
Journal of Expert Systems (JES) 91
Vol. 1, No. 4, 2012, ISSN 2169-3064
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

An Intelligent Software Effort Estimation System

Ziauddin, Khairuz Zaman Khan, Shahid Kamal Tipu, Shahrukh Zia

Gomal University, Pakistan

ziasahib@gmail.com

Abstract: As the computer software has become an integral part of any industry, need for accurate forecasting
of software development cost has also been increase. Different software effort estimation models are being used,
but unfortunately these models have been developed for specific development environments and they support
specific software development methodologies. Modern software development is not bound to some specific
technology or methodology. This research focuses on development of an expert system which gathers expert
knowledge in software cost estimation and integrates it. The developed expert system provides software
engineers an easy mechanism to determine software effort for different types of software. The efficiency of the
developed system has been compared with existing cost estimation methods. The results show that it has better
accuracy than other models.

Keywords: Software Effort Estimation, Knowledge Base, Expert System, Inference Engine

1. INTRODUCTION

 In recent years, software has become the most
expensive component of computer system projects.
The bulk of the cost of software development is due to
the human effort, and most cost estimation methods
focus on this aspect and give estimates in terms of
person-months.
 Accurate software cost estimates are critical to both
developers and customers. They can be used for
generating request for proposals, contract
negotiations, scheduling, monitoring and control.
Underestimating the costs may result in management
approving proposed systems that then exceed their
budgets, with underdeveloped functions and poor
quality, and failure to complete on time.
Overestimating may result in too many resources
committed to the project, or, during contract bidding,
result in not winning the contract, which can lead to
loss of jobs.
 Most cost estimation models attempt to generate an
effort estimate, which can then be converted into the
project duration and cost. Although effort and cost are
closely related, they are not necessarily related by a
simple transformation function. Effort is often

measured in person/months of the programmers,
analysts and project managers. This effort estimate
can be converted into a dollar cost figure by
calculating an average salary per unit time of the staff
involved, and then multiplying this by the estimated
effort required.
 Practitioners have struggled with three fundamental
issues:

· Which software cost estimation model to use?
· Which software size measurement to use – lines of
code (LOC), function points (FP), or feature point?
· What is a good estimate?

 Most cost models are based on the size measure,
such as LOC and FP, obtained from size estimation.
These models are suitable for the development
technologies which are based on written lines of code,
but modern technologies are based on component
based software development. These models do not
support such methodologies. Similarly modern
software development methodologies, like agile, is
also not supported by these models. However there
are some effort estimation models which have been

http://www.worldsciencepublisher.org/
mailto:ziasahib@gmail.com

Ziauddin, et al., JES, Vol. 1, No. 4, pp. 91-98, 2012 92

developed specifically for such type of
unconventional software development.
 In this paper we are going to develop an intelligent
Expert System that supports all type of software
development regardless of their type - either using
conventional computer languages or component based
visual languages. It also supports all types of software
development methodologies – from conventional
waterfall like sequential methodologies to iterative
agile methodologies.

1.1 Cost Estimation Techniques

 Cost estimation tools, or model-based estimation
techniques use data collected from past projects
combined with mathematical formulae to estimate
project cost. These models need system size as input.
The main model-based techniques include COCOMO,
SLIM, RCA PRICE-S, SEER-SEM, and ESTIMACS.
The existing effort estimation techniques are broadly
classified as regression-based models, learning-
oriented models, expert based approaches and
composite-Bayesian methods.
 Most of the software estimation models are based
on regression technique (Matson et al., 1994).
Regression models normally use previous data,
constructed by collecting data on completed projects
and developing regression equations that characterize
the relationships among the different variables
(Fairley, 1992). Estimates are made by substituting
the. New project parameters are substituted into
mathematical model. This model is evaluated on
regression data to make estimates. In these models
software development effort is simply dependent
variable of some predicted variables like Size, Effort
adjustment factors, Scaling factors etc. for regression
equation.
 Regression models however need certain conditions
in some cases to be fulfilled particularly (Finnie et al.,
1997). These conditions are discussed by Boehm and
Sullivan (1999), and are based on experience from the
use of regression-based models. These typical
conditions include availability of a large dataset, no
missing data items, no outliers, and the predictor
variables are not correlated. The collection of
approaches that fall under the heading of regression-
models include ordinary least-squares regression
(OLS), classification and regression trees (CART),
stepwise analysis of variance for unbalanced data sets
(stepwise ANOVA), combinations of CART with
OLS regression and analogy, multiple linear
regression, and stepwise regression (KEAVENEY,
2006).

