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Abstract –From the fractal geometry point of view, the interpretations of local fractional derivative and local fractional
integration are pointed out in this paper. It is devoted to heat transfer in discontinuous media derived from local
fractional derivative. We investigate the Fourier law and heat conduction equation (also local fractional instantaneous
heat conduct equation) in fractal orthogonal system based on cantor set, and extent them. These fractional differential
equations are described in local fractional derivative sense. The results are efficiently developed in discontinuous
media.

Keywords –Local fractional derivative; Local fractional integrals; Fourier law; Local fractional heat conduction
equation; Cantor set

1. Introduction

Since the by-now classical textbook of Mandelbrot
[1], fractals has been revealed a useful tool in several
areas ranging from fundamental science to engineering. A
fractal phenomenon is characterized by striking
irregularities, and as a result, it is described by non-
differentiable functions.

The theory of local fractional calculus (also called
fractal calculus[2-7]), as one of useful tools to handle the
fractal and continuously non-differentiable functions, was
successfully applied in local fractional Fokker–Planck
equation [2, 3], anomalous diffusion and relaxation
equation in fractal space [8-9], fractal wave equation[10],
fractal-time dynamical systems [11,12], fractal elasticity
[13-14], the fractal heat conduction equation [15], local
fractional diffusion equation [15], local fractional Laplace
equation [16], local fractional ordinary differential
equations[16-17], local fractional partial differential
equation[15-19], local fractional integral equations[20-
23], local fractional variational method and algorithms
[22, 23], local fractional complex analysis[16, 17, 24],
local fractional Z transform in fractal space [24], local
fractional Fourier analysis [25], local fractional short time
transforms [16, 17, 26], local fractional wavelet transform
[16, 17, 26], local fractional Fourier series [16, 17, 26],
Yang-Fourier transform [23, 24, 26-28], Yang-Laplace
transform [18, 19, 29-32 ], local fractional Stieltjes
transform in fractal space [30], local fractional Mellin
transform in fractal space [31], discrete Yang-Fourier
transform [33, 34], fast Yang-Fourier transform [35], RG
differential equations [36], the multiple local fractional
calculus [37], the theory of local fractional calculus of
vector functions[38], local fractional calculus of
variations[37, 38] , generalized local Taylor's formula
with local fractional derivative[16,17, 39], generalized
Newton iteration method [40], and mean value
theorems[16, 17, 39, 41].

This letter is to investigate the Fourier law of heat
conduction and heat conduction equation in fractal
orthogonal system based on cantor set. The paper has
been organized as follows. Section 2 gives a brief
introduction to fractal orthogonal systems. In section 3,
we introduce the concepts of local fractional calculus and
its fractal geometrical explanation. Section 4 focus on the
Fourier law of heat conduction and heat conduction
equation in fractal orthogonal system based on cantor set.
Conclusions are presented in section 5.

2. Fractal orthogonal systems

2.1. Hausdorff dimension

Definition 1 (Hausdorff measure) The diameter of a
non-empty set E is defined by[16, 17]

 : sup : ,E x y x y E   . (2.1)

Given 0 1  . A countable collection  iE of

subsets of  is said to be a  -cover of nF   ,

ii
F E  and 0 iE   i .

For each nF   , denote

    is a cover ofinf :i i
i

FH F E E
     

 
 . (2.2)

Note that  H F
 increases as  decreases, then we

define

   
0

: limH F H F 


 . (2.3)

Here, we call   : 0,nH P    -dimensional

Hausdorff measure. For more details, see[16, 17].
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Definition 2 (Hausdorff dimension) The Hausdorff
dimension is [16, 17]

  

  

dim inf : 0

sup :

s
H

s

F s H F

s H F

 

  
. (2.4)

2.2. Hausdorff dimension of cantor sets

Lemma 1
Let E and F be subsets of R and let F be a cantor set.
Then[16, 17, 37]

 dim dim dimH H HE F E F  
. (2.5)

As further result, some results read as follows. For further
details see [16, 17, 37]

Theorem 2
Let E and F be subsets of R . Let E and F be fractal
sets, then [16, 17, 37]

 dim dim dimH H HE F E F  
. (2.6)

Theorem 3
Let E , F and G be subsets of R . Let E , F and G

be fractal sets, then[16, 17, 37]

 dim dim dim dimH H H HE F G E F G     .(2.7)

For more generalized Hausdorff measure, see [16, 17, 42,
43].

2.3. Fractal orthogonal systems

Definition 3 (Two-dimension fractal orthogonal
system) In two-dimension fractal space, a fractal surface,
the fractal dimension of which satisfies the condition [16,
17, 37]

 dim dim dimH H HE F E F   , (2.8)

is called the two-dimension fractal system. Let[16, 17,
37]

dim dimH HE F , (2.9)
then this system is so-called the two-dimension fractal
orthogonal system.

