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Abstract –Local fractional calculus deals with everywhere continuous but nowhere differentiable functions in fractal
space. The Yang-Fourier transform based on the local fractional calculus is a generalization of Fourier transform in
fractal space. In this paper, local fractional continuous non-differentiable functions in fractal space are studied, and the
generalized model for the Yang-Fourier transforms derived from the local fractional calculus are introduced. A
generalized model for the Yang-Fourier transforms in fractal space and some results are proposed in detail.

Keywords – Local fractional calculus; Local fractional continuous non-differentiable functions; Yang-Fourier
transforms; Fractal space

1. Introduction

Local fractional calculus has been revealed a useful
tool in areas ranging from fundamental science to
engineering in the past ten years [1-10]. It is important to
deal with the continuous functions (fractal functions),
which are irregular in the real world. Recently, some
model for engineering derived from local fractional
derivative was proposed [10]. The Yang-Fourier
transform based on the local fractional calculus was
introduced [6] and Yang continued to study this subject
[10]. The importance of Yang-Fourier transform for
fractal functions derives from the fact that this is the only
mathematic model which focuses on local fractional
continuous functions derived from local fractional
calculus. The Yang-Fourier transform may be of great
importance for physical and technical applications, and
its mathematical beauty makes it an interesting study for
pure mathematicians as well [10-13]. Here, our attempt to
model generalized Yang-Fourier transforms.

2. Preliminaries

2.1. Notations and recent results

Definition 1
If there exists the relation [10, 12-14]

   0f x f x   (2.1)

with 0x x   ,for , 0   and ,   .

Now  f x is called local fractional continuous

at 0x x , denote by    
0

0lim
x x

f x f x


 .Then  f x is

called local fractional continuous on the interval  ,a b ,

denoted by [10, 12, 13]

   ,f x C a b . (2.2)

Definition 2
A function  f x is called a non-differentiable function

of exponent , 0 1  , which satisfy Hölder function
of exponent , then for ,x y X such that [10, 12, 13]

   f x f y C x y    . (2.3)

Definition 3
A function  f x is called to be continuous of

order , 0 1  , or shortly continuous, when we
have the following relation [10, 12, 13]

      0 0f x f x o x x    . (2.4)

Remark 1. Compared with (2.4), (2.1) is standard
definition of local fractional continuity. Here (2.3) is
unified local fractional continuity.

Definition 4
Setting    ,f x C a b , local fractional derivative of

 f x of order at 0x x is defined by [ 4, 5, 7-9, 10,

12-14]
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(2.5)
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where            0 01f x f x f x f x       .

For any  ,x a b , there exists [10, 12, 13]

       xf x D f x  , (2.6)

denoted by

     ,xf x D a b . (2.7)

Definition 5
Setting    ,f x C a b , local fractional integral

of  f x of order in the interval  ,a b is defined [4, 6,

10, 12-14]
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(2.8)

where 1j j jt t t   ,  1 2max , , ,...jt t t t     and
1,j jt t   

,

0,..., 1j N  , 0 , Nt a t b  , is a partition of the

interval  ,a b .

Here, it follows that
    0a aI f x  if a b (2.9)

and
       a b b aI f x I f x  if a b (2.10)

For any  ,x a b , there exists

   a xI f x , (2.11)

denoted by

     , .xf x I a b (2.12)

Remark 2. If      , ,xf x D a b or    
0

,x xI a b ,

we have

   ,f x C a b . (2.13)

2.2. Recent results
Suppose that      , ,f x g x D a b , the following

differentiation rules are valid [5,14]:

        d f x g x d f x d g x
dx dx dx

  

  


  ; (2.14)

            d f x g x d f x d g x
g x f x

dx dx dx

  

    ;

(2.15)

 
         

 2

f x d f x d g xd g x f xg x dx dx
dx g x

 

 



 
  
  

(2.16)

if   0g x  ;

    d Cf x d f x
C

dx dx

 

  ; (2.17)

if C is a constant.

If      y x f u x  where    u x g x , then

           1d y x
f g x g x

dx

 
  . (2.18)

Theorem 1 [7,14]

Suppose that      , ,f x g x C a b , then

             .a b a b a bI f x g x I f x I g x      
(2.19)

Theorem 2 [7,14]

If        ,f x g x C a b
  , then we have

       a bI f x g b g a   . (2.20)

Theorem 3 [7,14]

If    1 ,g x C a b and        ,f g s C g a g a    .

