
Journal of Expert Systems (JES) 26 

Vol. 1, No. 1, 2012 

Copyright © World Science Publisher, United States 

www.worldsciencepublisher.org  

Generalized Local Fractional Taylor’s Formula with Local 

Fractional Derivative 

Xiao-Jun Yang 

Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou Campus, Xuzhou, 

Jiangsu, 221008, P. R. China 

Email: dyangxiaojun@163.com  

Abstract –In the present paper, a generalized local Taylor formula with the local fractional derivatives (LFDs) is 

proposed based on the local fractional calculus (LFC). From the fractal geometry point of view, the theory of local 

fractional integrals and derivatives has been dealt with fractal and continuously non-differentiable functions, and has 

been successfully applied in engineering problems. It points out the proof of the generalized local fractional Taylor 

formula, and is devoted to the applications of the generalized local fractional Taylor formula to the generalized local 

fractional series and the approximation of functions. Finally, it is shown that local fractional Taylor series of the Mittag-

Leffler type function is discussed. 
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1. Introduction  

 
The local fractional Taylor formula has been 

generalized by many authors. Kolwankar and Gangal had 

already written a classically formal version of the local 

fractional Taylor series [1, 2] 
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where ( )D f y
α

 is the Kolwankar and Gangal local 

fractional derivatives, denoted by 
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and its reminder is  
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On the other hand, Adda and Cresson obtained the 

following relation [3] 
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and Adda and Cresson’s local fractional derivative is 

denoted by 
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Recently, Yang and Gao proposed the generalized 

local fractional Taylor series to study the Newton 

iteration method and introduced the following 

generalized local fractional Taylor series [7] 
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with 0a x x bξ< < < < , ( ),x a b∀ ∈ , and Gao-Yang-

Kang local fractional derivative is denoted by [4-8]  
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with ( ) ( )( ) ( ) ( ) ( )( )0 01f x f x f x f x
α α∆ − ≅Γ + ∆ − .  

Successively, the sequential local fractional derivatives is 

denoted by 
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If there exists the relation  
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with 0x x δ− < ,for , 0ε δ > and ,ε δ ∈ . 

Then ( )f x is called local fractional continuous on the 

interval ( ),a b , denoted by 

( ) ( ),f x C a bα∈ .                    (1.10) 

and sequential local fractional continuity is denoted by  

( ),
k

C a bα                     
(1.11) 

or 

( ) ( ),k
f x C a bα∈ . 

However, the proof of the generalized local fractional 

Taylor series is not given. As a pursuit of the work we 

give some results for generalized local fractional Taylor 

formula by using the generalized mean value theorem for 

local fractional integrals and prove it.  

This paper is organized as follows: In section 2, a 

brief introduction of local fractional derivative and 

integral are given. The generalized local Taylor’s formula 

with local fractional derivative is investigated in section 

3. Section 4 is devoted to the applications of the 

generalized local fractional Taylor formula to generalized 

local fractional series and approximation of functions. 

Conclusions are in section 5.  

 

2. Preliminaries 

 
Definition 1  
 

Let ( )f x is local fractional continuous on the 

interval [ ],a b  Local fractional integral of ( )f x  of 

orderα in the interval [ ],a b is defined [4, 6-7]   
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Here, it follows that  

     

( ) ( ) 0a aI f x
α

=  if a b= ;                        (2.2) 

( ) ( ) ( ) ( )a b b aI f x I f x
α α

= −  if a b< ;                   (2.3) 

and 
( ) ( ) ( )0

a aI f x f x=
.                      

(2.4) 

Properties of the operator can be found in [6]. We only 

need here the following results: 
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Theorem 1 (Mean value theorem for local fractional 

integrals) 

 

Suppose that ( ) [ ],f x C a bα∈ , we have [6]  
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Theorem 2  

 

Suppose that 
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( )( ) ( ) ( ) ( ) ( )
0 0 0

1

1
...

k times

k

x x x x x xI f x I I f x
α α α

+

+
=

6447448

 
and 

( )( ) ( ) ( ) ( ) ( )

1

1
...

k times

k

x xf x D D f x
α α α

+

+
=

64748

. 

Proof. From (2.5) and (2.9), we have  
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Hence we have the result. 

Remark. When 0k = , considering the formula 
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Theorem 3 (Generalized mean value theorem for local 

fractional integrals) 
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Proof. Taking 1k =  in (2.10), we deduce to the result.   

 

3. Generalized Local Fractional Taylor’s 

Formula 

 
In this section we will introduce a new generalization 

of local fractional Taylor formula that involving local 

fractional derivatives. We will begin with the mean value 

theorem for local fractional integrals. 
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Successively, it follows from (3.2) that  
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Applying (2.9) and (3.4) , we have 
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with 0a x x bξ< < < < , ( ),x a b∀ ∈ . 

Combing the formulas (3.4) and (3.8) in (3.2), we have 

the result.  
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Proof. Applying (3.1), for
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with 0 1θ< < . 

Hence, the proof of the theorem is completed. 

 

4. Applications: The Generalized Local 

Fractional Series and Approximation of 

Functions 

 
Theorem 6 (Generalized local fractional Taylor series) 
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Therefore the theorem is proved.  

 

Theorem 7 (Generalized local fractional Mc-Laurin’s 

series) 
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Proof. Taking 0 0x = in (4.1), we obtain the result.  

 

Theorem 8 (Theorem for approximation of functions) 
 

Suppose that
( )( ) ( )1k

f x
α+ ( ),C a bα∈ , for 0,1,...,k n=

 

and 0 1α< ≤ , then we have 

 

( )
( ) ( )
( )

( )0

0

0 1

kn N
k

k

f x
f x x x

k

α
α

α

=

=

≅ −
Γ +

∑

        

(4.6) 

 

with 0a x x b< < < , ( ),x a b∀ ∈ , where 

( )( ) ( ) ( ) ( ) ( )

1

1
...

k times

k

x xf x D D f x
α α α

+

+
=

64748

. 

Furthermore, the error term
N
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Proof. The proof follows directly form (3.1).  

Example  

The Mittag-Leffler function [8] with fractal 

dimensionα is defined as 
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There exists a polynomial  
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5. Conclusions 
 

This paper has pointed out the generalized local 

fractional Taylor formula with local fractional derivative. 

As well, we discussed local fractional Taylor’ series with 

local fractional derivative. The generalized local 

fractional Taylor series seems to look like fractional 

Taylor’s series with modified Riemann - Liouville 
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derivative in the form [9]. However, the derivative of the 

former is described by local fractional derivative, the later 

is modified Riemann-Liouville derivative. The 

differences of them were discussed in [7, 9]. Hence, when 

we make use of the generalized local fractional Taylor 

formula with local fractional derivative, it is important to 

defer from them. For more details of the theory and 

applications of local fractional calculus, see [10-17].  
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