Definition 4 (Three-dimension fractal orthogonal
system) In three-dimension fractal space, a fractal body,
the fractal dimension of which satisfies the condition [16,
17, 37]

 dim dim dim dimH H H HE F G E F G     , (2.10)

is called the three-dimension fractal system. Let[16, 17,
37]

dim dim dimH H HE F G  , (2.11)
then this system is so-called the three-dimension fractal
orthogonal system.
Suppose

dim dim dimH H HE F G    , (2.12)
a number in three-dimension fractal orthogonal system
can be written in the form[16, 17]

, , ,i x j y k z x y z               (2.13)
that belongs to a generalized vector space. Likewise, two-
dimension fractal orthogonal system can be written in the
form [16, 17]

i x j y       , ,x y   (2.14)
that also belongs to a generalized vector space. Notice
that the natural fractional coordinate in case of fractal
dimension [42, 43] is a special fractal orthogonal system,
ie.

 
 

0

1
x x

x








 

,

where  is a fractal dimension. It means that
 
 

0

1
x x 




 

in [42, 43] is corresponding to x in [16, 17, 22, 26] if
 is fractal dimension, and we can write

 
     

0 0

1 1 1
x x xx

 

  


 
     

,

by using the fractional set theory [16, 17, 37, 40, 44] .

 
 

0

1
x x 




 
is a fractal mass function of set  ,C a b .

Hence, this is the Lebesgue-Cantor Staircase function
[11, 12, 26] from the fractal geometry point of view if

fractal dimension is
l g 2
l g3
o
o

  . Suppose that

 H F  ,
 
 

0

1
x x 




 
is any Lebesgue-cantor-like

staircase function from the fractal geometry point of
view.

3. Local Fractional Calculus and Fractal
Geometrical Interpretation

3.1. Local fractional continuity of functions

Definition 5 If there is the relation [16, 17, 22 ]

   0f x f x   (3.1)

with 0x x   ,for , 0   and ,   .

Now  f x is called local fractional continuous at

0x x , denote by    
0

0lim
x x

f x f x


 .Then  f x is

called local fractional continuous on the interval  ,a b ,

denoted by[16, 17, 22 ]

   ,f x C a b . (3.2)

Definition 6 A function  f x is called a non-

differentiable function of exponent , 0 1  , which
satisfy Hölder function of exponent  , then
for ,x y X such that[16, 17, 22 ]



Xiao-Jun Yang, AMEA, Vol. 1, No. 3, pp. 47-53, 2012 49

   f x f y C x y   
. (3.3)

Definition 7 A function  f x is called to be continuous

of order , 0 1  , or shortly  continuous, when
we have the following relation[16, 17, 22 ]

      0 0f x f x o x x    . (3.4)

Lemma4

If  , d and  ' ', d are metric spaces, E   and

':f E  satisfies

        ', , ,d x y d f x f y d x y   (3.5)

where  and  are positives and finite constants, then
[20, 22, 45 ]

      s s s s sH E H f E H E   (3.6)

where each 0s  and sH is the s-dimensional
Hausdorff measures.

Suppose  , d and  ' ', d are metric spaces. A

bijection    ' ': , ,f d d   is said to be a bi-

Lipschitz mapping, if there are constants , 0   such

that for all 1 2,x x  ,[20, 34]

        '
1 2 1 2 1 2, , ,d x x d f x f x d x x   . (3.7)

The following lemma is also a standard result in fractal
geometry (see for example [20, 45-49]).

Lemma 5

If    ' ': , ,f d d   is a bi-Lipschitz mapping,

then [20, 34]

    dim dimH HA f A (3.8)

for all A .

Lemma 6
Let F be a subset of the real line and be a fractal. If

   ' ': , ,f F d d  is a bi-Lipschitz mapping, then

there is for constants , 0   and F   ,

      s s s s sH F H f F H F  

such that for all 1 2,x x F , [20, 22]

   1 2 1 2 1 2x x f x f x x x        .

(3.9)
This result is directly deduced from fractal geometry.
From Lemma 4 and Lemma 5 it is observed that that

    dim dim .H HF f F s 

Theorem 7

Let F be a subset of the real line and be a fractal. If

     ': , , , ,f d d    is a bi-Lipschitz

mapping, then there is for constants , 0   , [20, 22]

   1 2 1 2
sx x f x f x         . (3.10)

where  ,E   .

Theorem 8
Let F be a subset of the real line and be a fractal. If

 f  is a bi-Lipschitz mapping, then there are any

1 2,x x   and positive constant such that [20,
22]

   1 2 1 2
sf x f x x x   . (3.11)

Remark 1. If    ,f x C a b , then dimH

  ,F a b   dim ,H C a b   and

 ,C a b   :f f x is local fractional continuous,

 ,x F a b  .