Then we have

   
          '

a bg a g bI f x I f g s g s
      .

(2.21)
Theorem 4 [7, 14]
Suppose

that      , ,f x g x D a b and          , ,f x g x C a b 


. Then we have
                   .b

a b a ba
I f t g t f t g t I f t g t      

(2.22)

2.3. The Yang-Fourier transforms in fractal
space

Definition 6
Suppose that    ,f x C   , the Yang-Fourier

transform, dented by     ,FF f x f 
   , is written in

the form [10, 12, 13]

  
 

       

,

1
1

F

F f x

f

E i x f x dx






  













 
  

, (2.23)

where the latter converges.
And of course, a sufficient condition for convergence is
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1

1
.

1

f x E i x dx

f x dx K

  


















 

  
 




(2.24)

Definition 7
If     ,FF f x f 

   , its inversion formula is written

in the form [10, 12, 13]
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1
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F

f x

F f
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(2.25)

3. Motivation of the generalized Yang-
Fourier transforms in fractal space

If  f x is 2l -periodic and local fractional continuous

on ,l l , we have

   
n

k

i nx
f x C E

l

 

 





 
  

 
 

 , (3.1)

where its coefficients is

 
     1

2

l

n l

i nx
C f x E dx

ll

 


 




 
  

 
 

 .

(3.2)

Let us set
 
 
1

2
t

n nC C
l 

 
 . We have

 
 

 1

2
t

n
k

i nx
f x C E

ll

 

 





 
  

 
 

 , (3.3)

where its coefficients is

       1
1

lt
n l

i nx
C f x E dx

l

 


 


 

 
  

    
 .

(3.4)
If we define

n

n
k

l


    

 
, (3.5)

then we have

   1n n nk k k
l


  


      
 

. (3.6)

It is convenient to rewrite

 

 
  

 
  

1

2

1

2

k n n
k

k n n

f x

C E i x k k

C E i x k dk

  


  














 







(3.7)

as l  and

       1
.

1k nC f x E i x k dx   






   (3.8)

Case 1.
Taking nk   in (3.9) and (3.8), this leads to the
following results

 
 

  1

2
kf x C E i x d   

  





  (3.9)

and

       1
1kC f x E i x dx   

 






   . (3.10)

Remark 3. The above are called the Yang-Fourier
transform [10, 12, 13].
Case 2.

Taking   '2     in (3.9) and (3.8) implies that

    ' '
kf x C E i x d

  
  




  (3.11)

and

      '1
1kC f x E i x dx   

 






   .

(3.12)
Case 3.

Taking
 
 
2
1


 

 



 

, it follows from (3.9) and

(3.8) that

   
 
   21

1 1kf x C E i x d


  



 

 
  



 
  

     


(3.13)
and

     
   21

.
1 1kC f x E i x dx


  






 
 



 
  

     


(3.14)

Definition 8 (Generalized Yang-Fourier transform)
From (3.14) we get a generalized Yang-Fourier transform
in the form

  
 

      

,

0

1
1

F

F f x

f

f x E i h x dx






  













 
  

, (3.15)
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where
 
 0

2
1

h




 

with 0 1  .

A sufficient condition for convergence is

     1
.

1
f x dx K





  

   (3.16)

Definition 9
From (3.13) we get the inverse formula of the generalized
Yang-Fourier transform in the form

  
 

       

1 ,

,
0

1
1

F

F

F f

f x

f E i h x d


 

   
 



  











  

(3.17)

where
 
 0

2
1

h




 

with 0 1  .

A sufficient condition for convergence is

     ,1
.

1
Ff d M
  





  

   (3.18)

4. Some results

The following formulas are valid:

          ,F af x bg x aF f x bF g x    
,a b C

(4.1)

       ,F f x c E i c x F f x  
   

c C
(4.2)

    , /FF f ax a f a 
   , 0a  (4.3)

    
     

1 , ,

1 , 1 , ,

F F

F F

F af bg

aF f bF g

 
  

 
   

 

 



 



 
,a b C

(4.4)

      1 , ,FF f c f x E i c x   
      c C

(4.5)
       0 .F f x i h F f x  

   (4.6)

The above are proved in Appendix A.

