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Abstract – Machining processes are the core of manufacturing industry, where raw material is shaped into a desired 
product by removing unwanted material. The determination of optimal machining conditions is very crucial while 
producing high quality products at minimal costs. This paper proposes the process parameter optimization of multi pass 
turning operations. The multi-pass turning includes several rough passes and single finish pass with several constraints 
around twenty, imposed during roughing and finishing operations on tool life, surface finish, cutting forces, machining 
power and chip-tool interface. In this paper Differential Evolution (DE), a potential global optimizer, is employed to 
obtain the optimal set of parameters that minimize the total unit production cost under several constraints. Results 
obtained using DE are compared with results obtained using PSO, GA and ACO as recorded in literature.  
Keywords – Multi pass turning operation; Parameter optimization; Unit Production cost; Differential Evolution 
 
 
 
1. Introduction  
 

In manufacturing industry, economic machining is a 
prime need due to high capital involved in these large 
scale industries. These days the notion of computer 
numerically controlled (CNC) machining is introduced to 
deal the problem of economic machining. During 
machining process, metals or wood parts are shaped to 
obtain desired product by removing unwanted material. 
The machining process of any desired product must 
satisfy the specified quality restrictions such as surface 
finish, accuracy and surface integrity. The objective is to 
minimize the unit cost or machining time according to 
available conditions. To meet these objectives we have to 
determine the optimal machining conditions by 
optimizing machining parameters such as cutting speed, 
feed rate depth of cut and number of passes under several 
constraints imposed on machining processes. Although 
handbooks are available to provide recommended 
machining parameters but these handbooks does not   
satisfy the need of economic machining. To overcome 
this drawback, sufficient research work has been done 
and still going on, in this field to provide a reliable 
method that produces efficient solution. The analysis of 
single and multi pass turning operations under practical 
constraints starts nearly three decades ago by [2] who 
considered production cost or machining time as 
minimization criteria. Some conventional optimization 
techniques such as scatter searches [10], dynamic 
programming [4], geometric programming [2] and Hook-
Jeeves method [6] were also employed to optimize 
machining models. Some studies also concentrated on 

refining multi pass machining models by adding some 
more real constraints and parameters that makes 
simulated models more realistic[4],[17]. 

The complexity of machining models increases with 
increase of no of practical constraints and parameters. 
Conventional optimization techniques produce local 
optimal solution and are not appropriate for these highly 
constrained problems. Therefore heuristic methods such 
as PSO [1], [7], DE [14], ABC [15-16] etc. are preferred 
to deal with such complex problems as they provide near 
global optimum solution. Recently many non-traditional 
optimization techniques like Simulated annealing (SA) 
[9], Genetic algorithm [3], Ant colony optimization [6] 
and Particle Swarm optimization [5] has been employed 
to determine the optimal conditions for constrained 
machining models. More recently, Yusup et al. [11], [12] 
performed a comprehensive review on machining 
parameter optimization for both traditional and advanced 
machining methods using various evolutionary 
techniques. 

In this study we have presented the application of 
Differential Evolution (DE) for optimizing machining 
parameters in multi pass turning operations. Here we 
have considered the model proposed by [9] and 
considered in [5]. This model includes several constraints 
on tool life, surface finish, cutting forces machining 
power, chip tool interface along with parameter bounds. 
The objective function is to minimize the total unit 
production cost by determining optimal number of 
passes, cutting speed, feed rate and depth of cut during 
roughing and finishing passes.  
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The remaining paper is organized as follows. Section 2 
describes the considered machining model along with 
notations used in model. Section 3 gives a brief 
introduction of employed methodology DE and Section 4 
comprises computational results along with the 
discussion of  results and Section 5 concludes the paper.  
 
2. Mathematical Formulation Of Multi-

Pass Turning Operation  
 

In the present study paper we have considered the 
machining model proposed by [9] for multi-pass turning 
operations which involve multiple rough cuts and a single 
finish cut. The optimization criteria considered here is the 
minimization of total unit production cost. The machining 
parameters to be determined are cutting speed, feed rate 
depth of cut and number of rough cuts under constrained 
machining environment. The model is described as 
below. 
 
