phase accumulator. Its 10 bits wide output is then split 
into two parts. Lower 8 bits are the bases for calculating 
the address of a sinus quarter period memory and upper 
two bits represent a quadrant pointer. Since the cosine is 
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shifted to sine by one quadrant 







2


, it is necessary to 

increment its quadrant pointer in its branch. In contrast, 
the quadrant pointer is left unchanged in the sine branch. 
The value of the lowest bit of both quadrant pointers (9th 
bit) decides in the calculation of address whether or not 

the 8-bit base  naub
 will be mirrored (the scalar will be 

considered as a decimal representation of an unsigned 
binary number, i.e. as an integer). When the 9th bit has 

log. '1' the 8-bit base  naub
 is mirrored. The mirroring 

process is implemented by using the XOR gate, where the 

base is negated, and the adder that gets incremented. This 

will give the address    naMnA ubub  . When the 9th 
bit is log. '0 ' the base is left unchanged and becomes 

directly to be resulting address    nanA ubub  . The 
upper bit of both quadrant pointers (10th) indicates a sign. 
The top carry bits of adders are generated by mirroring 

the base  naub
 and they will be denoted as the saturation 

bits. When the saturation bit has log. '1', the 
corresponding part is just at its maximum, i.e., at +1 or -
1.

 
Fig. 1: Synthesizer structure.

 
Fig. 2: Synthesizer schematic sign. 

 
Fig. 3: Signatures of control and data inputs and outputs of circuits 

used. 
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Fig. 4: Logic and arithmetic circuits used. 

 The calculated address pairs  nAub
sin  and  nAub

cos  
together with the sign and saturation bits are buffered by 
a pair of 10 bits wide addressing registers. 

 It is clear (from Eq. (4)) that in the memory is 

stored only the sine table from 0 to min4 
 and the 

sine maximum +1 is missing there. It is therefore 
necessary to generate it, if necessary. The saturation bits 
connected to a pair of OR gates behind the output 
registers are there for that purpose. The rest of the 
structure performs a sign change of a function if 
corresponding sign bit is in log. '1'. The total delay of the 
signal in the synthesizer is two clocks of 
ComplexEnvelopeClock. 

4. VHDL Implementation and ISim 
Simulation 

We have implemented the design in VHDL [3], [4] and 
synthesized the design using the Xilinx ISE 12.3 design 
suite. 

 The VHDL entity and signals are shown: 

entity fsynth_t is 
generic ( 
 sample_w: integer; 
 sample_count_w: integer; 
 input_w: integer 
); 
port ( 
 reset: in std_logic; 
 clk: in std_logic; 
 input: in std_logic_vector(input_w-1 
downto 0); 

sinoutput: out std_logic_vector(sample_w-1 
downto 0) := (others => '0'); 
cosoutput: out std_logic_vector(sample_w-1 
downto 0) := (others => '0'); 
mem_sin_addr: out 
std_logic_vector(sample_count_w-1 downto 0); 
mem_sin_data: in std_logic_vector(sample_w-1 
downto 0); 
mem_cos_addr: out 
std_logic_vector(sample_count_w-1 downto 0); 
mem_cos_data: in std_logic_vector(sample_w-1 
downto 0) 

); 
end; 

 We used the VHDL's feature of generic 
declarations. Therefore, the synthesizers can be easily 
modified for different bus widths and precision. The 
entity contains ports for input, quadrature output, clock 
and reset and buses for interfacing with memory 
containing sine samples, which is external to the 
synthesizer. 

 The two variants of main processes are shown: 

process(clk, reset, input) 
variable ph: unsigned(sample_count_w-1 downto 
0) := (others => '0'); 

begin 
 if reset='1' then 
  sinoutput <= (others => '0'); 
  cosoutput <= (others => '0'); 
  ph := (others => '0'); 
  mem_sin_addr <= (others => '0'); 
  mem_cos_addr <= (others => '0'); 
 
 elsif rising_edge(clk) then 

mem_sin_addr <= std_logic_vector(signed(ph) 
+ signed(input)); 
mem_cos_addr <= std_logic_vector(signed(ph) 
+ signed(input)); 

 
  sinoutput <= mem_sin_data; 
  cosoutput <= mem_cos_data; 
 
  ph := unsigned(signed(ph) + 
signed(input)); 
 end if; 
end process; 
 
process(clk, reset, input) 

variable ph: unsigned(sample_count_w-1 downto 
0) := (others => '0'); 
 
variable sin_addr: unsigned(sample_count_w-1 
downto 0) := (others => '0'); 
 
variable cos_addr: unsigned(sample_count_w-1 
downto 0) := (others => '0'); 
 
variable sin_qp: unsigned(1 downto 0) := (

 others => '0'); 
 
variable cos_qp: unsigned(1 downto 0) := 
(others => '0'); 
 
variable sin_out: signed(sample_w downto 0) 
:= (others => '0'); 
 
variable cos_out: unsigned(sample_w downto 0) 
:= (others => '0'); 
 
variable tmp_vect: unsigned(sample_count_w-2-
1 downto 0) := (others => '0'); 
 