 There are other types of model, called Learning-
oriented models which are based on learning from
previous estimation experience. These models attempt
to automate the estimation process by training
themselves from previous experience to build
computerized models (Boehm et al., 2000). These
models are capable of learning incrementally and
refining themselves as new data are provided over
time (Lee et al., 1998). Learning-oriented models
cover a wide area and include techniques such as
artificial intelligence approaches, artificial neural
networks, case-based reasoning (Mukhopadhyay and
Kekre, 1992), machine learning models, decision-tree
learning, fuzzy logic models, knowledge acquisition
and rule induction (Burgess and Lefley, 2001). The
main model-based techniques include COCOMO,
SLIM, RCA PRICE-S, SEER-SEM, and ESTIMACS.
These estimation models produce an estimate of the
cost, effort or duration of a project based on factors
such as the size and desired functionality of the
system.
 An important expertise based approach was found
by Briand et al. (1998) to be “comparison to similar,
past projects based on personal memory”. The
expertise based approaches are useful when no
quantified, empirical data is available (Boehm et al.,
2000). They provide a practical, low-cost and highly
useful process (Johnson et al., 2000). Another
estimation technique used for software effort
estimation is analogy based estimation. The technique
examines past projects and uses the information
retrieved as a guide estimate for the proposed project
(Angelis et al., 2001, Jørgensen et al., 2003). The
Checkpoint method is an example of an analogy-
based approach to software estimation (Fairley, 1992).
In this technique heuristics are derived from actual
project data or a formalization of expert opinion. In
order to derive these heuristics some form of project
data or information are used. These heuristics are,
then, used to estimate productivity, quality or size
(Hihn and Habib-agahi, 1991, Fairley, 1992). Expert
judgment Estimation is also one of the popular
estimation technique in software effort estimation
which is based on the accumulated experiences of
teams of experts in order to come up with project
estimates (Peters and Pedrycz, 1999, Stamelos and
Angelis, 2001). This technique is used where the
estimation process is primarily based on “non-explicit,
non-recoverable reasoning processes”, or perception
and intuition (Jørgensen, 2004b).
 Expert Judgment techniques have been criticized by
experts for their reliance on human memory and the
lack of repeatability of such memory-based

Ziauddin, et al., JES, Vol. 1, No. 4, pp. 91-98, 2012 93

approaches (Mukhopadhyay et al. (1992, (Mendes et
al., 2002); however reports have proven it to be the
dominant strategy in software development estimation
(Jørgensen, 2004a, Höst and Wohlin, 1997, Moløkken
and Jørgensen, 2003, Moløkken-Østvold et al., 2004).
The Delphi technique and work breakdown structure
(WBS), top-down and bottom-up estimation
(Tausworthe, 1980), reasoning by analogy, formal
reasoning by analogy, informal reasoning by analogy,
and rules of thumb (Jones, 1996) fall under expert
judgment technique.
 The strengths of expertise based methods and
regression-based methods were combined to introduce
a new estimation approach called the Bayesian
approach which is a semi-formal estimation process
(Ferens, 1988). Bayesian analysis allows for the fact
that the data required for use in most estimation
techniques is typically of poor quality or incomplete.
Expert judgment is incorporated in this approach to
handle the missing data and provide a more robust
estimation process (Boehm and Sullivan, 1999).
Bayesian analysis has been used in many scientific
disciplines and was used in the development of the
COCOMO II model (Chulani et al., 1999, Boehm et
al., 2000). Cost Estimation, Benchmarking and Risk
Analysis (COBRA) is an example of a composite
estimation model (Ruhe et al., 2003).
 With the introduction of Component based 4GL
technologies, existing parametric models failed to
determine development effort as these technologies
are not based on LOC. Some new effort estimation
models have been introduced for such technologies
(ZIA et.al 2011).

1.2 Expert Systems

 Expert systems are computer programs that are
derived from a branch of computer science research
called Artificial Intelligence (AI). AI's scientific goal
is to understand intelligence by building computer
programs that exhibit intelligent behavior. It is
concerned with the concepts and methods of symbolic
inference, or reasoning, by a computer, and how the
knowledge used to make those inferences will be
represented inside the machine.
 Of course, the term intelligence covers many
cognitive skills, including the ability to solve
problems, learn, and understand language; AI
addresses all of those. But most progress to date in AI
has been made in the area of problem solving --
concepts and methods for building programs that
reason about problems rather than calculate a solution.

AI programs that achieve expert-level competence in
solving problems in task areas by bringing to bear a
body of knowledge about specific tasks are called
knowledge-based or expert systems. Often, the term
expert systems is reserved for programs whose
knowledge base contains the knowledge used by
human experts, in contrast to knowledge gathered
from textbooks or non-experts. More often than not,
the two terms, expert systems (ES) and knowledge-
based systems (KBS), are used synonymously. Taken
together, they represent the most widespread type of
AI application. The area of human intellectual
endeavor to be captured in an expert system is called
the task domain. Task refers to some goal-oriented,
problem-solving activity. Domain refers to the area
within which the task is being performed. Typical
tasks are diagnosis, planning, scheduling,
configuration and design.
 Building an expert system is known as knowledge
engineering and its practitioners are called knowledge
engineers. The knowledge engineer must make sure
that the computer has all the knowledge needed to
solve a problem. The knowledge engineer must
choose one or more forms in which to represent the
required knowledge as symbol patterns in the memory
of the computer -- that is, he (or she) must choose a
knowledge representation. He must also ensure that
the computer can use the knowledge efficiently by
selecting from a handful of reasoning methods.