3.2. Fractal geometrical explanation of local
fractional derivative and integration

3.2.1. Local fractional derivatives

Definition 8 Setting    ,f x C a b , local fractional

derivative of  f x of order  at 0x x is defined

[16-30, 37]

          
 0

0

0
0

0

limx x x x

f x f xd f x
f x

dx x x




  

 
 


,

(3.12)

Where            0 01f x f x f x f x       .

For any  ,x a b , there exists[16-30]

       xf x D f x  , (3.13)

denoted by

     ,xf x D a b . (3.14)

Local fractional derivative of high order is written in the
form [16, 17]

         ...

k times

k
x xf x D D f x  


,
(3.15)

and local fractional partial derivative of high order [16,
17]

   ...

k times

k

k

f x
f x

x x x

  

  

  


  



.
(3.16)

Theorem 9



Xiao-Jun Yang, AMEA, Vol. 1, No. 3, pp. 47-53, 2012 50

If ,u v are differentiable functions, the following
differential rules are valid:
Product Rule [16, 17, 37]:

                 x xx
u x v x u x v x u x v x

      . (3.17)

Chain Rule:

        '
ux

v u x v u x
    or

       '
u xx

v u x v u x
    . (3.18)

Exponent Rule:

 1 dv d v   . (3.19)

Differential rule for multivariable functions:

Let   kF u x be local fractional continuous. For ku ,

1, 2,3k  ,  '
ku x exists. Then [37]

      

       

   

1 2 3

1 1 2

1 2

3 3

3

, ,

k

d F u x u x u x

dx

d F u du x d F u du x
du dx du dx

d F u du x
du dx





  

 





   
    

   

 
  

 
(3.20)

Other definitions see [37].

3.2.2. Local fractional integrals

Definition 9 Setting    ,f x C a b , local fractional

integral of  f x of order  in the interval  ,a b is

defined [16, 17, 37, 39]
   

    

    
1

0
0

1
1

1
lim

1

a b

b

a

j N

j jt
j

I f x

f t dt

f t t











 

 



 

 
 





, (3.21)

where 1j j jt t t   ,  1 2max , , ,...jt t t t     and

1,j jt t   
, 0,..., 1j N  , 0t a , Nt b , is a partition of

the interval  ,a b . For any  ,x a b , there exists [16,

17]
   a xI f x

, (3.22)

denoted by

     ,xf x I a b . (3.23)

Remark 2. If      , ,xf x D a b or    ,xI a b
, we

have[16, 17]

   ,f x C a b . (3.24)

Here, it follows that [16, 17, 37, 39]

    0a aI f x  if a b ;

       a b b aI f x I f x  if a b ; (3.25)

and      0
a aI f x f x . (3.26)

We have the following results:

For any    ,f x C a b , 0 1  , we have local

fractional multiple integrals, which is written as[16, 17,
37, 39]

         
0 0 0

...

k times

k
x x x x x xI f x I I f x  


.

(3.27)

For 0 1  ,    kf x  ,kC a b , then we have[16,

17, 37, 39]
     

 
0

kk
x xI f x f x

  , (3.28)

where

         
0 0 0

...

k times

k
x x x x x xI f x I I f x  


(3.29)

and

         ...

k times

k
x xf x D D f x  


. (3.30)

These results are different from Jumarie’s results for
modified Riemann-Liouville derivative and integrals [50-
53]. For more results, see [16, 17].
If we consider Chen fractal derivative [8, 9], we get a
new integral formula

         
1

0
0

lim
j NbF

a b j ja t
j

I f x f t dt f t t


 

 


  
.

We find that
         1F

a b a bI f x I f x    .

3.3.3. Its fractal geometrical explanation

Definition 10 Let a be an arbitrary but fixed real number.

The integral staircase function  FS x of order αfor a set

F is given by [11, 12, 20, 22, 26]

 
 
 

, , , ;

, , , .
F

F a x if x a
S x

F x a if x a










  
 

(3.31)

Then we have the following results:

(a) The fractal mass function  , ,F a b can written as

[20, 22, 26]

 

 

 
 

      
 

1
0 1

1
1

max 0
0

, ,

lim
1

1
,

1 1

i i
i n

n
i i

x x
i

F a b

x x

b a
H F a b












 


 




 





 


  
   

 . (3.32)

(b) we have [20, 22, 26]
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1
0 1

1
1

max 0
0

, ,

lim
1

1

i i
i n

F F

n
i i

x x
i

S y S x

F x y

x x

y x

 














  




 









 



 

 . (3.33)

(c) if a b c  , we have [11, 12, 20, 22, 26]

     , , , , , ,F a b F b c F a c      . (3.34)

