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Abstract: In order to solve the cluster analysis problem more efficiently, we presented a new approach based on
Particle Swarm Optimization Sequence Quadratic Programming (PSOSQP). First, we created the optimization model
using the variance ratio criterion (VRC) as fitness function. Second, PSOSQP was introduced to find the maximal point
of the VRC. The experimental dataset contained 400 data of 4 groups with three different levels of overlapping degrees:
non-overlapping, partial overlapping, and severely overlapping. We compared the PSOSQP with genetic algorithm (GA)
and combinatorial particle swarm optimization (CPSO). Each algorithm was run 20 times. The results showed that
PSOSQP could found the largest VRC values among all three algorithms, and meanwhile it cost the least time. It can
conclude that PSOSQP is effective and rapid for the cluster analysis problem.
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1 Introduction

Cluster analysis is the assignment of a set of
observations into subsets without any priori knowledge
so that observations in the same cluster are similar to
each other than to those in other clusters [1, 2]. Clustering
is a method of unsupervised learning, and a common
technique for statistical data analysis used in many fields
[3], including machine learning [4], data mining [5],
pattern recognition [6], feature reduction [7], decision
tree [8], image analysis [9] and bioinformatics [10].
Cluster analysis can be achieved by various algorithms
that differ significantly. Those methods can be basically
classified into four categories:

I. Hierarchical Methods. They find
successive clusters using previously
established clusters. They can be further
divided into the agglomerative methods
and the divisive methods [11].
Agglomerative algorithms start with
one-point clusters and recursively merges
two or more most appropriate clusters [12].
Divisive algorithms begin with the whole
set and proceed to divide it into
successively smaller clusters [13].

II. Partition Methods. They generate a single
partition of data with a specified or
estimated number of non overlapping
clusters, in an attempt to recover natural
groups present in the data [14].

III. Density-based Methods. They are devised
to discover arbitrary-shaped clusters. In
this approach, a cluster is regarded as a
region in which the density of data objects

exceeds a threshold. DBSCAN [15] is the
typical algorithm of this kind.

IV. Subspace Methods. They look for clusters
that can only be seen in a particular
projection (subspace, manifold) of the data.
These methods thus can ignore irrelevant
attributes [16].

In this study, we focus our attention on Partition
Clustering methods. The K-means clustering [17] and the
fuzzy c-means clustering (FCM) [18] are two typical
algorithms of this type. They are iterative algorithms and
the solution obtained depends on the selection of the
initial partition and may converge to a local minimum of
criterion function value if the initial partition is not
properly chosen [19]. Branch and bound algorithm was
proposed to find the global optimum clustering. However,
it takes too much computation time [20].

In the last decade, evolutionary algorithms were
proposed to clustering problem since they are not
sensitive to initial values and able to jump out of local
minimal point. For example,

Elcio Sabato de Abreu e Silva et al. [21] proposed
the application of a genetic algorithm (GA) for
determining global minima to be used as seeds for a
higher level ab initio method analysis such as density
function theory (DFT). Water clusters were used as a test
case and for the initial guesses four empirical potentials
(TIP3P, TIP4P, TIP5P and ST2) were considered for the
GA calculations. Two types of analysis were performed
namely rigid (DFT_RM) and non rigid (DFT_NRM)
molecules for the corresponding structures and energies.
For the DFT analysis, the PBE exchange correlation
functional and the large basis set A-PVTZ had been used.
All structures and their respective energies calculated
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through the GA method, DFT_RM and DFT_NRM are
compared and discussed. The proposed methodology
showed to be very efficient in order to have quasi
accurate global minima on the level of ab initio
calculations and the data are discussed in the light of
previously published results with particular attention to
(H2O)n clusters. Lin et al. [22] pointed out that
k-Anonymity has been widely adopted as a model for
protecting public released microdata from individual
identification. Their work proposed a novel genetic
algorithm-based clustering approach for k-anonymization.
Their proposed approach adopted various heuristics to
select genes for crossover operations. Experimental
results showed that their approach can further reduce the
information loss caused by traditional clustering-based
k-anonymization techniques. Chang et al. [23] proposed a
new clustering algorithm based on genetic algorithm (GA)
with gene rearrangement (GAGR), which in application
may effectively remove the degeneracy for the purpose of
a more efficient search. They used a new crossover
operator that exploited a measure of similarity between
chromosomes in a population. They also employed
adaptive probabilities of crossover and mutation to
prevent the convergence of the GAGR to a local optimum.
Using the real-world data sets, they compared the
performance of GAGR clustering algorithm with
K-means algorithm and other GA methods. Their
experiment results demonstrated that the GAGR
clustering algorithm had high performance, effectiveness
and flexibility. Agard et al. [24] pointed out defining an
efficient bill of materials for a family of complex
products was a real challenge for companies, largely
because of the diversity they offered to consumers. They
solution is to define a set of components (called modules),
each of which contained a set of primary functions. An
individual product was then built by combining selected
modules. The industrial problem leads, in turn, to the
complex optimization problem. They solved the problem
via a simulated annealing method based on a clustering
approach. Jarboui et al. [14] presented a new clustering
approach based on the combinatorial particle swarm
optimization (CPSO) algorithm. Each particle was
represented as a string of length n (where n is the number
of data points), and the ith element of the string denoted
the group number assigned to object i. An integer vector
corresponded to a candidate solution to the clustering
problem. A swarm of particles were initiated and fly
through the solution space for targeting the optimal
solution. To verify the efficiency of the proposed CPSO
algorithm, comparisons with a genetic algorithm were
performed. Computational results showed that their
proposed CPSO algorithm was very competitive and
outperforms the genetic algorithm. Niknam et al. [25]
considered the k-means algorithm highly depended on the
initial state and converged to local optimum solution.
Therefore, they presented a new hybrid evolutionary
algorithm to solve nonlinear partitional clustering
problem. Their proposed hybrid evolutionary algorithm
was the combination of FAPSO (fuzzy adaptive particle
swarm optimization), ACO (ant colony optimization) and
k-means algorithms, called FAPSO-ACO-K, which can
find better cluster partition. The performance of their
proposed algorithm was evaluated through several