variable tmp_vect2: 
std_logic_vector(sample_w-1 downto 0) := 
(others => '0'); 
 

begin 
 if reset='1' then 
  sinoutput <= (others => '0'); 
  cosoutput <= (others => '0'); 
  ph := (others => '0'); 
  mem_sin_addr <= (others => '0'); 
  mem_cos_addr <= (others => '0'); 
 
 elsif rising_edge(clk) then 
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  ph := unsigned(signed(ph) + 
signed(input)); 
 
  sin_addr := ph; 

tmp_vect := (others => ph(sample_count_w-
2)); 
sin_addr := "00" & 
(sin_addr(sample_count_w-2-1 downto 0) xor 
tmp_vect); 
sin_addr := sin_addr + 
unsigned(ph(sample_count_w-2 downto 
sample_count_w-2)); 
sin_qp := sin_addr(sample_count_w-1 downto 
sample_count_w-1-1); 

   
  cos_addr := ph; 

cos_qp := cos_addr(sample_count_w-1 downto 
sample_count_w-1-1) + "1"; 

  tmp_vect := (others => 
cos_qp(0)); 

cos_addr := "00" & 
(cos_addr(sample_count_w-2-1 downto 0) xor 
tmp_vect); 
cos_addr := cos_qp(1) & 
(cos_addr(sample_count_w-2 downto 0) + 
unsigned(cos_qp(0 downto 0))); 
cos_qp := cos_addr(sample_count_w-1 downto 
sample_count_w-1-1); 

   
  sig_sin_qp <= sin_qp; 
  sig_cos_qp <= cos_qp; 
 

mem_sin_addr <= std_logic_vector("00" & 
sin_addr(sample_count_w-2-1 downto 0)); 
mem_cos_addr <= std_logic_vector("00" & 
cos_addr(sample_count_w-2-1 downto 0)); 

 
  tmp_vect2 := (others => 
sig_sin_qp(0)); 

sin_out := signed("0" & (mem_sin_data or 
tmp_vect2(sample_w-1 downto 0))); 

  tmp_vect2 := (others => 
sig_sin_qp(1)); 

sin_out := signed(std_logic_vector(sin_out) 
xor tmp_vect2); 
sin_out := sin_out + signed(sig_sin_qp(1 
downto 1)); 

   
  tmp_vect2 := (others => 
sig_cos_qp(0)); 

cos_out := "0" & (unsigned(mem_cos_data) or 
unsigned(tmp_vect2(sample_w-1 downto 0))); 

  tmp_vect2 := (others => 
sig_cos_qp(1)); 
  cos_out := cos_out xor 
unsigned(tmp_vect2); 

cos_out := cos_out + unsigned(sig_cos_qp(1 
downto 1)); 

 
  sinoutput <= 
std_logic_vector(sin_out); 
  cosoutput <= 
std_logic_vector(cos_out); 
 end if; 
end process; 

 Both processes are typical clocked circuits with 
asynchronous reset. An important part of reset is the 
setting of memory addresses to zeros for both cases. It is 
necessary because the synthesizer needs the data from 
memory ready (the memory is clocked) in the very next 
cycle after the reset is released. 

 The simple variant is first and it is quite self-
explanatory - the ph variable holds the current phase 

pointer and is combined with the input to address the 
memory containing the whole period of sine signal. This 
solution contains only a minimum logic circuitry needed 
to perform the correct memory addressing and relaying of 
output. The main disadvantage is the requirement of a 
large memory size that is needed to contain the whole 
sine period. The size of the memory, of course, rises with 
added precision in both time and amplitude. 

 The second variant logic scheme is much more 
complex, but we only need one quarter of the sine which 
subsequently leads to lower memory requirement. The ph 
variable is used as in the first case, but it is not used to 
address the memory directly. Instead of that, the two most 
significant bits are used to determine which quarter of the 
sine should be used and whether to invert the result sign. 
We call it as the quadrant pointer. Corresponding 
variables have the _qp suffix. The temporary vectors are 
used because of VHDL’s inability to perform some types 
of conversions. The usage of other variables is mainly 
given by the programming comfort and could be avoided, 
but the code's readability would drop. 

 In order to be able to communicate with the 
device, a set of memories and UART controller are also 
implemented. This fact, of course, raises the number of 
used flip-flops. The implementation contains a memory 
made of FPGA slices for simplicity. The final production-
grade system will contain the memory as a block-RAM. 
We also plan in the final design to slightly change the 
structure, so it can be implemented as a single-clock 
synchronous system. 

 The prepared data set from MATLAB has been 
downloaded to the synthesized design using a custom 
Python utility which communicates using our proprietary 
protocol over USB. 

5. The TX Path Circuit Structure 

A TX path is a transmitter part of transceiver on Fig. 5 
and 6. The input signals are I, Q modulation data and 
output signal is a RF signal connected either directly to 
an antenna or to an up-converter. 

 The path consists of: 

 digital I/O interface, 

 dual channel DA converter & Clock generator, 

 IQ modulator, 

 TX LO Synthetiser & Reference frequency 
generator, 

 digital variable attenuator, 

 microcontroller. 
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Fig. 5: Front side of the radio front-end. 

