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Abstract –Local fractional calculus (LFC) deals with everywhere continuous but nowhere differentiable functions in fractal space.
In this letter we point out local fractional Fourier analysis in generalized Hilbert space. We first investigate the local fractional
calculus and complex number of fractional-order based on the complex Mittag-Leffler function in fractal space. Then we study the
local fractional Fourier analysis from the theory of local fractional functional analysis point of view. We finally propose the
fractional-order trigonometric and complex Mittag-Leffler functions expressions of local fractional Fourier series.
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1. Introduction

Local fractional calculus (fractal calculus), which was
dealing with fractal functions, had been proposed and
developed in[1-12]. Local fractional calculus was
successfully applied in the fractal elasticity [2, 6], the
fractal release equation [15], the fractal wave equation
[21], the fractal signal [17], the Yang-Laplace transforms
[20-22], the Yang-Fourier transforms [16, 17], the
discrete Fourier transform[18], the local fractional short
time transform [11,12] and the local fractional wavelet
transform[11,12].

In this letter, our aim is to research the local fractional
Fourier analysis from the theory of local fractional
functional analysis point of view. The organization of this
paper is as follows. In section 2, the preliminary results
are presented. The complex number of fractional-order is
investigated in section 3. Generalization of local
fractional Fourier series in generalized Hilbert space is
studied in section 4. Applications to local fractional
Fourier series are shown in section 5.

2. Preliminaries

2.1 Local fractional continuity

Definition 1 If there exists [11, 12, 16, 21]

   0f x f x   (2.1)

with 0x x   ,for , 0   and ,   ,

now  f x is called local fractional continuous at 0x x ,

denote by    
0

0lim
x x

f x f x


 . Then  f x is called

local fractional continuous on the interval  ,a b ,

denoted by

   ,f x C a b . (2.2)

Definition 2 A function  f x is called a non-

differentiable function of exponent , 0 1  , which
satisfies Hölder function of exponent  , then
for ,x y X such that [11,12]

   f x f y C x y   
. (2.3)

Definition 3 A function  f x is called to be continuous

of order , 0 1  , or shortly continuous, when we
have that [11,12]

      0 0f x f x o x x   
. (2.4)

Remark 1. Compared with (2.4), (2.1) is standard
definition of local fractional continuity. Here (2.3) is
unified local fractional continuity.

2.2 Local fractional calculus

Definition 4 Let    ,f x C a b . Local fractional

derivative of  f x of order at 0x x is defined as

[11,12,16,21]

          
 0

0

0
0

0

limx x x x

f x f xd f x
f x

dx x x




  

 
 


, (2.5)

where            0 01f x f x f x f x       .

For any  ,x a b , there exists

       xf x D f x  ,

denoted by

     ,xf x D a b .



Xiao-Jun Yang, AMEA, Vol. 1, No. 1, pp. 12-16, March 2012 13

Definition 5 Let    ,f x C a b . Local fractional

integral of  f x of order in the interval  ,a b is given

[11-14, 16, 19, 2 1]
   

    

    
1

0
0

1
1

1
lim

1

a b

b

a

j N

j jt
j

I f x

f t dt

f t t











 

 



 

 
 





, (2.6)

where 1j j jt t t   ,  1 2max , , ,...jt t t t     and

1,j jt t   
, 0,..., 1j N  , 0 , Nt a t b  , is a partition of

the interval  ,a b . For convenience, we assume that

    0a aI f x  if a b and

       a b b aI f x I f x  if a b .

For any  ,x a b , we get

   a xI f x
, (2.7)

denoted by

     ,xf x I a b .

Remark 2. If      , ,xf x D a b or    ,xI a b
, we

have that

   ,f x C a b . (2.8)

Remark 3. The following relations hold

         1
1

b

a
E x dx E b E a  
  

 
   ;

(2.9)

   1
sin sin sin

1

b

a
x dx a b  

  
 

   ; (2.10)

   1
cos sin sin

1

b

a
x dx b a  

  
 

   ; (2.11)

     
  

    1 111
1 1 1

b k kk

a

k
x dx b a

k
   

 
  

 
     ; (2.12)

3. Complex number of fractional-order

Definition 6 Fractional-order complex number is defined
by [11, 12]

,I x i y     , ,x y 0 1  , (3.1)
where its conjugate of complex number shows that

I x i y     , (3.2)

, and where the fractional modulus is derived as
2 2I I I I I x y          . (3.3)

Definition 7 Complex Mittag-Leffler function in fractal
space is defined by [11, 12]

   0

:
1

k

k

z
E z

k




 






  , (3.4)

for z C (complex number set) and 0 1  .
The following rules hold:

      1 2 1 2E z E z E z z  
    ; (3.5)

      1 2 1 2E z E z E z z  
     ; (3.6)

      1 2 1 2E i z E i z E i z z
      

    . (3.7)

When z i x   , the complex Mittag-Leffler function
is [11, 12]

  cos sinE i x x i x    
    (3.8)

with

   
2

0

cos : 1
1 2

k
k

k

x
x

k




 





 
 

and

   
(2 1)

0

sin : 1
1 2 1

k
k

k

x
x

k




 





 
    

 ,

for x and 0 1  , we have that

      E i x E i y E i x y     
    (3.9)

and

      E i x E i y E i x y     
     . (3.10)

4. Generalization of local fractional Fourier
series in generalized Hilbert space

4.1 Generalized inner product space

Definition 8 LetV be a complex or real vector space. A
generalized inner product on a vector space V is a

function ,x y 


on pairs  ,x y  of vectors in

V V taking values satisfying the following properties
[11, 12]:

(1) , 0x x 


 for all x V  and

, 0x x 


 only if 0x  .