Theorem 5 (Uniqueness of the generalized Yang-
Fourier transforms)
Let     ,

1 ,1
FF f x f 

   and     ,
2 ,2

FF f x f 
   .

Suppose that    , ,
,1 ,2

F Ff f 
   , then

   1 2f x f x . (4.7)

Proof. Using the motivation of the generalized Yang-
Fourier transforms yields the result.

Definition 10
The convolution of two functions, which satisfy the
condition (3.16) and (3.18), is defined symbolically by

           1 2 1 2

1
.

1

x
f x f x f t f x t dt 

 
  

  
(4.8)

As further results, the properties of the convolution
of the non-differentiable functions for convenience read
as:
The commutative rule:

       1 2 2 1f x f x f x f x   ; (4.9)

The distributive rule:

             1 2 3 1 2 3f x f x f x f x f x f x     .

(4.10)
Theorem 6
Suppose

that     ,
1 ,1

FF f x f 
   and     ,

2 ,2
FF f x f 

   .

Then

        , ,
1 2 ,1 ,2

F FF f x f x f f 
     . (4.11)

Proof. Taking into account the definitions of the
convolution of two functions and the generalized Yang-
Fourier transform implies that

    

          

1 2

0 1 2

1
.

1

F f x f x

E i h x f x f x dx



  
 








 
  

Successively, rearranging equation (4.11) becomes

         

   

         

0 2

1

,
0 1 ,2

1 1
1 1

1
1

F

E i h x f x t dx

f t dt

E i h t f t f dt

  




   
 


 

 


 

 





 
       

 
 

 

 .

(4.12)
Take into account the relation

 

         

,
,2

0 2

1
1

Ff

E i h x t f x t d x t




 










    
  

,
(4.13)

which follows from (3.12) that

   

         

, ,
,1 ,2

,
0 1 ,2

1
.

1

F F

F

f f

E i h t f t f dt

 
 

   
 

 

 





 
  

(4.14)
Hence we arrive at the result.
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As a direct result, we have the following result.
Theorem 7

Let     ,FF f x f 
   , then

           
22 ,1 1

1 1
Ff x dx f d 
  

 
 

 


     .

(4.15)
Proof. Using the definition of convolution and inverse
formula of generalized Yang-Fourier transform implies
that

 

       ,
0

1
1

F

f x

E i h x f d    
   






  

. (4.16)

Furthermore

       

      

,
0

,
0

1
1

1
.

1

F

F

E i h x f d

E i h x f d

   
 

   
 

  


  










 

 
 




(4.17)

From (4.17) , (4.16) becomes

 

       ,
0

1
.

1
F

f x

E i h x f d    
   





 
  

(4.18)
Now we have

             21 1
1 1

f x dx f x f x dx 

 
 

 


    
. (4.19)

Using (4.18) implies that

      

           ,
02

1
1

1
.

1
F

f x f x dx

f f x E i h x dx d



    
 



  






 

 

 

 
 



 
(4.20)

Successively, rearranging (4.20) yields

      

     

, ,

2,

1
1

1
.

1

F F

F

f f d

f d

 
 




  


 










 


 




(4.21)

Hence, the proof of theorem is completed.

5. Conclusions

In present paper we give a generalized Yang-Fourier
transforms as follows:

         0

1
1

F f x f x E i h x dx   
  





 
  

(5.1)
and

        ,
0

1
1

Ff x f E i h x d    
   






  

, (5.2)

where
 
 0

2
1

h




 

with 0 1  .

The transforming functions are local fractional
continuous. That is to say, it is fractal function defined on
fractal sets. Fourier transforms in integer space are the
special case of fractal dimension 1  . It is a tool to
deal with differential equation with local fractional
derivative.

Appendix A.

Taking into account equation (2.19), we directly obtain
formulas (4.1) and (4.4).
Now we start with equation (4.2).

  

      

     

     

0

0

0

1
1

1
1

F f x c

f x c E i h x dx

E i h c f x c

E i h x c d x c



  


  


 




















  
 

  
 

  





(using (2.21))

 
      

    

0
0

0

1

E i h c
f x E i h x dx

E i h c F f x

  
   



  
 













 

 





Now we start with equation (4.3).

