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Abstract. This paper discusses current approaches for
frame-based classification and evaluates today’s most
common frame-based classifiers. These classifiers can be
divided into the two main groups – generic classifiers
which create the most probable model based on the
training data (for example GMM) and discriminative
classifiers which focus on creating decision hyper plane
(SVM based methods). A lot of research has been done
with the generic classifiers and therefore this paper will
be mainly focused on the discriminative classifiers. Four
discriminative classifiers are presented – two linear and
two non-linear. All of these discriminative classifiers
implement a hierarchical tree root structure over the
input phoneme group which shown to be an effective.
Moreover, two efficient training algorithms are presented.
First, we demonstrate advantages of discriminative
classifiers by comparison with a standard generic
classifier represented by a GMM. Second, we show
benefits of our proposed training algorithm. All tests were
performed for English only - over the TIMIT speech
corpus (corpus of Native American speakers).
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1. Introduction

Phoneme classification is a task of deciding the identity
of an unknown speech utterance (mostly short ones) [1].
The correct classification plays important role in most of
the current state-of-the-art speech systems – for example
speech recognition, spoken term detection, etc. Based on
the classifier input, the classifiers can be further divided
into sequence based classifiers and frame based
classifiers. Most of the current speech processing systems

are based on the sequence based classifiers. The sequence
modeling is performed using a Hidden Markov modeling
(HMM) [2], [3] and classification itself can be done using
Gaussian mixture modeling (GMM) [4], neural network
(NN) [5] or support vector machines (SVM) [6]. These
systems are mostly denoted as a HMM/GMM or
HMM/NN, etc. [4], [7], [8]. The main advantages of
these systems are simple phoneme modeling and good
output results (especially for the phoneme posteriors) [9].
The disadvantage of the HMM-based systems lies in the
Baum-Welch (BW) training algorithm which is known
for his convergence to local maxima. This problem is
mostly solved by multiple algorithm initializations which
can be extremely time-consuming. Another problem is
that these algorithms do not aim on minimization some
objective function (e.g. specific loss function) [10].

Few researchers proposed different classifiers with
the different results. For example authors in [11] devise a
naive Bayes classifier based on the reconstructed phase
space. Authors in [5] or [12] proposed new type of
feature extraction technique. Most of these approaches do
not aim on the improving acoustic models (AM) but
rather on defining more sophisticated feature extraction
techniques etc. [5], [12]. In the recent years large margin
and kernel methods have proven to be an effective tool
for the tasks of speech processing (e.g. speech
recognition, keyword detection etc.). Most of these
systems aim on the acoustic models improving with the
use of proper frame-based phoneme classifiers [13], [14].
The frame-based classification is a task of deciding the
identity of the each speech frame (typically 25 ms
length). Due to the lack of sequence modeling these
systems are less accurate compared to the sequence
based. The advantage is in the proper application with the
specific system, like [10], [14].

Based on the recent advantages in large margin
and kernel methods and pioneering research of O. Dekel
and J. Keshet [6], [10] this paper presents a simple frame-
based linear phoneme classifier. The main idea is in the
definition of so called prototype functions for each of the
phoneme and the decision is made according to their



INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 9 | NUMBER: 5 | 2011 | SPECIAL ISSUE

© 2011 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 244

similarity to each of these functions. Furthermore we
have incorporated a distance metric for the hierarchical

structure like in Fig. 1. This metric represents a tree
induced error over the hierarchical structure and costs

Fig. 1: TIMIT phonetic TREE structure.

misclassified phonemes according to their distance in the
tree [6]. For example, classify an utterance as a phoneme
iy instead ih is less severe than phoneme uw as a w. The
hierarchical structure in Fig. 1 represents phonetic tree
structure for the American English and a set of the used
phonemes is derived from the TIMIT speech corpus [15].
Given the fact that current speech corpora contains large
amounts of annotated speech samples we have proposed
an efficient learning procedure for the prototype function
estimation. This learning algorithm is based on the batch
generalization and the results clearly show the benefit of
proposed algorithm. Moreover we have proposed a batch-
classifier for the whole phoneme sequence classification.
The advantage of our approach is that the efficient
learning algorithm can be used both for the frame-based
classification and whole sequence-based classification.