benchmark data sets. Their simulation results showed that
the performance of the proposed algorithm was better
than other algorithms such as PSO, ACO, simulated
annealing (SA), combination of PSO and SA (PSO-SA),
combination of ACO and SA (ACO-SA), combination of
PSO and ACO (PSO-ACO), genetic algorithm (GA),
Tabu search (TS), honey bee mating optimization
(HBMO) and k-means for partitional clustering problem.
Roy Gelbard, et al. [26] considered cross-cultural
research as a case in point and applied Multi-Algorithm
Voting (MAV) methodology to cluster analysis. Their
study was designed to provide more systematic
supportive decision tools for researchers and managers
alike when attempting to cluster analyzing phenomena.
To assess the merits of the methodology of MAV for
cluster analysis, they analytically examined cross-cultural
data from Merritt study as well as data scored and ranked
by Hofstede. Their study contributed to the literature in
several ways. From a methodological point of view, they
showed how researchers can avoid arbitrary decisions
indetermining the number of clusters. They provided the
researcher with more compelling and robust
methodologies not only for analyzing the results of
cluster analysis, but also for more better-grounded
decision-making through which theoretical insights and
implications can be drawn.

However, those aforementioned algorithms suffer
from following shortcomings. They converged too slow,
or even converged to local minima points, which lead to a
wrong solution. Therefore, in this paper we introduced in
the Particle Swarm Optimization Sequence Quadratic
Programming (PSOSQP) algorithm [27] for optimization.
Zhang et al. proposed the PSOSQP and proved it
outperforms GA, PSO, and ABC [27].

The structure of the rest of this paper was organized
as follows. Next section 2 defined the partitional problem,
and gave the encoding strategy and clustering criterion.
Section 3 introduced the Particle Swarm Optimization
Sequence Quadratic Programming (PSOSQP) Algorithm.
Experiments in section 4 contained three types of
artificial data with different overlapping degree. Final
section 1 was devoted to conclusions and future works.

2 Partitional Clustering Problem

The problem of partitional clustering can be
depicted as follows. Suppose there are n samples O =
{o1, o2, … , on } in a d-dimensional metric space. Those
samples are to be clustered into k groups so that the
objects in a cluster are more similar to each other than to
objects in different groups [28]. Each oiRd represents a
feature vector consisting of d real valued measures
describing the feature of the objects. Suppose the clusters
are denoted as C= 1 2{ , ,..., }kc c c , then they should obey
three following statements

for 1,2,...,
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Our task is to find the optimal partition C* that has the
best adequacy in terms to all other feasible solution. Two
related issues need to be solved for translating the
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clustering problem into an optimization problem. One is
the encoding strategy, and the other is the criterion
function.

2.1 Encoding Strategy

The search space is determined of n-dimension due
to n-objects. Each dimension represents an object and the
ith individual Xi= 1 2{ , ,..., }i i inx x x corresponds to the

affection of n objects, such that xij  {1,2,..., }k , where k
denotes the number of classes, j denotes the jth object,
and i denotes the ith individual. Suppose n=9, k=3, the
first cluster contains the 1st, 4th, and 7th object, the second
cluster contains the 2nd, 5th, and 8th object, and the third
cluster contains the 3rd, 6th, and 9th object. The encoding
of this cluster solution is illustrated in Fig. 1.

