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Abstract –Local fractional Fourier analysis is a generalized Fourier analysis in fractal space. The local fractional
calculus is one of useful tools to process the local fractional continuously non-differentiable functions (fractal
functions). Based on the local fractional derivative and integration, the present work is devoted to the theory and
applications of local fractional Fourier analysis in generalized Hilbert space. We investigate the local fractional Fourier
series, the Yang-Fourier transform, the generalized Yang-Fourier transform, the discrete Yang-Fourier transform and
fast Yang-Fourier transform.
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1. Introduction

Fourier analysis [1-6] is a mathematical method
applied to transform a periodic function with many
applications in physics and engineering. It had been used
to a wider variety of field in the sciences and in
engineering, image and signal processing, containing
electrical engineering, quantum mechanics, neurology,
optics, acoustics, and oceanography, and so on, and after
improved and expanded upon it, its general field was
come to be known as the field of harmonic analysis [7, 8].

In mathematics, in the area of harmonic analysis, the
fractional Fourier transform (FRFT) [9] is a linear
transformation generalizing the Fourier transform. The
FRFT [10-18] can be used to define fractional
convolution, correlation, and other operations, and can
also be further generalized into the linear canonical
transformation (LCT).

However, the above referred results can’t process the
non-differentiable time-frequency functions on a fractal
set (also local fractional continuous functions). The
theory of local fractional calculus (also called fractal
calculus [19-33]) is one of useful tools to handle the
fractal and continuously non-differentiable functions, and
was successfully applied in describing physical
phenomena [34-43]. Local fractional Fourier analysis [44,
45] derived from the local fractional calculus, which is a
generalization of the Fourier analysis in fractal space, has
played an important role in handling non-differentiable
functions.

The aim of this paper is investigated the theory and
applications of the local fractional Fourier analysis. The
organization of this paper is as follows. In section 2, the
preliminary results for the local fractional calculus are
investigated. The theory of local fractional Fourier series
is presented in section 3. Section 4 is devoted to theory of
the Yang-Fourier transform. Theory of the generalized
Yang-Fourier transform is considered in section 5. The
discrete Yang-Fourier transform is studied in section 6.
The Fast Yang-Fourier transform is considered in section
7. The conclusion is in section 8.

2. Preliminary results

2.1. Local fractional continuity of functions

Definition 1 [30-35]
If there is

   0f x f x   (2.1)

with 0x x   ,for , 0   and ,   . Now

 f x is called local fractional continuous at 0x x ,

denote by    
0

0lim
x x

f x f x


 .Then  f x is called

local fractional continuous on the interval  ,a b ,

denoted by [30-35]

   ,f x C a b . (2.2)

Lemma 1 [33-36]
Let F be a subset of the real line and be a fractal. If

   ' ': , ,f F d d  is a bi-Lipschitz mapping, then

there is for constants , 0   and F   ,

      s s s s sH F H f F H F   (2.3)

such that for all 1 2,x x F ,

   1 2 1 2 1 2x x f x f x x x        .

(2.4)
As a direct result in the condition of Lemma 1, we have

   1 2 1 2f x f x x x    (2.5)

such that

   1 2f x f x  
.

(2.6)

Notice that  is fractal dimension. This result is directly
deduced from fractal geometry.

2.2. Local fractional derivative and integration
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Definition 2 [30-35]

Setting    ,f x C a b , local fractional derivative of

 f x of order  at 0x x is defined by

          
 0

0

0
0

0

limx x x x

f x f xd f x
f x

dx x x




  

 
 


, (2.7)

where            0 01f x f x f x f x       .

For any  ,x a b , there exists [20-24, 48-50 ]

       xf x D f x  , (2.8)

denoted by

     ,xf x D a b . (2.9)

Definition 3 [30-35]

Setting    ,f x C a b , local fractional integral of

 f x of order in the interval  ,a b is defined
   

     

    
1

0
0

1
1

1
lim

1

a b

b

a

j N

j jt
j

I f x

f t dt

f t t











 

 



 

 
 





, (2.10)

where
1j j jt t t   ,  1 2max , , ,...jt t t t     and

1,j jt t   
, 0,..., 1j N  , 0t a , Nt b , is a partition of

the interval  ,a b . For any  ,x a b , there exists [30-

35]
   a xI f x

, (2.11)

denoted by

     ,xf x I a b . (2.12)

Here, it follows that [30-35]
    0a aI f x  if a b ; (2.13)

       a b b aI f x I f x  if a b ; (2.14)

and
     0

a aI f x f x . (2.15)

We notice that we have [30-35]

   ,f x C a b . (2.16)

if

     , ,xf x D a b or    ,xI a b
.

For their fractal geometrical explanation of local
fractional derivative and integration, we see [30-35].

