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Abstract —In the last year fractional calculus has been used in studies of electromagnetic theory, as well asin many fields of science
and engineering involving diffusive transport, fluid flow, rheology, electrical networks, viscoelastic materials and probability. This
paper deals with the theory of the local fractional Stieltjes transform. We derive the Stieltjes transform. This is followed by severd
examples and the basic operational properties of Stieltjes transforms.
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1. Introduction

Local fractional calculus hasplayed an important
role in areas ranging from fundamental science to
engineering in the past ten years [1-23]. It is significant to
deal with the continuous functions (fractal functions),
which areirregular in the real world. Recently, Yang-
Laplace transform based on the local fractional calculus
was introduced [1] and Y ang continued to study this
subject [2]. The Yang-Laplace transform of f (X) is

given by [1,2]
LT} =1(9)
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whereO< o <1.
And itsInverse formula of Yang- Laplace’ stransforms as
follows

() =L (£ (9))
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The purpose of this paper isto establish local
fractiona Stieltjes Transforms based on the Yang-
Laplace transforms. This paper is organized as follows. In
section 2, local fractional Stieltjes Transformsis derived;
Section 3 presents Properties of local fractional Stieltjes
Transforms Transforms.
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2. Definition of the Stieltjes Transform and
Examples

In the section, we define Stieltjes transform and show
some examples of Stieltjes transform.
We use the local fractional Laplace transform (Y ang-

Laplace transform) of L { f (t)} = - (s) with respect
to sto define the Stieltjes transform of f (t) . Clearly,

LLf (o)} =1,(2)
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Interchanging the order of integration and evaluating the
inner integral, we obtain
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The Stieltjes transform of afunction f (t) on 0<t <
is denoted by f, (2) and defined by
s{f®r="f(2
L 1O gy
I'l+a)° (t+2)”
where z isacomplex variablein the cut plane
largzlk .
If z=X isrea and positive, then
SAfMr=1£,(x
= 1 J‘w f(t) (dt)a
I'l+a)0 (t+x)*
Differentiating (2.4) with respect to X, we obtain
d“f (x) T@l-a)
dx™ rd-(mn+Ya)
1 = f(t)
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Example 2.1 Find the Stieltjes transform of each of the
following functions

1
@ f(t)=m

(a) We have, by definition,
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, (b) f(t)=tPD,
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(b) set X= l ,we have
z

Foy. 1 f(t) o
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Example 2.2 Show that

S, {sin, k*\t*}
= 2°E, (-k“/Z")
We have, by definition u=+/t ,t = u?
s.{sin, k*\t"}
1 J-oo 2°u”dn, k“u”
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= 2°E, (-k*/Z*)

3. Basic Operational Properties of Stieltjes
Transforms

k>0. 2.8

(du)*

The following properties hold for the Stieltjes transform:

(@

S{f(t+a}="f (z-a) . (3.1)
(b)
S{f(at)}="f, (az),a>0 (3.2)
C
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1 = - (33)
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provided the integral on the right hand side exists.
(d)
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Pfoof . (a) We have, by definition, t+a=n
S{f(t+a)}
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(b) We have, by definition, u = at
S{f(at)}=
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(c) We have from the definition
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This gives the desired result
(d) We have, by defi nition

f (t)
{( a)a} (@ )a

a
(€) We have, by definition, n = T

[f.(2-f. @)

1, a 'l-«) 1 ; ,a
Sa{t_a f(T)} “T_20) 7 f. (;) :
Theorem 3.1 (Stieltjes Transforms of Derivatives). If
S{f®)} =" (2 then
S{f a)(t)} f(O) d“ f (Z)

dz”
f “(0)
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Proof. Appling the definition and integrating by parts, we
have

S{fT“wM}=-

This proves result (3.6).
Similarly, other results can readily be proved.
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4. Conclusion

In present paper, we derive local fractional Stieltjes
Transforms by the Yang-Laplace transforms. Some
properties of local fractional Stieltjes Transforms and
examples are consider. In our future research, we will
study its application to local fractional equations with
local fractional derivative.
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