2.1. The Cost Function 
 

The turning process is divided into multi-pass 
roughing and single-pass finishing. The components may 
be either a straight-cut type or of continuous forms. Here 
we have considered bar components. The unit production 
cost, UC, for multi-pass turning operations is divided in 
four basic cost elements and is given by: 
 
                 UC = CM+CI+CR+CT 
 
All of these components are described as below. 
 
1. Cutting cost by actual time in cut, CM, is given by: 
         
  CM = k0tm  
 
Where, tm is the actual cutting time expressed as the sum 
of the times for roughing and finishing cutting phases: 
 
   tm = tmr+ tms 
 
where, 
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here number of passes(n) is given by: 
 








 −
=

r

st

d
dd

n  

 
2. Machine idle cost due to loading and unloading 
operations and idling tool motion,  CI, is given by: 
 
                         CI = k0ti 
 
Where, ti is machine idle time, and can be expressed as 
the sum of idle tool motion (tv) and time due to loading 
and unloading operations which is a constant term (tc). 
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3. Tool replacement Cost, CR, is given by: 
 
             CR = k0te (tm/Tp ) 
 
Where, te is the time required to exchange a tool and Tp 
is the tool life. Usually tool life (T) is determined using 
Taylor’s tool life equation; 
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But due to different machining conditions for wear rate 
changes for roughing and finishing 
phases. In such cases the tool life can be  
expressed as              
 
                        Tp = Tr+Ts 
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4. The Tool Cost, CT is given by: 
 
          CT = kt(tm/Tp ) 
 
Where, kt is cutting edge cost. 
 
2.2. Constraints on Cutting Conditions 
 

In the considered model, several constraints are 
imposed during roughing and finishing operations on 
machining environment. The detailed description of these 
constraints for both roughing and finishing operations are 
given below. 
 
Rough Machining:  
 
1. Parameter bounds: The available range of cutting 
speed, feed rate and depth of cut are expressed in terms of 
lower and upper bounds respectively as below:     
 

rUrL VV ≤≤ V  ,  rUrL fff ≤≤  , rUrL dd ≤≤ d  
  
Tool-life constraint: The constraint on tool life is 
expressed as 
 
  UL TT ≤≤ rT  
 
Operating constraints: The constraints on machine 
operating conditions are as: 
 
(i) Cutting force constraint: Cutting force constraint is 
taken as 
 
 urrr FdfkF ≤= νµ )()(1  
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(ii) Power constraint: The power required during the 
cutting operation should not exceed the available power 
of the machine tool. The power is given as 
 
  

U
rr

r PVFP ≤=
η6120

, 

 
Where, efficiency η  = 0.085 
 
(iii) Stable cutting region constraint: Stable cutting region 
is given by 
 
  SCdVf rrr ≥νλ )()(  
 
(iv) Chip-tool interface temperature constraint: This 
constraint is expressed as 
 
      urrrr QdfVkQ ≤= δφτ )()()(2  
 
Finish Machining: 
 
For finish machining operation, all the constraints other 
than the surface finish constraint are similar as for rough 
machining. Therefore all finishing constraints are as 
 
(1) Bounds on finishing parameters are  
 

sUsL VV ≤≤ V   ;  sUsL fff ≤≤ ; sUsL dd ≤≤ d  
(2) UL TT ≤≤ sT  

(3)  usss FdfkF ≤= νµ )()(1  

(4)   
U
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(5)  SCdVf sss ≥νλ )()(  

(6)   ussss QdfVkQ ≤= δφτ )()()(2  
 
In addition with these constraints imposed on finish 
machining, the constraint related to surface finish is given 
by 
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The functional relationships between roughing and 
finishing parameters are as 
 
             r3VkVs ≥ ,  sr fkf 4≥ , sdk5rd ≥  
 
Finally the bound on number of finish cuts 
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All the notations used in modelling objective function 
and constraints are given below. 