2.3. Complex number of fractional-order

Definition 4
Fractional-order complex number is defined by [30, 31,
38]

,I x i y     , ,x y 0 1  , (2.17)

where its conjugate of complex number shows that

I x i y     , (2.18)

, and where the fractional modulus is derived as
2 2I I I I I x y          . (2.19)

Definition 5
Complex Mittag-Leffler function in fractal space is
defined by [30, 31, 38]

   0

:
1

k

k

z
E z

k




 






  , (2.20)

for z C (complex number set) and 0 1  .
The following rules hold [30, 31, 38]:

      1 2 1 2E z E z E z z  
    ; (2.21)

      1 2 1 2E z E z E z z  
     ; (2.22)

      1 2 1 2E i z E i z E i z z
      

    . (2.23)

When z i x   , the complex Mittag-Leffler function
is [30, 31, 38]

  cos sinE i x x i x    
    (2.24)

with

   
2

0

cos 1
1 2

k
k

k

x
x

k




 





 
 

and

   
(2 1)

0

sin 1
1 2 1

k
k

k

x
x

k




 





 
    

 ,

for x and 0 1  , we have that [30, 31, 38]

      E i x E i y E i x y     
    (2.25)

and

      E i x E i y E i x y     
     . (2.26)

2.4. Generalized Hilbert space

Definition 6[30, 31, 38, 43, 44]
A generalized Hilbert space is a complete generalized
inner-product space.

Definition 7[30, 31, 38, 43, 44]
A scalar (or dot) product of two T –periodic functions

 f t and  g t is defined by

    
0

,
T

f g f t g t dt 


  . (2.27)

Suppose ne is an orthonormal system in an inner

product space X . The following results are equivalent
[30, 31, 38, 43, 44]:

(1)  1 ,..., nspan e e X   , ie. ne  is a basis;

(2) (Pythagorean theorem in fractal space)
The equation
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2 2

1
k

k

a f






 (2.28)

for all f X , where ,k ka f e 


 ;

(3) (Generalized Pythagorean theorem in fractal
space)

Generalized equation

1

,
n

k k
k

f g a b 



 (2.29)

for all ,f g X , where

,k na f e 


 and ,k kb g e 


 ;

(4)
1

n

k k
k

f a e 



 with sum convergent in X for all

f X .
For more details, we see [30, 31, 38, 43, 44].

Here we can take any sequence of T -periodic local
fractional continuous functions k , 0,1,...k  that are
[43, 44]
(1) Orthogonal:

    
0

, 0
T

k j k jt t dt 


     if k j ; (2.30)

(2) Normalized:

   2

0
, 1

T

k k k t dt 


    ; (2.31)

(3) Complete: If a function  x t is such that

     
0

, 0
T

k kx x t t dt 


   (2.32)

for all i , then   0x t  .

2.5. Local fractional Fourier series in generalized
Hilbert space

2.5.1. Local fractional Fourier series in generalized
Hilbert space

Definition 8 [43, 44]

Let    1k k
t




be a complete, orthonormal set of

functions. Then any T -periodic fractal signal  f t can

be uniquely represented as an infinite series

   
0

k k
k

f t t 




 (2.33)

This is called the local fractional Fourier series

representation of  f t in the generalized Hilbert space.

The scalars i are called the local fractional Fourier

coefficients of  f t .

2.5.2. Local fractional Fourier coefficients

To derive the formula for k , write [43, 44]

       
0

k j j k
i

f t t t t   




 , (2.34)

and integrate over one period by using the generalized
Pythagorean theorem in fractal space [43, 44]

     

    

       

0

0
0

0
0

0

,

,

k

T

k

T

j j k
j

T

j j k
j

j j k
j

k

f

f t t dt

t t dt

t t dt















  

  

  





























 



(2.35)

Because the functions  k t form a complete

orthonormal system, the partial sums of the local
fractional Fourier series

   
0

k k
k

f t t 




 (2.36)

converge to  f t in the following sense:

           
0

1 1

1
lim

1

0

T

k k k kN
k k

f t t f t t dt    


 


 

   
          



 

(2.37)
Therefore, we can use the partial sums

   
1

N

N k k
k

f t t 


 (2.38)

to approximate  f t .

Hence, we have that

  2 2

0
1

T

k
k

f t dt  




 . (2.39)

The sequence of T -periodic functions in fractal

space    0k k
t




defined by

 
2

0

1
t

T



    
 

and

 
 

 

2

0

2

0

2
sin , 1

2
cos , 1

k

k t if k is odd
T

t

k t if k is even
T



  




  








    
   
 

(2.40)

are complete and orthonormal, where 0

2
T
  .

Another useful complete orthonormal set is furnished
by the Mittag-Leffler functions:
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   2

0

1
, 0, 1, 2,...k t E i k t k

T



   
      

 
(2.41)

where 0

2
T
  .

3. Local Fractional Fourier Series

3.1. Notations

Definition 9[30, 31, 38, 43, 44]

Local fractional trigonometric Fourier series of  f t is

given by

     0 0 0
1 1

sin cosk k
i i

f t a a k t b k t     
  

 

 

    (3.1

)
Then the local fractional Fourier coefficients can be
computed by

   

    

    

0 0

00

00

1
,

2
sin ,

2
cos .

T

T

k

T

k

a f t dt
T

a f t k t dt
T

b f t k t dt
T






  




  











    

 
       







(3.2)

When 0 1  , we get the short form

     0
1 1

sin cosk k
i i

f t a a k t b k t   
 

 

 

   
Then the local fractional Fourier coefficients can be
computed by

  

    

     

0 0

0

0

1
,

2
sin ,

2
cos .