For the task of evaluation two different metrics are
used. First metric defines a phoneme error rate (PER)
which corresponds to the number of misclassified
phonemes. Second metric defines number of
misclassified phoneme groups (MISS). For example to
classify an utterance iy instead of ih is  a  mistake  for  the
PER metric while the metric MISS evaluate correct
classification.

This paper is organized as follows. In section 2 we
define the problem settings. In section 3 we present a
classification rule. Section 4 and 5 introduce our
proposed algorithms. In section 6 an evaluation is
performed and section 7 concludes our results.

2. Problem Settings

Let x be the sequence of acoustic feature vector, so x =
(x1,  x2... xT),  xT ∈ X, where X ⊂ Rn is the acoustic
feature domain. Let Y be a set of phonemes and phoneme
groups defined according the hierarchical structure like in
Fig. 1. Let us further consider align between each of the
phoneme or phoneme group y ∈ Y and appropriate
acoustic features x ∈ X. Denote T to be a corresponding
hierarchical structure (like the one in Fig. 1). The number
of all vertices in the tree structure T is  denoted  as  a
k = |Y|, in other words k encompasses the number of all
phoneme and phoneme groups so Y = {0,..., k−1}, where
0 represents a tree root of the hierarchical structure T [6].

Let us define a metric γ (·, ·) over this hierarchical
tree structure T as a number of all edges (unique path)
between two different phonemes of phoneme groups u, v.
For any pair of phonemes u, v let γ(u, v) be their distance
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in the tree root structure T, while following triangle
equality holds γ(u, v) = γ(v, u)  and  γ(u, u) = 0 since
γ(u, v) is a non-negative function. based on the stated
definitions let us further define a tree induced error γ(u, v)
as a unique path from the phoneme u to v, so the tree
induced error incurs only while predicting incorrect
phoneme [10].

For every phoneme and phoneme group (expect
the tree root) v ∈ {Y\0} we denote A(v) to be a parent of v
in the T.  Further  we  define  an  ancestor  of v as  a A(i)(v)
which is recursively defined as follows,

( ))()( )1( vAAvA ii -= , (1)

and A(0)(v)  = v.  For  each  phoneme  and  phoneme  group
v ∈ Y we define P(v) to be a number of vertices from
phoneme v to the tree root 0 resp. P(v) encodes a unique
path from phoneme v to tree root 0 [6], [10],

{ })(,:)( )( vAuiYuvP i=$Î= . (2)

The goal of the frame–based classifier is to
determine frame identity – to decide which the most
probable phoneme that frame belongs to. In case of the
hierarchical based classifier there could be stated another
goal. To determine frame’s phoneme group identity. Both
of these stated goals can be measured by above
mentioned metrics (PER and MISS).

3. Classification Rule

The proposed frame-based classifier (resp. classification
function) f: X → Y makes its prediction according to the
input set of prototypes (weights vectors) W defined for
each of the phoneme and phoneme group v.  Each of  the
prototype  W can be  any vector  in  Rn and our goal is to
train frame-based classifier f which attains low tree
induced error γ(u,  v) on the training samples. For the
frame-based training algorithm the input training
database is defined in the following form S = {(xi, yi)}m
i=1, where m is the number of all training samples (pairs),
that is set S consists of m pairs in the following form
xi ∈ X and yi ∈ Y so the training is performed per each of
the frame (therefore frame-based). The task of learning is
then simplified to find appropriate weights vectors
W1 … Wk-1. Linear frame-based classifier f is defined
according the following formula:

( )xWxf v

Yv
×=

Î
maxarg)( . (3)