Remark 3. From formula (a) we obtain that [20, 22, 26]

     

   

 
 

1

0
0

1
1

1
lim

, ,

1

1

b

a

j N

jt
j

F a b

a

dt

t

b
















 

 



 

















 . (3.35)

Remark 4. From formula (c) we deduce to

     b a c b c a       , which is called the

theory of fractional set [18, 38].
Hence, we can understand it by fractal geometry [20, 22,
26]:

        , , ,H F a b H F b c H F a c       ,

(3.36)
ie. 1 2 3    . That is, the fractal geometric
representation is that cantor set [0,3] is equivalent to the
sum of cantor set [0,1] and cantor set [1,3] . The

dimension of cantor set is  , for 0 1  and, 1 ,
2 and 3 are real line numbers on a fractional set [16,
17, 37, 40, 44]. Hence,

     
 

1
11

b

a
dt

b a






   (3.37)

is any Lebesgue-cantor-like staircase function from the
fractal geometry point of view if  ( 0 1  ) is any
fractal dimension. In one-dimension fractal orthogonal
system we can write

 
     

0 0

1 1 1
x x xx

 

  


 
     

, (3.38)

where
 1

x

 
is a any Lebesgue-cantor-like staircase

function. If the set is cantor set,
 1

x

 
is a Lebesgue-

cantor staircase function[11, 12, 20, 22].

4. Heat Transfer in Discontinuous Media

4. 1. Fourier law of heat conduction in fractal
media

The temperature field reads [54]

   , , , , , ,T x y z f x y z  (4.1)

at 0  and in  , where  , , ,f x y z  is local

fractional continuous at fractal domain .
For a given temperature field T , there is a local

fractional temperature gradient [54]

1 2 3

1 2 3

T T T
T e e e

u u u

  
  

  

  
   

  

  
. (4.2)

We consider the heat flux per unit fractal area q


is
proportional to the temperature gradient in fractal
medium. Fourier law of heat conduction in fractal
medium is expressed by [54]

   2, , , , , ,q x y z t K T x y z t   


, (4.3)

where 2K  denotes the thermal conductivity of the fractal
material.

Fourier law of two-dimensional heat conduction in
fractal media is

     2 , , , ,
, ,

d T x y t d T x y t
q x y t K

dx dy

 


 

 
   

 
, (4.4)

at 0  and in  , where K denotes the thermal
conductivity of the fractal material.

Fourier law of one-dimensional heat conduction in
fractal media is

   2 ,
,

d T x t
q x t K

dx




  , (4.5)

at 0  and in A , where K denotes the thermal
conductivity of the fractal material.

4.2. Local fractional heat conduction equations

Local fractional heat-conduction equation with heat
generation in fractal media can be written as [54]

2 2 0
T

K T g c
t


 

  


   


(4.6)

at 0  and in  , or
2 2 2

2
2 2 2 0
T T T T

K g c
x y z t

   


    
    

         
(4.7)

at 0  and in  .
Local fractional two-dimensional heat conduction
equation with heat generation in fractal media can be
written as

2 2 0
T

K T g c
t


 

  


   


(4.8)
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at 0  and in  , or
2 2

2
2 2 0
T T T

K g c
x y t

  


   
   

       
(4.9)

at 0  and in  .

Local fractional one-dimensional heat conduction
equation with heat generation in fractal media can be
written as

2
2

2 0
d T d T

K g c
dx dt

 


     (4.10)

at 0  and in A .
Local fractional heat-conduction equation without heat
generation in fractal media is [54]

2 2 0
T

K T c
t


 

  


  


(4.11)

at 0  and in  , or
2 2 2

2
2 2 2 0
T T T T

K c
x y z t

   


    
    

        
(4.12)

at 0  and in  , where 2 is local fractional
Laplace operator[16, 17, 37, 54].
Local fractional two-dimensional heat conduction
equation without heat generation in fractal media can be
written as [15]

2 2 0
T

K T c
t


 

  


  


(4.13)

at 0  and in  , or
2 2

2
2 2 0
T T T

K c
x y t

  


   
   

      
(4.14)

at 0  and in  .
Local fractional one-dimensional heat conduction
equation without heat generation in fractal media can be
written as

2
2

2 0
d T d T

K c
dx dt

 


    (4.15)

at 0  and in A .

5. Conclusions

In the present paper, we investigate the interpretations of
local fractional derivative and local fractional integration
from the fractal geometry point of view. We focus on the
Fourier law of heat conduction and heat conduction
equation in fractal orthogonal system based on cantor set
and extent them. These fractional differential equations
(with fractional derivative and fractional partial
derivative) are described in local fractional derivative.
The results are efficiently developed, and it is of great
significance to heat transfer from continuous media to
discontinuous media.
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