Fig. 1 An example of encoding representation

2.2 Criterion Function

There are several criteria that had been proposed to
measure the adequacy or similarity in which a given data
set can be clustered. The most common used partitional
clustering strategy is the Variance Ratio Criterion (VRC)
[29]. Its definition is as formulated

1
B n k

VRC
W k


 


(2)

Here W and B denote the within-cluster and
between-cluster variations, respectively. They are defined
as:
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Where nj denotes the cardinal of the cluster cj, oi
j denotes

the ith object assigned to the cluster cj, o j denotes the
n-dimensional vector of sample means within jth cluster
(cluster centroid), and o denotes the n-dimensional
vector of overall sample means (data centroid) [30]. (n-k)
is the degree of freedom of the within-cluster variations,
and (k-1) is the degree of freedom of the between-cluster
variations [31].

As a consequence, compact and separated clusters
are expected to have small values of W and large values
of B. Hence, the better the data partition, the greater the

value of VRC. The normalization term (n-k)/(k-1)
prevents the ratio to increase monotonically with the
number of clusters, thus making VRC as an optimization
(maximization) criterion.

3 PSOSQP Algorithm

We introduced in the PSOSQP algorithm [27] in
this section. The algorithm integrates PSO technique
with SQP. PSO is the main algorithm, and meanwhile
SQP is used to finely tune every step of the solution by
PSO. PSO has a more global searching ability at the
beginning of the run, but a bit ineffective for a local
search near the end of the run. To overcome this
drawback, we integrate PSO with a gradient search
algorithm called SQP. In the beginning of the run, PSO
has more possibilities to explore a large space and
therefore the particles are easier to move and jump out
of local minima. The best value of all the particles will
be taken as the initial starting point for the SQP and
will be finely tuned. The possibility of exploring a
global minimum with more local optima is increased.
The search will continue until a termination criterion is
satisfied.

3.1 Particle Swarm Optimization
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Fig. 2 Flow chart of the PSO algorithm

PSO is a population based stochastic optimization
technique, which simulates the social behavior of a
swarm of bird, flocking bees, and fish schooling. By
randomly initializing the algorithm with candidate
solutions, the PSO successfully leads to a global optimum.
This is achieved by an iterative procedure based on the
processes of movement and intelligence in an
evolutionary system. Fig. 2 shows the flow chart of a
PSO algorithm.

In PSO, each potential solution is represented as a
particle. Two properties (position x and velocity v) are
associated with each particle. Suppose x and v of the ith
particle are given as

1 2( , , , )i i iNx x x x  (5)

1 2( , , , )i i iNv v v v  (6)
where N stands for the dimensions of the problem. In
each iteration, a fitness function is evaluated for all the
particles in the swarm. The velocity of each particle is
updated by keeping track of the two best positions. One is
the best position a particle has traversed so far and called
“pBest”. The other is the best position that any neighbor
of a particle has traversed so far. It is a neighborhood best
called “nBest”. When a particle takes the whole
population as its neighborhood, the neighborhood best
becomes the global best and is accordingly called “gBest”.
Hence, a particle’s velocity and position are updated as
follows

1 1 2 2( ) ( )v v c r pBest x c r nBest x      (7)
x x v t   (8)

where ω is called the “inertia weight” that controls the
impact of the previous velocity of the particle on its
current one. The parameters c1 and c2 are positive
constants, called “acceleration coefficients”. The
parameters r1 and r2 are random numbers that are
uniformly distributed in the interval [0, 1]. These random
numbers are updated every time when they occur. The
parameter ∆t stands for the given time-step. The
population of particles is then moved according to (7) and
(8), and tends to cluster together from different directions.

However, a maximum velocity vmax, should not be
exceeded by any particle to keep the search within a
meaningful solution space [32]. The PSO algorithm runs
through these processes iteratively until the termination
criterion is satisfied [33, 34].

3.2 Sequential Quadratic Programming

SQP is an iterative method for nonlinear
optimization. It is commonly used on twice continuously
differentiable problems. It solves the optimization
problem by dividing it into a sequence of optimization
sub-problems, each which optimizes a quadratic model
of the objective subject to a linearization of the
constraints [35]. Suppose a nonlinear programming
problem of the form as

min ( )

s.t. ( ) 0, ( ) 0
x

f x

b x c x 
(9)

The Lagrangian for this problem is

( , , ) ( ) ( ) ( )T TL x f x b x c x      (10)
here λand σare Lagrange multipliers. At the kth iteration,
the current solution point is xk, the direction is dk, then the
subproblem of SQP is defined as
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3.3 PSOSQP

The pseudo code of the PSOSQP applied for image
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registration can be concluded as follows.
Step 1 Input two images: the reference image A
and the input image B;
Step 2 Establish the optimization function
according to formula (2);
Step 3 Initialization. Generate random particles
with random velocities;
Step 4 Evaluate the objective function of each
particle;
Step 5 Update the velocity and position of each
particle according to formula (7)(8);
Step 6 Order the particles with terms to their
objective values;
Step 7 Select the gbest particle;
Step 8 Solve the objective function via SQP with
gbest as the starting point;
Step 9 Replace gbest with the final solution
obtained by SQP;
Step 10 Jump to Step 4 until the termination criteria

is met.