  

      0

1
1

F f ax

f ax E i h x dx



  
 





 
  

        0

1
1

f ax E i h ax d ax
a a












          


(using (2.21))

        0

1
1

f ax E i h ax d ax
a a












          


,1
.Ff

a a




   
 

Now we start with equation (4.3).
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1
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F

F f c

f c E i h x d


 

   
 



  








 
  

 
      

  

0 ,
01

F
E i h x c

f c E i h x c

d c

  
   

 



 









  

 





(using (2.21))

   0 .E i h x c f x  
 

Now we start with equation (4.3).
    F f x



 
      0

1
1

f x E i h x dx    
 





 
  

(using (2.20) and (2.2))
     

       

0

0
01

f x E i h x

i h
f x E i h x dx

   


 
  

















 

 
  

  0 .i h F f x 
 

References

[1] K. M. Kolwankar, A. D. Gangal, Fractional differentiability of
nowhere differentiable functions and dimensions, Chaos, 6 (4)
(1996) 505-513.

[2] A. Carpinteri, P. Cornetti, A fractional calculus approach to the
description of stress and strain localization in fractal media,
Chaos, Solitons and Fractals, 13 (2002) 85-94.

[3] F. B. Adda, J. Cresson, Quantum derivatives and the Schrödinger
equation, Chaos, Solitons and Fractals, 19 (2004) 1323-1334.

[4] F. Gao, X. J.Yang, Z. X. Kang, Local fractional Newton’s method
derived from modified local fractional calculus, In Proceeding of
the second Scientific and Engineering Computing Symposium on
Computational Sciences and Optimization, pp.228-232, 2009.

[5] X. J. Yang, F. Gao, The fundamentals of local fractional derivative
of the one-variable non-differentiable functions, World SCI-TECH
R&D, 31 (5) (2009) 920-921(in Chinese).

[6] X. J. Yang, Z, X. Kang, C. H. Liu, Local fractional Fourier’s
transform based on the local fractional calculus, In Proceeding of
The 2010 International Conference on Electrical and Control
Engineering, pp.1242-1245, 2010.

[7] X. J. Yang, L. Li, R. Yang, Problems of local fractional definite
integral of the one-variable non-differentiable function, World
SCI-TECH R&D, 31 (4) (2009) 722-724 (in Chinese).

[8] X. J. Yang, Local fractional Laplace’s transform based on local
fractional calculus, Communications in Computer and Information
Science, 153 (2011) 391-397.

[9] X. J. Yang, Applications of local fractional calculus to engineering
in fractal time-space: Local fractional differential equations with
local fractional derivative, ArXiv:1106.3010v1 [math-ph], 2011.

[10] W. P. Zhong, F. Gao, X. M. Shen, Applications of Yang-Fourier
Transform to Local Fractional Equations with Local Fractional
Derivative and Local Fractional Integral, Adv. Mat. Res., 461
(2012) 306-310.

[11] S. M. Guo, L. Q. Mei, Y. Li , Y. F. Sun, The improved fractional
sub-equation method and its applications to the space–time
fractional differential equations in fluid mechanics, Phys. Lett. A.,
376 (4) (2011) 407-411.

[12] X. J. Yang, Generalized Sampling Theorem for Fractal Signals,
Advances in Digital Multimedia, 1 (2) (2012) 88-92.

[13] X. J. Yang, Local fractional partial differential equations with
fractal boundary problems, Advances in Computational
Mathematics and its Applications, 1 (1) (2012) 60-63.

[14] X. J. Yang, A short note on local fractional calculus of function of
one variable, Journal of Applied Library and Information Science,
1 (1) (2012) 1-13.

Vitae

Mr. Yang Xiao-Jun was born in 1981. He worked as
a scientist and engineer in CUMT. His research interest includes
Fractal mathematics (Geometry, applied mathematics and
functional analysis), fractal Mechanics (fractal elasticity and
fractal fracture mechanics, fractal rock mechanics and fractional
continuous mechanics in fractal media), fractional calculus and its
applications, fractional differential equation, local fractional
integral equation, local fractional differential equation, local
fractional integral transforms, local fractional short-time analysis
and wavelet analysis, local fractional calculus and its applications,
local fractional functional analysis and its applications.