1.2.1. Components of Expert System

 Every expert system consists of two principal parts:
the knowledge base; and the reasoning, or inference,
engine.
 The knowledge base of expert systems contains
both factual and heuristic knowledge. Factual
knowledge is that knowledge of the task domain that
is widely shared, typically found in textbooks or
journals, and commonly agreed upon by those
knowledgeable in the particular field.
 Heuristic knowledge is the less rigorous, more
experiential, more judgmental knowledge of
performance. In contrast to factual knowledge,
heuristic knowledge is rarely discussed, and is largely
individualistic. It is the knowledge of good practice,
good judgment, and plausible reasoning in the field. It
is the knowledge that underlies the "art of good
guessing."
Knowledge representation formalizes and organizes
the knowledge. One widely used representation is the
production rule, or simply rule. A rule consists of an
IF part and a THEN part (also called a condition and

Ziauddin, et al., JES, Vol. 1, No. 4, pp. 91-98, 2012 94

an action). The IF part lists a set of conditions in some
logical combination. The piece of knowledge
represented by the production rule is relevant to the
line of reasoning being developed if the IF part of the
rule is satisfied; consequently, the THEN part can be
concluded, or its problem-solving action taken. Expert
systems whose knowledge is represented in rule form
are called rule-based systems.
 Another widely used representation, called the unit
(also known as frame, schema, or list structure) is
based upon a more passive view of knowledge. The
unit is an assemblage of associated symbolic
knowledge about an entity to be represented.
Typically, a unit consists of a list of properties of the
entity and associated values for those properties.
 Since every task domain consists of many entities
that stand in various relations, the properties can also
be used to specify relations, and the values of these
properties are the names of other units that are linked
according to the relations. One unit can also represent
knowledge that is a "special case" of another unit, or
some units can be "parts of" another unit.
 The problem-solving model, or paradigm, organizes
and controls the steps taken to solve the problem. One
common but powerful paradigm involves chaining of
IF-THEN rules to form a line of reasoning. If the
chaining starts from a set of conditions and moves
toward some conclusion, the method is called forward
chaining. If the conclusion is known (for example, a
goal to be achieved) but the path to that conclusion is
not known, then reasoning backwards is called for,
and the method is backward chaining. These problem-
solving methods are built into program modules called
inference engines or inference procedures that
manipulate and use knowledge in the knowledge base
to form a line of reasoning.
 The knowledge base an expert uses is what he
learned at school, from colleagues, and from years of
experience. Presumably the more experience he has,
the larger his store of knowledge. Knowledge allows
him to interpret the information in his databases to
advantage in diagnosis, design, and analysis.
 Though an expert system consists primarily of a
knowledge base and an inference engine, a couple of
other features are worth mentioning: reasoning with
uncertainty, and explanation of the line of reasoning.
Knowledge is almost always incomplete and
uncertain. To deal with uncertain knowledge, a rule
may have associated with it a confidence factor or a
weight. The set of methods for using uncertain
knowledge in combination with uncertain data in the
reasoning process is called reasoning with uncertainty.
An important subclass of methods for reasoning with

uncertainty is called "fuzzy logic," and the systems
that use them are known as "fuzzy systems."
 Because an expert system uses uncertain or
heuristic knowledge (as we humans do) its credibility
is often in question (as is the case with humans).
When an answer to a problem is questionable, we tend
to want to know the rationale. If the rationale seems
plausible, we tend to believe the answer. So it is with
expert systems. Most expert systems have the ability
to answer questions of the form: "Why is the answer
X?" Explanations can be generated by tracing the line
of reasoning used by the inference engine
(Feigenbaum, McCorduck et al. 1988).
 The most important ingredient in any expert system
is knowledge. The power of expert systems resides in
the specific, high-quality knowledge they contain
about task domains. AI researchers will continue to
explore and add to the current repertoire of knowledge
representation and reasoning methods. But in
knowledge resides the power. Because of the
importance of knowledge in expert systems and
because the current knowledge acquisition method is
slow and tedious, much of the future of expert
systems depends on breaking the knowledge
acquisition bottleneck and in codifying and
representing a large knowledge infrastructure.

2. PROPOSED MODEL

 The architecture of the proposed model has been
shown in fig. 1. This model has four main
components.