T

T

k

T

k

a f t dt
T

a f t k t dt
T

b f t k t dt
T






 




 







    

 
       






The Mittag-Leffler functions expression of local
fractional Fourier series is given by [30, 31, 38, 43, 44]

   
k

k

i kx
f x C E

l

 

 





 
  

 
 

 ,

(3.3)
where the local fractional Fourier coefficients is

 
     1

2

l

k l

i kx
C f x E dx

ll

 


 




 
  

 
 

 with

k  . (3.4)

For local fractional Fourier series (3.4), the weights of
the Mittag-Leffler functions are written in the form [43,
44]

 
     

 
     

0

0

0

0

1
2

1
2

l t

l t

k
l t

l t

i kx
f x E dx

ll
C

i kx i kx
E E dx

l ll

 


 

    


   



 



 



 

 
  
 

    
      
   




.

(3.5)
Above is generalized to calculate local fractional

Fourier series.

3.2. Properties of local fractional Fourier series

We have the following results [30, 31]:

Property 2 (Linearity)
Suppose that local fractional Fourier coefficients of

 f x and  g x are nf and ng respectively, then we

has for two constants a and b
    n naf x bg x af bgf   . (3.6)

Property 3(Conjugation)

Suppose that nC is Fourier coefficients of  f x . Then

we have

  nf x C . (3.7)

Property 4 (Shift in time)

Suppose that nC is Fourier coefficients of  f x . Then

we have

    0 nf x x E i nx C
   . (3.8)

Property 5 (Time reversal)

Suppose that nC is Fourier coefficients of  f x . Then

we have

  nf x C  . (3.9)

3.3. The basic theorems of local fractional
Fourier series

We have the following results [30, 31]:

Theorem 6 (Local fractional Bessel inequality)

Suppose that  f t is 2 -periodic, bounded and local

fractional integral on  ,  . If both na and nb are

Fourier coefficients of  f t , then there exists the

inequality

     
2

2 2 20

1

1
2

n

k k
k

a
a b f t dt

 

  


    . (3.10)
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Theorem 7 (Local fractional Riemann -Lebesgue
theorem)

Suppose that  f x is 2 -periodic, bounded and local

fractional integral on ,  . Then we have

 
     1

lim sin 0
2n

f t nt dt
  

  
 (3.11)

and

 
     1

lim cos 0
2n

f t nt dt
  

  
 . (3.12)

Theorem 8

Suppose that  f t is 2 -periodic, bounded and local

fractional integral on  ,  . Then we have

 
   

0

1 2 1
lim sin 0

22n

n
f t t dt


 



   
  , (3.13)

 
   

0

1 2 1
lim cos 0

22n

n
f t t dt


 



   
  , (3.14)

 
   

01 2 1
lim sin 0

22n

n
f t t dt




  

   
  (3.15)

and

 
   

01 2 1
lim cos 0

22n

n
f t t dt




  

   
  . (3.16)

Theorem 9
Suppose that

      0
,

1

cos sin
2

n

n n n
n

a
T x a nx b nx 

  


  ,

then we have that

       , , ,

1
n n nT x T x t D t dt

 
    

  , (3.17)

where

 

 

 

,

1

1
cos

2

2 1
sin

2

sin
2

n

n

k

D t

nx

n x

x
















 

 
 
 

 
 
 

 . (3.18)

Theorem 10

Suppose that  f t is 2 -periodic, bounded and local

fractional integral on ,  . If

      0

1

cos sin
2 k k

k

a
f t a kt b kt 

 





  ,

we have

    
2

2 2 20

0

1
2 k k

k

a
f t dt a b

 

 






   . (3.19)

Theorem 11(Convergence theorem for local fractional
Fourier series)

Suppose that  f t is 2 -periodic, bounded and local

fractional integral on ,  . The local fractional series

of  f t converges to  f t at  ,t    , and

    
   

0

1

cos sin
2

0 0
2

k k
k

a
a kt b kt

f t f t

 
 





 

  



(3.20)

where

   0

1
a f x dt

 

  
  , (3.21)

     1
cosna f x nx dt

  
  

  (3.22)

and

     1
sinnb f x nx dt

  
  

  . (3.23)

3.4. Applications of local fractional Fourier series

3.4.1. Applications of local fractional Fourier series to
fractal signal

Expand fractal signal    X t t t      in local

fractional Fourier series.
Now we find the local fractional Fourier coefficients

   

 

 
 

0

2 2

1

1

1
1 2

0

a

X t dt

t dt

t

 

 

 
 









 









 


 






, (3.24)
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2

1
cos

1
cos

1 sin 1
sin

1 sin 1 cos

0

na

X t nt dt

t nt dt

t nt
nt dt

n n

t nt nt
n n

  
 

  
 


  

    

 
 

   





 

  
  











 
 



   
 

 









(3.25)
and

     

       

       

  

2

1

1
sin

1 cos 1
cos

1 cos 1 sin

2 1 1
.