The classifier defined by the Eq. (3) does not
include hierarchical structure T.  To incorporate tree root
structure T into the classification function we have to
define a new set of weights vectors w,

)(1 vAvw WWw -= , (4)

so we had decided to work with the partial differences w
rather that with standard weights W. The weight vector
W  can  be  furthermore  rewritten  based  on  the  Eq.  (4)  as
follows,

å
Î

=
)(vPu

vv wW . (5)

Based on the Eq. (5) and (3) the resulting
hierarchical frame-based classifier can rewritten into the
form of Eq. (6),

å
ÎÎ

×=
)(

maxarg)(
vPu

u

Yv
xwxf . (6)

4. Efficient Training Algorithm

The proposed training algorithm is based on the concept
of  O.  Dekel  [6]  and  J.  Keshet  [10]  and  both  of  these
algorithms are based on the frame-based classification
function (like the one in Eq. (3)) so the learning
procedure is also proposed as a frame-based. The
principle of our learning algorithm is based on the idea of
sequential training and sequence generalization. On each
round not a simple frame updates our weights vectors w
but rather the whole generalized phoneme frames
sequence. In other worlds, on each round all the
appropriate weights w of each phoneme v are updated at
once. Furthermore, our derived prototypes wv can still be
efficient in a frame-based classification as well in whole
sequence (batch) classification. The principle of our
learning algorithm lies in the redefinition of the
classification function f defined by the Eq. (6). As stated
above, this function is defined to be a frame-based so to
incorporate a whole sequence prediction we have to
rewrite our classification function as follows,

å
ÎÎ

×=
)(
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vPu

u
i

Yv
xwmeanxf , (7)

where operator mean() represents an average of the
partial values xj , where j is a parameter index (e.g. first
MFCC coefficient) and wi is  a  weight  vector  in  the i-th
iteration step. In the theory of the Large margin and
kernel methods we assume that there exists a set of
prototypes {w(v)}vinY such that for each pair (xi,  yi) and
every r ≠ yi the following inequality holds:
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where yi is a correct prediction according the
classification function defined by Eq. (7) and ∥ · ∥ refers
to L2 norm. According to the Eq. (8) we require that the
difference between the correct prediction and any
incorrect prediction is at least square-root of the tree-
based distance between them [10]. The goal of the
proposed algorithm is to find a set of prototypes which
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fulfills the margin requirement defined by Eq. (8) while
incurring minimal tree-induced error [6]. In machine
learning we do not minimize Eq. (8) directly but rather
employs a convex hinge-loss function ℓ({wi (v)},xi ,yi)
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where [z]+ = max{z, 0}.  Let  us  assume that  there  was  a
prediction mistake b yi on round i and we would like to
modify a set of prototypes {wi(v)} so the constraints
defined by Eq. (8) holds. However a simple analytical
solution does not exist so we introduce a simple
optimization problem frequently used in SVM and
machine learning theory [16]. Formally, the new set of
prototypes {w(i+1)(v)} is the solution of the following
optimization problem,
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Note, that only the weights {wi(v)} defined by the path
P(v) are updated at each iteration. The Fig. 2
demonstrates this update – only the vertices depicted by
the solid lines are updated at once.

Fig. 2: Re-estimation of the weights vectors – only the solid lines are
updated.

The solution to the optimization problem defined
by the Eq. (10) is based on the dual representation in the
form of Lagrangian [16]. We set the derivate of
Lagrangian {w(v)} to zero so the new weights {w(i+1)(v)}
are estimated according the following formulas,
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where the Lagrangian multipliers αi are simply computed
as a
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where ∥·∥N represents a matrix form defined by the
following term
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On each round we have generated a new set of
prototypes {wv i } so while the training corpus S contains
m training samples we have m sets of prototypes. The last
set of weight vectors {wm(v)} should be the best resulting
prototypes but in practice an averaged weights vectors
shows to be more efficient. The resulting prototypes are
defined as follows,
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Fig. 3: Proposed training algorithm.