4 Experiments

The experiments were carried out on the platform of
Windows XP on desktop PC with Intel Pentium4, 3GHz
processor and 2GB RAM The algorithm was in-house
developed via the statistics toolbox and fuzzy toolbox of
Matlab 2011b. Our program can run at any desktop
installing Matlab.

4.1 Convergence Comparison

Suppose n=400, k=4, and d=2. Non-overlapping,
partially overlapping, and severely overlapping artificial
data were generated randomly from a multivariate
Gaussian distribution. The distributions of the data were
shown in Fig. 3.

Fig. 3 Artificial Data to three different degrees (a) Non-overlapping; (b) Partially Overlapping; (c) Severely
Overlapping

The proposed PSOSQP was tested in comparison
with the GA [22] and CPSO [14] algorithm. Each
algorithm was run 20 times to reduce the randomness.
The results are listed in Table 1. It indicated that for
non-overlapping instances, the three algorithms: GA,
CPSO, and PSOSQP, can all find the maximal VRC of
1683.2 at least once. The mean VRCs of those algorithms
are 1321.3, 1534.6, and 1603.5, respectively. The worst
VRCs are 451.0, 1023.9, and 1479.3, respectively. For
partially overlapping instances, the three algorithms: GA,
CPSO, and PSOSQP, can all find the maximal VRC of

620.5, the mean VRCs of those algorithms are 594.4,
607.9, and 619.5, respectively, and the worst VRCs are
512.8, 574.1, and 591.4, respectively. For severely
overlapping instances, the GA, CPSO, and PSOSQP can
find the maximal VRC of 275.6, the mean VRCs are
184.1, 203.8, and 219.8, respectively, and the worst
VRCs are 129.0, 143.5, and 127.6, respectively.

Table 1 indicates that the mean value of the VRCs
obtained by 20 runs of the proposed PSOSQP algorithm
is the highest among all three algorithms; therefore, the
PSOSQP is the most robust and effective.

Table 1 Experiment results for 400 artificial data sets for 20 different runs
Overlapping Degree VRC GA CPSO PSOSQP

Best 1683.2 1683.2 1683.2
Non Mean 1321.3 1534.6 1603.5

Worst 451.0 1023.9 1479.3
Best 620.5 620.5 620.5

Partially Mean 594.4 607.9 619.5
Worst 512.8 574.1 591.4
Best 275.6 275.6 275.6

Severely Mean 184.1 203.8 219.8
Worst 129.0 143.5 127.6

4.2 Time Comparison

Moreover, the average time of each algorithm was

listed in Table 2. For non-overlapping instances, the
average computation time of GA, CPSO, and PSOSQP
are 3.34, 3.13, and 2.44 seconds, respectively. For



Yudong Zhang & Lenan Wu, ALSA, Vol. 1, No. 2, pp. 29-35, 2012 34

partially overlapping instances, the average computation
time of GA, CPSO, and PSOSQP are 4.10, 3.86, and 3.09
seconds, respectively. For severely overlapping instances,
the average computation time of GA, CPSO, and
PSOSQP are 4.87, 5.08, and 4.51 seconds, respectively.

Table 2 indicates that the average computation time of
PSOSQP is the least among all three approaches, besides,
the computation time increases as along as the degree of
overlapping increases.

Table 2 Average Computation Time (s) of 20 runs
Overlapping Degree GA CPSO PSOSQP
Non-overlapping 3.34 3.13 2.44
Partially overlapping 4.10 3.86 3.09
Severely overlapping 4.87 5.08 4.51

5 Conclusions

In this paper, we first investigate the optimization
model including both the encoding strategy and the
criterion function of VRC. Afterwards, the PSOSQP
algorithm was introduced for solving the model.
Experiments on three types of artificial data with
different overlapping degrees all demonstrate the
PSOSQP is more robust and costs less time than either
GA or CPSO.

Future works contains following points: 1) Develop
a method that can determine the number of clusters
automatically; 2) Use more benchmark data to test the
PSOSQP; 3) Apply our PSOSQP to practical clustering
problems, including mathematics [36], face estimation
[37], image segmentation [38], Image Classification [39],
and prediction [40].
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