 
3. Optimization Methodology: Differential   

 Evolution 
 

Differential Evolution (DE) belongs to the 
category evolutionary algorithms and developed by 
Storn and Price in 1995 [13].  The algorithm shares 
many similarities with other Evolutionary Algorithms 
(EA) on the basis of genetic operators for generating 
and refining solutions at every iteration. However, 
the order of operators in DE differs from other 
evolutionary algorithms quite significantly on the 
working of these operators, particularly the mutation 
operator. These operators are defined in the following 
subsections. 

 
3.1. Mutation 

 
The mutation operator in DE produces a trial 

vector corresponding to each individual of the current 
population by mutating a target vector with a 
weighted differential. This trial vector is then used by 
crossover operator to produce offspring. The trial 
vector ui(t), corresponding to the target vector Xi(t), 
is generated, as follows; 

Select a target vector
1i

X , from the population, 
such that i≠i 1 . Then, randomly select two individuals, 

2i
X  and 

3i
X from the population such that  i ≠ i 1 ≠ i2 

≠ i3  and i 2 ,i3 ~U(1, n s). Using these individuals, the 
trial vector is calculated by perturbing the target 
vector as follows: 
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Where β ∈ (0, 1+) is the scale factor which controls 
the amplification of the differential variation, 

))()((
32

tXtX ii − . The smaller value of β leads to 

smaller step sizes that increases the computational 
time of algorithm, on the other hand the larger value 
of β provides faster convergence but may result in 
premature convergence. Therefore an appropriate 
value of β should be chosen to maintain exploration-
exploitation trade off.  

 
3.2. Crossover  

 
The Crossover operator, combines the trial vector 

u i(t) and the parent vector  Xi(t), to produce 
offspring, using the following rule 
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Where, randb(j) ∈[0,1] is the jth evaluation of 

random number generator, rnbr(i) is a randomly 
chosen index ∈  {1,2,……d}, which ensures that  
offspring, X’ i(t)  has at least one component from 
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trial vector u i(t). CR is the crossover constant to be 
determined by the user. 

 
3.3. Selection 

 
Selection operator decides which individual should 

be forwarded to next generation, the offspring X’ i(t)  
is compared to the target vector Xi(t) using the 
greedy criterion. If the vector X’ i(t) has better fitness 
value than target vector Xi(t), it will replace the 
target vector in next generation, otherwise the target 
vector retains its place for at least one more 
generation. By comparing each offspring with its 
target vector from which it inherits parameters, DE 
strongly integrates recombination and selection in 
comparison to other EAs: 
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Once the new population is installed, the process 
of mutation, recombination and selection is repeated 
until the optimum is located, or a pre specified 
termination criterion is satisfied. 

 
4. Experimental Results and Discussion 
 

Here in this study, the machining data for bar 
components which was provided by [9] is adopted for 
experimental evaluation of turning model. The data is 
shown in Table 4. The parameters used in DE are as: the 
initial population size is fixed to 20; number of 
simulations is taken as 50 with maximum number of 
generations set to 500 during each simulation. Table 1 
show the optimal unit production cost with non 
dimensional constraint violation using DE and other 
algorithms as quoted in previous study [5]. The 
parameters that are to be determined for optimizing the 
machining conditions are feed rate, depth of cut, cutting 
speed and number of passes for roughing and finishing. 
Table 2 depicts the optimal value of these parameters 
using DE and other algorithms as recorded in literature. 