n

n

b

X t nt dt

t nt
nt dt

n n

t nt nt
n n

n

  
 


  

    

 
 

   

 




 

  
  












  
   

  
    

   
   

  






(3.26)
Therefore, for t    we have local fractional
Fourier series representation of fractal signal

       
1

1

2 1 1
sin

n

n

X t nt
n


 








   
  

 
 

 . (3.27)

3.4.2. Applications of local fractional Fourier series to
local fractional partial differential equation

Local fractional partial differential equation is
written in the form

2
2

2

u u
k

t x

 


 

 


 
(3.28)

with boundary conditions

 0,
0,

u t
x









 ,

0,
u L t

x









and

   ,0 .u x f x (3.29)

Letting u XT in (2.1) and separating the
variables, we find that

   2 2TX k XT  . (3.30)

Setting each side equal to the constant 2 , we
find

 2 2 0X X   (3.31)
and

  2 0T T   . (3.32)

So that

   cos sinX a x b x   
    (3.33)

and

 2 2T cE k t  
   . (3.34)

A solution is thus given by

 
      2 2

,

cos sin

u x t

E k t A x B x      
      

(3.35)

where ,A ac B bc  .

From
 0,

0,
u t

x









we have 0B  so that

     2 2, cosu x t AE k t x    
    . (3.36)

Then from
 ,

0,
u L t

x









we get

 sin 0x 
   . (3.37)

Thus

 
     22 2

,

/ cos / ,

u x t

AE k t m L m x L   
    

0,1, 2,3,...m  . (3.38)

To satisfy the condition,    ,0u x f x , we

obtain

 

     22 20

1

,

/ cos /
2 m

m

u x t

A
A E k t m L m x L   

   




  
. (3.39)

Then from    ,0u x f x we see that

 

     22 20

1

,

/ cos /
2 m

m

u x t

A
A E k t m L m x L   

   




  
. (3.40)

Thus, from local fractional Fourier series we find

      
0

2
cos /

L

mA f x m x L dx
L

 
   

   (3.41)

and

    

      

     

0

0
1

22 2

1
,

2
cos /

/ cos /

L

L

m

u x t f x dx
L

f x m x L dx
L

E k t m L m x L





 


   
 



  







   
 





  (3.42)
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4. The Yang-Fourier Transform in Fractal
Space

4.1. Notations

Let us consider the formulas (3.3) and (3.4), and set

 
 
1

2
t

n nC C
l 

 
 . We have

 
 

 1

2
t

n
k

i nx
f x C E

ll

 

 





 
  

 
 

 ,

where its local fractional Fourier coefficients is

       1
1

lt
n l

i nx
C f x E dx

l

 


 


 

 
  

    
 .

If we define

n

n
k

l


    

 
,

then we have

   1n n nk k k
l


  


      
 

.

It is convenient to rewrite

 

 
  

 
  

1

2

1

2

k n n
k

k n n

f x

C E i x k k

C E i x k dk

  


  














 







(4.1)

as l  and

      1
1k nC f x E i x k dx   






   . (4.2)

When nk   , from (4.1) and (4.2) this leads to the
following results

 
 

  1

2
kf x C E i x d   

  





  (4.3)

and

       1
1kC f x E i x dx   

 






   . (4.4)

When
 
 
2
1


 

 



 

, it follows from (4.1) and

(4.2) that

   
 
   21

1 1kf x C E i x d


  



 

 
  



 
  

     


(4.5)
and

     
   21

.
1 1kC f x E i x dx


  






 
 



 
  

     


(4.6)

Definition 10 (Yang-Fourier transform in fractal space)

Suppose that    ,f x C   , from (4.4) the

Yang-Fourier transform, dented by     ,FF f x f 
   ,

is written in the form [38-43]:

  
 

       

,

1
1

F

F f x

f

E i x f x dx






  













 
  

, (4.7)

where the latter converges.
Definition 11
If     ,FF f x f 

   , from (4.3) its inversion formula

is written in the form [38-43]

 
  

 
    

1 ,

,

:

1
, 0

2

F

F

f x

F f

E i x f d x


 

   
 



  










 

. (4.8)

4.2. The basic theorems of Yang-Fourier
transform

The following results are valid [38-43].

Theorem 12

Let     ,FF f x f 
   , then we have

    1 ,Ff x F f 
   . (4.9)

Theorem 13

Let     ,FF f x f 
   and     ,FF g x g 

   ,

and let ,a b be two constants. Then we have

          .F af x bg x aF f x bF g x    
(4.10)

Theorem 14

Let     ,FF f x f 
   . If  lim 0

x
f x


 , then

we have
       F f x i F f x  

  . (4.11)

As a direct result, repeating this process, when

          10 0 ... 0 0kf f f     
we have

       k k kF f x i F f x  
  . (4.12)

Theorem 15

Let     ,FF f x f 
   and    lim 0xx

I f x


 ,

then we have
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       1
xF I f x F f x

i


    . (4.13)

Theorem 16

If     ,FF f x f 
   , and 0a  , then we have

   ,1 FF f ax f
a a


 

   
 

. (4.14)

Theorem 17

If     ,FF f x f 
   , and c is a constant, then we

have

       F f x c E i c F f x  
     . (4.15)

Theorem 18

If     ,FF f x f 
   , and c is a constant, then we

have

      ,
0 0

FF f x E i x f   
       . (4.16)

Theorem 19

Let     ,
1 ,1

FF f x f 
   and     ,

2 ,2
FF f x f 

   ,

then we have

        , ,
1 2 ,1 ,2

F FF f x f x f f 
     . (4.17)

Theorem 20

Let     ,
1 ,1

FF f x f 
   ,     ,

2 ,2
FF f x f 

   and

let ,a b be two constants, then we have

    
     

1 , ,
,1 ,2

1 , 1 ,
,1 ,2 .