5. Non-Linear Classifiers

The proposed training algorithm can be further
incorporated with the non-linear kernel transformation.
The main idea lies in the vector space separation.

INITIALISATION: ∀v ∈ Y: wv 1 = 0

For i=1, 2. . . m

- Algorithm receive acoustic features vector _xi
for the phoneme yi

- Prediction
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- Correct phoneme yi is revealed

- In case of incorrect prediction (γ(·,·)≠ 0) the
hinge loss function ℓ({wi(v)}, xi,  yi) is
computed

- Re-estimation of the weight vectors:
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Because of speech complexity not all of the frames can
be linearly well separated in the input feature space Rn.
Based on the SVM theory there a non-linear
transformation can be applied on the input features (both
in the training and evaluation) [16]. Again, transformed
features are linearly separated (non-linearly decision
hyper plane can be seen in the original feature space).

To define a non-linear classifier we have to
rewrite our fundamental classification rule defined by the
Eq. (3) in case of the linear classifier and Eq. (6) in case
of the hierarchical classifier. Because this paper primary
deals with the hierarchical classifiers Eq. (6) will be
rewritten but the same can be applied on the linear
classifiers. The resulting classifier will be in the
following form:

å å
Î =Î

××=
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m

i
ii

Yv
xxxf a , (16)

where αi is i-th Lagrangian multiplier and xi is i-th
training sample. This definition is valid and expressing
the whole weight vector w estimation. Equation (16) can
be further rewritten in the Kernel notation in the form of
following Eq. (17)
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where inner product between xi and x is represented by
the kernel operator K. Based on the Eq. (16) and (17)
there should be clear that the whole training database (or
at least Lagrangians αi) are necessary in the classification
process. Nevertheless, only non-negative Lagrangians
contributes to the final result which leads to the sparse
solution.
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5.1. Training Algorithm

The advantage of the re-definition according to Eq. (17)
lies in the possibility of kernel K pre-computation. Kernel
K(xi, x) can be reformulated as K(xi, xj),  where xi and xj
are training samples where i, j = 1 . . .m. Resulting matrix
G (so called Gram matrix [16]) is composed with every
K(xi, xj) value and this matrix can be pre-computed just
once (for the same kernel parameters).

To develop a training algorithm we have further
incorporate kernel operator into the loss function ℓ. This
leads to the Eq. (18), where Lagrangians αi(v) are
computed based on the following equation
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where αj(v) is j-th Lagrangian associated with the
phoneme yj and G represents Gram matrix.

We have further experimented with the mutual
combination of linear and non-linear classifiers which
lead to the following efficient training algorithm – see
Fig. 5.

Fig. 4: Efficient non-linear training algorithm.

INITIALISATION: ∀v ∈ Y: w1(v) = 0, αi(v) = 0

Pre-computation of Gram matrix G [optional]
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For i=1, 2. . . m

- Algorithm receive acoustic features vector xi
for the phoneme yi

- Prediction
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- Correct phoneme yi is revealed

- In case of incorrect prediction (γ(·,  ·) ̸= 0) the
hinge loss function ℓ({α},G(j,i),yi) is
computed

- Re-estimation of the weight vectors:
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6. Evaluation

We have performed a number of tests to evaluate our
proposed training algorithm and all algorithms were
evaluated over the TIMIT speech corpus [15] which is a
speech corpus of annotated utterances for American
English. We have divided the TIMIT sentences into the
two disjoints groups – TRAIN and TEST. We have also
excluded all the SA sentences (dialect sentences) and we
have randomly generated 80 TRAIN (for the second
experiment, number of training examples will vary) and
80 TEST sentences as follow – Each sentences is uttered
by the different speaker, each speaker uttered one SI and
SX sentence and both sets have a uniformly distributed all
the dialect regions. We have also separated all training
and testing sentences so performed evaluation can be
considered as a speaker independent.