 
Table 1. Optimal total unit cost and constraints at the optimum point 

Method Optimum unit cost($) Non-dimensional  
constraint violation 

DE 1.962581           0 
PSO  2.2721           0 
ACO 1.8450       0.5396 
GA 1.7842       0.5148 
SA/PS 2.3135       0.0667 

 
Table 2. Optimal cutting parameters using different methods 

Method DE PSO ACO GA 
Vr 122.81120 106.69 103.05 114.22 
fr 0.576182 0.897 0.9 0.7 
dr 2.95612 2 3 2.9745 
Vs 169.24555 155.89 162.02 164.369 
fs 0.23047 0.28 0.24 0.2978 
ds 2.956125 2 3 2.963 

 
Table 3.  Number of rough passes and optimal unit cost for different values of total depth of cut(dt) for dsL =drL = 1 

mm 
 
Total depth  
of cut(dt)  
 

 
Maximum depth of cut  
( mm) for 
 dsU = drU 

 
Bounds  
on n 

    
dopt 
       

 
Unit cost in $ 

PSO DE PSO DE 

      6     3  1 ≤ n ≤ 5 2  2.99 2.272 1.9626 
      8     4  2 ≤ n ≤ 7 3  2.66 3.306 2.438 
     10     5  2 ≤ n ≤ 9 3  3.32 3.853 2.754 
     12     3 3 ≤ n ≤ 11 5  2.99 3.846 3.237 

 
Table 4. Numerical data for cutting model 

Parameter       Value            Parameter     Value 
VrU                  500 m/min           dt                 6 mm               
 VrL                 50 m/min              p                  5                        
 VsU                 500 m/min           q                  1.75                   
TL                   25 mm                   k2              132    
VsL                 50 m/min                r                0.75                   
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TU                           45 mm                     k3              1    
frL                   0.1 mm/rev            u                0.75                   
 tc                    0.75 min/piece       k4              2.5    
frU                   0.9 mm/rev            ν                0.95                   
 te                   1.5 min/edge           k5              1          
frL                   0.1 mm/rev           η                   0.85                   
 PU                 5 kW                       kt             2.5 $/edge    
frU                  0.9 mm/rev            λ                    2                       
 FU                 200 kgf                    D              50 mm   
drL                  1 mm                      υ                     -1                      
drU                  3 mm                     τ                   0.4      
dsL                  1 mm                     φ                    0.2                                  
QU                 1,0000C                   L              300 mm       
SRU               10 µm                      R              1.2 mm             
h2                   0.3                           k1             108      
h1                  7×10-4                      k0            0.5 $/min                                         
SC                 140                         dsU                 3 mm             
δ                    0.105                      C0                6×1011          
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Figure1.   Generation wise convergence graph of optimal unit cost using DE for dt =  6.0 mm 
 
 

Table 3 presents the optimal value of unit production 
cost using DE and along with cutting parameters for 
different values of total depth of cut. The average 
computational time taken by DE over 50 runs is 0.2665 
Sec. Table 1 shows that optimal unit production using DE 
is much  
better then PSO and Simulated annealing (SA/PS) and 
also encouraging over other algorithms on feasibility 
basis. It is observed from Table 3 that the corresponding 
values of unit production cost obtained using DE are 
improved significantly over PSO for all considered 
values of depth of cut. The convergence of total unit cost 
over max number of generations using DE is shown in 
Fig.1, which illustrates the algorithm, converges up to 
200 generations. Thus, the proposed method successfully 
obtained the desired optimal conditions within fewer 
computations. 

 
5. Conclusion  
 
In this study, the problem of parameter optimization in 
constrained machining environment is addressed and 
solved using Differential Evolution, a potential candidate 

of non-traditional global optimizers. The mathematical 
simulation turns out as a complex and highly constrained 
machining model where the aim is to minimize the total 
production cost. The machining parameters as feed rate, 
cutting speed and depth of cut during roughing and 
finishing passes are the main process parameters whose 
optimal values affect the machining process to greater 
extent. The results obtained using DE are compared with 
PSO, Binary GA, ACO and SA as reported in literature. 
The observation of optimal results show that the proposed 
methods (DE) provides promising results on quality and 
feasibility basis as compared to other existing algorithms. 
The proposed algorithm finds significantly better optimal 
solution with less computational efforts. Thus, DE can be 
recommended as a reliable and efficient method for 
solving such complex machining problems and those 
with higher degree of complexity. 
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