F F

F F

F af bf

aF f bF f

 
  

 
   

 

 



 



 
(4.18)

Theorem 21

Let     ,
1 ,1

FF f x f 
   and     ,

2 ,2
FF f x f 

   .

If  ,lim 0Ff 





 , then we have

      1 , .FF f i x f x
  

       (4.19)

Theorem 22

If     ,FF f x f 
   , and c is a constant, then for

0a  we have

  1 , 1F x
F f a f

a a


      
 

. (4.20)

Theorem 23

If     ,FF f x f 
   , and c is a constant, then we

have

      1 ,FF f c E i c x f x   
     . (4.21)

Theorem 24

If     ,FF f x f 
   , and c is a constant, then we

have

      1 , .FF f E i c f x c   
       (4.22)

Theorem 25

If     ,
1 ,1

FF f x f 
   and     ,

2 ,2
FF f x f 

  
, then we have

       1 , ,
,1 ,2 1 2

F FF f f f x f x 
        . (4.23)

Theorem 26

If  ,lim 0Ff 





 , then we have

      1 ,FF f i t f x  
     . (4.24)

Theorem 27

If     ,FF f x f 
   , then

     
 

   
22 ,1 1

1 2
Ff x dx f d 
  

 

 

 


   
.
(4.25)

Theorem 28

If     ,FF f x f 
   and     ,FF g x g 

   ,

then

      
 

    , ,1 1
1 2

F Ff x g x dx f g d  
    

 

 

 


    .

(4.26)

4.3. Applications of local fractional Fourier
transform

4.3.1. Application of local fractional Fourier
transform to local fractional ODE

For the local fractional ODE problem [30, 31]
       2y t y t E t 

   , 0 1  , (4.27)

Initial data

  0 0ty t   .

Taking local fractional Fourier transform we have

   , , 1
2

1
F Fi y y

i
   

     


 


.

Therefore, we have the following identity

 , 1 1
1 2

Fy
i i


    

 
 

 
.

The inverse local fractional Fourier transform gives

     2f x E t E t 
     .

Therefore, we obtain the relation

     2f x E t E t 
     .
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4.3.2. Application of local fractional Fourier
transform to fractal signal

Let a non-periodic signal  X t be defined by the relation

  0 0, ;

0, .

A t t t
X t

else

  
 


(4.28)

Taking the Yang-Fourier transforms, we have

 

       

    

 

,

0

0

1
1

1
1

.

F

t

t

X

X t E i x dx

AE i x dx

AE i x t

ti




  


  


  


 



















 
 

 
 










(4.29)
Taking into account

  cos sinE i x x i x    
     ,

we get

 , 0
0

2 sin
2 sinF

C

A t
X At t

 
   

 


 


  . (4.30)

where

0
0

0

sin
sin C

t
t

t

 
  

  





 .

5. The Generalized Yang-Fourier Transform
in Fractal Space

5.1. Notations

Definition12 (Generalized Yang-Fourier transform)
From (4.6) the generalized Yang-Fourier transform is
written in the form [30, 31, 41]

  
 

      

,

0

1
1

F

F f x

f

f x E i h x dx






  













 
  

, (5.1)

where
 
 0

2
1

h




 

with 0 1  .

Definition13
From (4.5) the inverse formula of the generalized Yang-
Fourier transform is written in the form [30, 31, 41]

  
 

       

1 ,

,
0

1
1

F

F

F f

f x

f E i h x d


 

   
 



  











  

(5.2)

where
 
 0

2
1

h




 

with 0 1  .

5.2. The basic theorems of Yang-Fourier
transform

The following result is valid [30, 31, 41].

Theorem 29

Let     ,FF f x f 
   , then we have

    1 ,Ff x F f 
   . (5.3)

Theorem 30

Let     ,FF f x f 
   and     ,FF g x g 

   ,

and let ,a b be two constants. Then we have

          .F af x bg x aF f x bF g x    
(5.4)

Theorem 31

Let     ,FF f x f 
   . If  lim 0

x
f x


 , then

we have
       0F f x i h F f x  

  . (5.5)

As a direct result, repeating this process, when

          10 0 ... 0 0kf f f     
we have

       0
k k k kF f x i h F f x  

  . (5.6)

Theorem 32

Let     ,FF f x f 
   and    lim 0xx

I f x




, then we have

       
0

1
xF I f x F f x

i h


    . (5.7)

Theorem 33

If     ,FF f x f 
   , and 0a  , then we have

   ,1 FF f ax f
a a


 