In the first experiment, classifiers were compared
on the two different feature extraction techniques - mel-
frequency cepstral coefficients (MFCC) and perceptual
linear prediction coefficients (PLP) both detailed
described in the literature [17]. We used 13 basic
coefficients, deltas and double deltas (Δ+ΔΔ). We have
used 15 mixtures for GMM model. Furthermore, features
were normalized using the CMN/CVN technique. The
Tab. 1 and 2 displays the results indicating the advantage
of PLP features. The first proposed training algorithm
(denoted as a Hiersekv)  had  been evaluated  as  a  standard
linear classifier and shown to be more accurate compared
to the frame-bases training algorithm based on the [6].
Moreover, learning time was rapidly reduced. For
notation, both training algorithms were evaluated based
on the same frame-based classification rule defined by
the Eq. (6). The second proposed training algorithm
(denoted as a Hier_kernelsekv) incorporated a non-linear
transformation represented by the kernel operator K. To
evaluate benefits of our proposed training algorithm we
had compared our nonlinear training algorithm with the
non-linear training algorithm proposed in the [6] (denoted
as a Hier_kernel). Finally, all hierarchical frame-based
training algorithms were compared with the standard
GMM frame-based classifier (like the one in [4], [7]). To
assure a convergence to global optimum we have
performed a number of re-estimation of the training
algorithm and the one yielding the best results over the
cross-validation set had been chosen for the further
evaluation.
Tab.1: PER and MISS for PLP features.

Number of
sentences [-]

PER
[%]

MISS
[%]

Training
time [min]

Hier 55 31 180

Hiersekv 53 29 15,8

Hier_kernel 54 29 315

Hier_kernelsekv 49 25 195

GMM 52 36 35

Our second experiment demonstrates a benefit of
our training algorithm. Table 3 shows that with the larger
number of training sentences the proposed sequence
based algorithm converges to the global optimum defined
by the frame-based learning algorithm. Furthermore, at
the same PER and MISS results our proposed algorithm
is much more time-efficient compared to the frame-based
algorithm based on the [6]. Figure 3 and 4 graphically
output these results.
Tab.2: PER and MISS for MFCC features.

Classifier type PER
[%]

MISS
[%]

Training
time [min]

Hier 56 32 182

Hiersekv 55 31 16,7

Hier_kernel 54 29 315

Hier_kernelsekv 50 26 196

GMM 53 36 36

Tab.3: PER and MISS for different number of training sentences (for
PLP features).

Number of
sentences [-]

PER
[%]

MISS
[%]

Training
time [min]

80 64 40 6,8

160 59 36 10

240 53 31 15,8

Fig. 5: Classifier precision (HIT) based on the number of input
training samples.
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Fig. 6: Overall classifier training time.

7. Conclusion

This paper compared two state-of-art approaches to
frame-based phoneme classification – generic and
discriminative. Two state-of-art discriminative frame-
based classifiers were presented (denoted as HIER and
HIER_KERNEL) along with state-of-art generic
classifier represented by the GMM frame-based classifier
(denoted as GMM). Moreover, this paper had proposed
two efficient training algorithms for discriminative
frame-based phoneme classification (denoted with the
SEKV suffix). For notation, all discriminative classifiers
exploit a hierarchical tree root structure which is inducing
tree root metric over the input group of phonemes. Both
HIER and HIER_KERNEL classifiers had similar results
on PER compared to the GMM classifier, but the results
for metric MISS show the advantage of these classifiers
(especially the implementation of hierarchical structure
had shown to be a very effective). Both proposed training
algorithms clearly outperforms all of the previous
classifiers and showed possible future direction for
frame-based phoneme classification. The results also
showed  superiority  of  the  PLP  features  over  the  MFCC
features.

Our  future  work  will  be  focused  on  the
implementation hierarchical tree root structure into the
GMM classifiers and incorporation of long temporal
content into the frame-based classifiers. The future effort
will also aim on the classifiers evaluation within the
KWS systems.
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