(2) , ,x y y x   

 
 for all ,x y V   .

(3) For all , ,x y z V    and scalars ,a b ,

, , ,a x b y z a x z b y z          

  
   . (4.1)

A generalized inner product space is a generalized
vector space with an inner product. Given a generalized
inner product space, the following definition provides a
norm:

1
2

2

1

, k
k

x x x x   

 





   . (4.2)
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Now we can define a scalar (or dot) product of two

T –periodic functions  f t and  g t as

     
0

,
T

f g f t g t dt 


  . (4.3)

For more materials, we see [11, 12].

4.2 Generalized Hilbert space

Definition 9 A generalized Hilbert space is a complete
generalized inner-product space [11, 12]. Suppose

 ne is an orthonormal system in an inner product

space X .The following are equivalent [11, 12]:

(1)  1 ,..., nspan e e X   , ie. ne  is a basis;

(2) (Pythagorean theorem in fractal space) The
equation

2 2

1
k

k

a f






 (4.4)

for all f X , where ,k ka f e 


 ;

(3) (Generalized Pythagorean theorem in fractal
space)

Generalized equation

1

,
n

k k
k

f g a b 



 (4.5)

for all ,f g X , where

,k na f e 


 and ,k kb g e 


 ;

(4)
1

n

k k
k

f a e 



 with sum convergent in X for all

f X .
For more details, see [11,12].

Here we can take any sequence of T -periodic fractal
functions k , 0,1,...k  that are
(1) Orthogonal:

     
0

, 0
T

k j k jt t dt 


     if k j ; (4.6)

(2) Normalized:

   2

0
, 1

T

k k k t dt 


    ; (4.7)

(3) Complete: If a function  x t is such that

    
0

, 0
T

k kx x t t dt 


   (4.8)

for all i , then   0x t  .

4.3 Generalization of local fractional Fourier
series in generalized Hilbert space

4.3.1 Generalization of local fractional Fourier series
in generalized Hilbert space

Definition 10 Let    1k k
t




be a complete,

orthonormal set of functions. Then any T -periodic

fractal signal  f t can be uniquely represented as an

infinite series

   
0

k k
k

f t t 




 (4.9)

This is called the local fractional Fourier series

representation of  f t in the generalized Hilbert space.

The scalars i are called the local fractional Fourier

coefficients of  f t .

4.3.2 Local fractional Fourier coefficients

To derive the formula for k , write

       
0

k j j k
i

f t t t t   




 , (4.10)

and integrate over one period by using the generalized
Pythagorean theorem in fractal space

     

    

       

0

0
0

0
0

0

,

,

k

T

k

T

j j k
j

T

j j k
j

j j k
j

k

f

f t t dt

t t dt

t t dt















  

  

  





























 



(4.11)

Because the functions  k t form a complete

orthonormal system, the partial sums of the local
fractional Fourier series

   
0

k k
k

f t t 




 (4.12)

converge to  f t in the following sense:

           
0

1 1

1
lim 0

1

T

k k k kN
k k

f t t f t t dt  


 


 

              
 

(4.13)
Therefore, we can use the partial sums

   
1

N

N k k
k

f t t 


 (4.14)

to approximate  f t . Meanwhile, we have that

  2 2

0
1

T

k
k

f t dt  




 . (4.15)
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5. Applications of local fractional Fourier
series

The sequence of T -periodic functions in fractal

space    0k k
t




defined by  

2

0

1
t

T



    
 

and

 
 

 

2

0

2

0

2
sin , 1

2
cos , 1

k

k t if k is odd
T

t

k t if k is even
T



  




  








    
   
 

(5.1)

are complete and orthonormal, where 0

2
T


  .

A more common way of writing down the local

fractional trigonometric Fourier series of  f t is given

[12, 13]

     0 0 0
1 1

sin cosk k
i i

f t a a k t b k t     
  

 

 

   
(5.2)

Then the local fractional Fourier coefficients can be
computed by

  

    

     

0 0

00

00

1
,

2
sin ,

2
cos .

T

T

k

T

k

a f t dt
T

a f t k t dt
T

b f t k t dt
T






  




  











    

 
       







(5.3)

This result is equivalent to the formulation [11, 12, 16,
17, 21].

Another useful complete orthonormal set is furnished
by the Mittag-Leffler functions:

   0

1
, 0, 1, 2,...k t E i k t k

T
   

     (5.4)

where 0

2
T


  .

Hence, we get the Mittag-Leffler functions expression
of local fractional Fourier series [22]

   
k

k

i kx
f x C E

l

 

 





 
  

 
 

 , (5.5)

where the local fractional Fourier coefficients is

 
     1

2

l

k l

i kx
C f x E dx

ll

 


 




 
  

 
 

 with

k  . (5.6)
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