   
 

. (5.8)

Theorem 34

If     ,FF f x f 
   , and c is a constant, then we

have
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       0F f x c E i h c F f x  
     . (5.9)

Theorem 35

If     ,FF f x f 
   , and c is a constant, then we

have

      ,
0 0 0

FF f x E i h x f   
       . (5.10)

Theorem 36

Let     ,
1 ,1

FF f x f 
   and     ,

2 ,2
FF f x f 

   ,

then we have

        , ,
1 2 ,1 ,2

F FF f x f x f f 
     . (5.11)

Theorem 37

Let     ,
1 ,1

FF f x f 
   ,     ,

2 ,2
FF f x f 

   and

let ,a b be two constants, then we have

    
     

1 , ,
,1 ,2

1 , 1 ,
,1 ,2 .

F F

F F

F af bf

aF f bF f

 
  

 
   

 

 



 



 
(5.12)

Theorem 38

Let     ,
1 ,1

FF f x f 
   and     ,

2 ,2
FF f x f 

   .

If  ,lim 0Ff 





 , then we have

      1 ,
0

FF f i h x f x
  

       . (5.13)

Theorem 39

If     ,FF f x f 
   , and c is a constant, then for

0a  we have

  1 , 1F x
F f a f

a a


      
 

. (5.14)

Theorem 40

If     ,FF f x f 
   , and c is a constant, then we

have

      1 ,
0 .FF f c E i h c x f x   

     (5.15)

Theorem 41

If     ,FF f x f 
   , and c is a constant, then we

have

      1 ,
0 .FF f E i h c f x c   

       (5.16)

Theorem 42

If     ,
1 ,1

FF f x f 
   and     ,

2 ,2
FF f x f 

   ,

then we have

       1 , ,
,1 ,2 1 2

F FF f f f x f x 
        . (5.17)

Theorem 43

If  ,lim 0Ff 





 , then we have

      1 ,
0

FF f i h t f x  
     . (5.18)

Theorem 44

If     ,FF f x f 
   , then we have

       22 ,Ff x dx f d 
  

 

 
  . (5.19)

Theorem 45

If     ,FF f x f 
   and     ,FF g x g 

   ,

then we have

         , ,F Ff x g x dx f g d  
   

 

 
  .

(5.20)

6. Discrete Yang-Fourier Transform in
Fractal Space

6.1. Notations

Now we determine from our data,

       

      

2 1
2

1
2

2 1
2

1
2

1
1

1
1

N
t

t

N
t

t

f t t dt

f t t dt














 




 

 


 







(6.1)

for any local fractional continuous function on the natural
widow. This sampling can be used to complete a
corresponding sum approximation for the integration,

      

      

    

2 1
2

1
2

1

0

1

0

1
1

1
1

1
.

1

N
t

t

N

k

N

k
k

f t t dt

f k t k t t

f k t t



















 









 

   
 

  
 







(6.2)

Notice, however, that

     

           

           

1

0

2 11
2

1
0 2

2 1 1
2

1
02

1
1

1 1
1 1

1 1
1 1

N

k
k

NN t

k k tt
k

N Nt

k k tt k

f k t t

f t t dt t

f t t t dt



 

 




 
 

 
 





 

 


 

  

 
 

 
      

 
      



 


(6.3)

where
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2 1

2
1
2

1
,

1

N
t

k tt
t t dt k t  






 
 

  
(6.4)

for 0,1, , 1k N  .
So,

      

           

2 1
2

1
2

2 1 1
2

1
02

1
1

1 1
1 1

N
t

t

N Nt

k k tt k

f t t dt

f t t t dt



 




 
 




 

 

  

 

 
      




(6.5)

Suggest that, with the natural window, we use

     
1

0

1
1

N

k k t
k

f t f t








    , (6.6)

where  k kf f t   for 0,1, , 1.k N 
Now there are two natural choices: Either f define to

be 0 outside the nature window, or define f to be

periodic with period T equalling the length of the natural
window,

T N t  . (6.7)

Combing with our definition of f on the natural
window, the first choice would be give

     
1

0

1
1

N

k k t
k

f t f t








    , (6.8)

while the second choice would be give

     1
1 k k t

k

f t f t








    (6.9)

with k N kf f   .
Clearly, the latter is the more clear choice. That is to

say, suppose that  0 1 1, , , Nf f f  is the thN order

regular sampling with spacing t of some function f .

The corresponding discrete approximation of f is the
periodic, regular array

     1
1 k k t

k

f t f t








    (6.10)

with spacing t index period N , and its coefficients

  , 0,1, , 1.

, .

k
k

k N

f x if k N
f

f in general





    


 (6.11)

From the Yang-Fourier transform theory, we then know

    ,FF f x f 
  

is a local fractional continuous, given by

 

      

      

      

      

  

,

2 1
2

1
2

2 1
2

1
2

2 1 1
2

1
02

1
1

1
1

1
1

1 1
1 1

F

N
t

t

N
t

t

N Nt

k k tt k

f

f t E i t dt

f t E i t dt

f t E i t dt

f t t

E i t dt




  


  


  




  














 










 




 

 

  

 
 

 
 

 
 

 
       













   

      

      

1

0

2 1
2

1
2

1

0

1
1

1
1

1
1

N

k
k

N
t

k tt

N

k
k

f t

t E i t dt

f t E i k t



  


   




 












 





 
 

 
    

   
 






(6.12)

So, approximation of the formula

       1
1

f t E i t dt   
 







  
reduces to

        
1

,

0

1
1

N
F

k
k

f f t E i k t    
  







   
  

.
(6.13)

with T N t  .