 
Fig. 6: Back side of the radio front-end. 

 Some TX path parameters are listed in Tab. 1. The 
digital I, Q modulation signals are transferred from the 
FPGA to the digital I/O interface in two's complement 
form. The functions of the I/O interface include: (1) 
terminating TX data bus to reduce digital noise, (2) 
distributing TX data clock and sync signals between DA 
converter and FPGA and (3) providing connection 
between the microcontroller and FPGA. 

 TX data are then transferred to the Dual channel 
DA converter, which performs the digital 1x/2x/4x 
interpolation and conversion to analogue I, Q signals. 
Both DA converter channels have digital gain control, 
allowing compensation of gain mismatches of I, Q paths. 

 In order to achieve optimal performance of the DA 
converter, DA Clock generator with <1ps total clock jitter 
is used. Therefore, the TX path SNR degradation due to 
total clock jitter is negligible. 

 The I, Q signals pass through the 1st order low-
pass filter to the IQ modulator. A TX carrier is generated 
by TX LO synthesiser, which is composed of a high-
frequency voltage controlled oscillator (VCO, around 
2720 MHz), integer phase locked loop (PLL) and 
programmable 8/16 output divider which generates TX 
carrier. It is possible to generate the TX carrier in the 
frequency range from 165 to 175 MHz, resp. from 330 to 
350 MHz. 

 The IQ modulator drives a variable attenuator 

followed by the output amplifier. 

 All TX path blocks are controlled by the 
microcontroller, which provides following functions: (1) 
controls the TX path blocks, (2) communicates with 
FPGA, (3) provides TX path calibration, (4) allows 
connection to a PC for debugging purposes. 

Tab.1: Radio front-end parameters summary. 

DA converter (Analog Devices AD9861) 

parameter value unit 

Resolution 10 bits 
Data clock rate 50 MHz 

Interpolation factor 1/2/4 - 
DAC update rate 50/100/200 MHz 

SNR 60.8 dB 
SINAD 60.7 dB 
SFDR 76 dBc 

DA Clock generator (TXC 7C-50.000MBB-T) 

parameter value unit 

Frequency 50 MHz 
Frequency stability 

(-10 to +70 ºC) 
±50 ppm 

Aging max. ±3 ppm/year 
Total clock jitter <1 ps 
Transmitter (Texas Instruments TRF2443) 

parameter value unit 

TX frequency range, div 8 330 to 350 MHz 
TX frequency range, div 16 165 to 175 MHz 

Output power on RF-TX connector -25 to +10 dBm 
Carrier leakage -55 dBm 

Output noise floor -139 dBm/Hz 
Uncalibrated side-band suppression -50 dB 

TX Reference frequency generator TXC 7C-20.000MBB-T 

parameter value unit 

Frequency 20 MHz 
Frequency stability (-10 to +70 ºC) ±50 ppm 

Aging max. ±3 ppm/year 
 

6. Results 

The finished design was synthesized for the Xilinx Virtex 
6 FPGA and tested on the real hardware. The final design 
contains approximately 3000 slice registers, 10000 slice 
LUTs - approximately 6000 is used as a memory for the 
memory-intensive case. For the quarter-sine version, the 
memory consumption is reduced by three fourths. The 
total number of LUTs used for either case is roughly 
comparable so the only real difference is the memory 
requirement. These numbers are skewed because of the 
peripheral structures we had to implement as well, in 
order to be able to communicate with the device and 
read/write memory contents. We have successfully 
verified the design using the measuring workbench 
shown in Fig. 5 and we consider it to be fully functional. 
The operating frequency was 100 MHz, but the 
synthesizer in Xilinx ISE 12.3 timed the circuit to be able 
to run up to 320 MHz. The measured waveforms and 
spectra are shown in Fig. 7 and 8. 
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Fig. 7: Measurement – time domain. 

 
Fig. 8: Measurement – spectral domain. 

 We have verified the circuit functionality using 
Tektronix DPO 4032 oscilloscope and Rohde&Schwarz 
FSL6 spectral analyzer. 

7. Conclusion 

The key benefit of the described direct quadrature 
frequency synthesizer with a sine table is the speed 
(overall structure delay is 2 clocks for both variants) and 
the frequency stability which is, by the way, a positive 
feature of all direct synthesizers. However, it requires 
relatively large amount of memory. The memory should 
not only be large enough to accommodate a complete 
quarter period, but also sufficiently quick to be able to 
serve a double read requests on different addresses in one 
clock cycle. This is not possible in our Virtex6 FPGA so 
we opted for doubling the memory. In such a way, we can 
accommodate the need for two reads in a single clock. It, 
of course, doubles the amount of needed memory. 
Another limitation arises from a selected minimum phase 

step, min , that clearly sets a range of the generated 
frequencies. So when the required memory size and 
corresponding frequency accuracy is not appropriate or 
speed is not crucial the polynomial implementation is 
more convenient. This structure has overall delay 3 
clocks in the case of quadrature approximation a 4 clocks 
with cubic approximation. 
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