Taking n   and
2
T
   in (6.13) implies that

 
 

      

    

      

,

1

0

1

0

1

0

1
1

1
2 /

1

1
2 / .

1

F

N

k
k

N

k
k

N

k

n

f

f t E i k t

T
f E i n k N

N

T
k E i n k N

N




   



   




   













 
















   
 

 
 

 
 






(6.14)

In the same manner, if

 
 

     ,1

2
Ff t E i t f d    

    





  ,

then we can write
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1
,

0

1

2

k

N
F

n

f k t

f n E i t n    
    









   
(6.15)

with N   .

Taking t k t  and
2
T
   in (6.15) implies that

 
 

 
        

 
        

    

1
,

0

1
,

0

1

0

1

2

1

2

1
2 / .

k

N
F

n

N
F

n

N

n

k

f k t

f n E i n t k

f n E i n t k

n E i n k N
T

     
 

     
 

   




  


  


 













 

    

    








(

6.16)
Combing the formulas (6.14) and (6.16), we have the
following results:

        
1

0

1
2 /

1

N

k

T
n k E i n k N

N


   

  






 
  

(6.17)
and

      
1

0

1
2 /

N

n

k n E i n k N
T

   
  





  . (6.18)

Setting    1
F n n

T   and interchanging k and n ,

we get [46, 47]

      
1

0

2 /
N

k

n F k E i n k N   
 





 (6.19)

and

        
1

0

1 1
2 /

1

N

n

F k n E i n k N
N

   
  







 
   .

(6.20)

Definition 14 (Discrete Yang-Fourier transform)

Suppose that  f n be a periodic discrete-time fractal

signal with period N . The N -point discrete Yang-

Fourier transform (DYFT) of  F n is written in the

form [47]
 

    
 

1

0

1

,
0

2 /
N

n

N
nk

N
n

F k

f n E i n k N

f n W

   














 







, (6.21)

with
 

,

2nk
N

i n k
W E

N

  

  


 

  
 
 

. This is called

N -point discrete Yang-Fourier transform of  F n ,

denoted by

   f n F k . (6.22)

Definition 15 (Inverse discrete Yang-Fourier
transform)

The inverse discrete Yang-Fourier transform (IDYFT) is
given by is rewritten as [47]

 

      

   

1

0

1

,
0

1 1
2 /

1

1 1
1

N

k

N
kn

N
k

f n

F k E i n k N
N

F k W
N

   


















 


 





.

(6.23)

with
 

,

2kn
N

i n k
W E

N

  

  

 
  

 
 

.

Taking into account the relation [47]

       2 1 2E i n E i n    
    ,

we deduce that

   2 2
k N n k

E i n E i
N N

  
   

   
              

(6.24)

for all n Z . That is to say,
 

1, 1,
n N nW W 
 

and
 

, ,
k N n kn

N NW W 
  .

6.2. The basic theorems of discrete Yang-Fourier
transform

The following results are valid [46, 47]:

Theorem 46

Suppose that    
1

,
0

N
nk

N
n

F k f n W 






 , then we have

     
1

,
0

1 1
1

N
nk

N
k

f n F k W
N 






   . (6.25)

Theorem 47

Suppose that  f n be periodic discrete time signals

with period N , then we have [6]

   
11

0

j NN

n n j

f n f n
 

 

  . (6.26)

Theorem 48
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Suppose that    1 1f n F k and    2 2f n F k ,

then we have [6]

       1 2 1 2af n bf n aF k bF k   . (6.27)

Corollary 49

     1F n N f k     . (6.28)

Corollary 50 (Time reversal rule for DYFT)

   f n F k   . (6.29)

Corollary 51(Conjugation rule for DYFT)

   f n F k  . (6.30)

Corollary 52(Shift in the n -domain rule for
DYFT)

      2 /f n l E i k N F k  
    . (

6.31)

Corollary53 (Shift in the k -domain rule for
DYFT)

      2 /E i k N f n F k l  
    . (6.32

)

Definition 16(Cyclical convolution)
The cyclical convolution product of two periodic

discrete time signals  f n and  g n with periodic

N is the fractal discrete time signal   f g n
defined by

      
1

0

N

l

f g n f l g n l




   . (6.33)

Theorem 54(Convolution in the n -domain rule for
DYFT)

Let  f n and  g n be periodic discrete time signals

with period N . Suppose that    f n F k and

   g n G k , then

       f g n F k G k  . (6.34)

Theorem55 (Convolution in the k -domain rule for
DYFT)

Let  f n and  g n be periodic discrete time signals

with period N . Suppose that    f n F k and

   g n G k , then

        1 1
1

f n g n F G k
N

 
 

. (6.35)

Theorem 56 (Paserval theorem for DYFT)

Let  f n and  g n be periodic discrete time signals

with period N . Suppose that    f n F k and

   g n G k , then

         
1 1

0 0

1 1
1

N N

n k

f n g n F k G k
N

 

 


   . (6.36)

Corollary 57

Let  f n and  g n be periodic discrete time signals

with period N . Suppose that    f n F k , then

     
1 12 2

0 0

1 1
1

N N

n k

g n G k
N

 

 


   . (6.37)

Theorem 58

Let  f n and  g n be periodic discrete time signals

with period N . Suppose that    f n F k and

   g n G k , then

       
1 1

0 0

N N

n k

f n G n F k g k
 

 

  . (6.38)

7. Fast Yang-Fourier Transform

7.1. Fast Yang-Fourier transform of discrete
Yang-Fourier transform

The relations
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(7.1)

and
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,

, 1
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k n
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kn n
N N

n
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N n k

N n k

F

N

N

F

W

W W
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(7.2)

are the component formulas for the Yang-Fourier
transform.

Suppose that  0 1 2 1, , ,..., NV V V V  is the thN order

discrete Yang-Fourier transforms of  0 1 2 1, , ,..., Nv v v v  .

Starting with the component formulas for the discrete
Yang-Fourier transform, we obtain that, for

0,1, 2,..., 1n N  ,
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(7.3)

and we have the following relation

 
0

2
,

1
2 E

n

MNV NV NVn n n
WF F F




 
       

 
, (7.4)

where V is the sequence vector corresponding to

 0 1 2 1, , ,..., NV V V V  , EV is the M th order sequence of

even-index 'kv s  0 2 2, ,..., NV V V  and OV is the

M th order sequence of odd-index 'kv s

 1 3 1, ,..., NV V V  .

Here we can deduce that
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(7.5)

and
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. (7.6)

Hence for 0,1, 2,..., 1l m  , we have [48]
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  (7.7)

and
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  . (7.8

)
Here, formulas (7.7) and (7.8) contain common

elements that can be computed once for each l and then

used to compute both lV and M lV  . Hence we can obtain

the total number of computations to find all the 'nV s .
That is to say, this process of increasing levels to our
algorithm can be continued to the thK level provided to

02KN N for some integer 0N . Moreover, that

integer, 0 2 KN N will also be the order of the
discrete Yang-Fourier transforms and inverse discrete

Yang-Fourier transforms. If 2KN  , it is this final thK
level algorithm, fully implemented and refined, that is
called a fast Yang-Fourier transform of the discrete
Yang-Fourier transforms.

7.2. Fast Yang-Fourier transform of inverse
discrete Yang-Fourier transform

Suppose that  1 1 1
0 1 1, ,..., NV V V  

 is the thN order

discrete Yang-Fourier transforms of  1 1 1
0 1 1, ,..., Nv v v  

 ,

starting with the component formulas for the inverse
discrete Yang-Fourier transform, we obtain that, for

0,1,2,..., 1n N  ,
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(7.9)

and we have the following relation

     
1 1

0

2
,

1

2

1
1 E

NV n NV N

n

n
M V n

F F F
M

W






 

   


     
,

(7.10)

where 1V  is the sequence vector corresponding to

 1 1 1 1
0 1 2 1, , ,..., NV V V V   

 , 1
EV  is the M th order
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sequence of even-index 1 'kv s  1 1 1
0 2 2, ,..., NV V V  



and 1
OV  is the M th order sequence of odd-index

1 'kv s  1 1 1
1 3 1, ,..., NV V V  

 .

Here we can deduce that
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(7.11)

and
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Hence for 0,1, 2,..., 1l m  , we have [48]
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(7.13)
and

   

  0

1

1

2 2 1

1
2

, , ,
0 0

2
,

1

2

1
2

1
1

1
1 E

lM Mj
lj lj

M M M
j j

l
j

M l

j j

MV MVl M l

V

v v
M

W

WF

W W

F

 









   
 

 

 
 
 






 



 

 

 



 
     

     


 

. (7.14)
It is shown that, formulas (7.13) and (7.14) contain
common elements that can also be computed once for

each l and then used to compute both 1
lV  and 1

M lV 
 .

These can also yield the total number of computations to

find all the 1 'nV s . That is to say, this process of
increasing levels to our algorithm of inverse discrete
Yang-Fourier transforms is similar to that of the discrete
Yang-Fourier transforms. Taking into account the relation

2KN  , it is also this final thK level algorithm, fully

implemented and refined, that is called a fast Yang-
Fourier transform of the inverse discrete Yang-Fourier
transforms.

8. Conclusions

In the paper we investigate the theory of local
fractional Fourier analysis, the local fractional Fourier
series, the Yang-Fourier transform, the generalized Yang-
Fourier transform, the discrete Yang-Fourier transform
and fast Yang-Fourier transform, and some applications
of local fractional Fourier analysis. Our attention is
devoted to the analytical technique of the local fractional
Fourier analysis for treating with fractal problems in a
way accessible to applied scientists and engineers.
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