Fig 1. Architecture of the Model

User Interface

Natural Language
Processor

Inference Engine

Knowledge
Base

Data
Base

Ziauddin, et al., JES, Vol. 1, No. 4, pp. 91-98, 2012 95

i. User Interface: A graphical user interface has
been developed which provide user with some
predefined options as well as some options are
provided where user can input in plain English.
Predefined options are provided in cases where a
numeric value is needed, otherwise natural
language has been used for both questions as well
as answers. The next question displays on the
basis of previous response from the user. Thus an
intelligent interaction occurs between user and
computer.

ii. Natural Language Processor: NLP has been
used to translate user response and query to
specific rules and vice versa. It simply acts as an
interface between User Interface and Inference
Engine.

iii. Inference Engine: The basic objective of
Inference Engine is to access knowledge Base on
the basis of input parameters, supplied by the
user. The developed Inference Engine is level 2-
Type engine which not only provides basic
reasoning but explanation facility has also been
added that reproduces the logic to reach its
conclusion. In order to reach a conclusion and
offer an expert advice to the user, reasoning of the
engine has been further strengthened by adding a
database of static information. This database
contains static information needed for calculation
like effort adjustment factors in COCOMO.

iv. Knowledge Base: As the objective of the system
is to effort estimation for different types of
software development including variation of
technology used as well as methodology
followed, therefore four sets of rules have been
incorporated in the knowledge base to support
software effort determination for:

a. Line of Code base software,
b. Component base software
c. Sequential methodology
d. Iterative methodology

 The developed rule base contains 394 rules and 101
actions. The knowledge base is capable of learning
and addition knowledge can be asserted to knowledge
base easily. The newly added knowledge can also be
easily synchronized with the existing database.
Similarly addition in database can also be easily
synchronized with knowledge base.

3. RESULTS

 Ten software has been used for experimentation.
The development effort has been calculated using the
developed tool, COCOMO II and Function Point
Analysis. In some cases COCOMO II was not
applicable as the technology used for the development
of software is not Line of Code based.
 The performance measure considered here is Mean
Magnitude of Relative Error (MMRE), which is
calculated as

MRE = |E−E
′|

|E|

MMRE =
∑ MREin
i=1

n

Where E is the actual and E’ is the Calculated Effort.
Table 1 shows the results of this experiment.

Table 1. Effort Estimation Comparison
No Size Actual COCOMO FPA Proposed

1 19 301 214 243 293

2 49 951 841 931 984

3 41 521 601 453 537

4 25 208 282 181 201

5 15 151 128 95 127

6 11 115 131 91 121

7 4 15 15 13 16

8 12 81 78 65 82

9 36 678 751 634 722

10 14 256 241 201 249

 Table 1 shows estimated efforts of three models. Table 2
shows comparison of the proposed model with other
models.

MODEL MMRE
COCOMO II 14.08
FPA 16.64
Proposed 5.08

 Comparison of the model results in Table 2 shows that
the proposed model has better estimation accuracy as
compared to other models having 5.08% as compared to
COCOMO II and FPA with 14.08% and 16.64%
respectively, which shows at least 9% more accuracy than
the existing models.

4. CONCLUSION

 There exist many software effort estimation techniques,
which need extensive training, even for experienced

Ziauddin, et al., JES, Vol. 1, No. 4, pp. 91-98, 2012 96

software engineers, to use them properly. Furthermore,
there are situations where one technique can be
implemented effectively but the same technique can not be
implemented in all cases. The Intelligent Effort Estimation
tool can e easily used even by novice users. The strong
knowledge base enables it to e used in different situations.
Using the same tool, Effort can be calculated using
different estimation methodologies.

REFERENCES

AGARWAL, R., KUMAR, M., YOGESH, MALLICK, S.,
BHARADWAJ, R. M. & ANANTWAR, D. (2001) Estimating
Software Projects. ACM SIGSOFT Software Engineering Notes,
26, 60-67.

ANGELIS, L., STAMELOS, I. & MORISIO, M. (2001) Building
a Software Cost Estimation Model Based on Categorical Data.
Proceedings of the 7th International Software Metrics Symposium.

BECK, K., BEEDLE, M., VAN BENNEKUM, A., COCKBURN,
A., CUNNINGHAM, W., FOWLER, M.,
HIGHSMITH, J., HUNT, A., GRENNING, J., MELLOR, S.,
JEFFRIES, R., KERN, J., MARICK, B., MARTIN, R. C.,
SCHWABER, K., SUTHERLAND, J. & THOMAS, D. (2001)
The Agile Manifesto.

BOEHM, B. W., ABTS, C. & CHULANI, S. (2000) Software
Development Cost Estimation Approaches: A Survey. USC-CSE.

BOEHM, B. W. & SULLIVAN, K. J. (1999) Software
Economics: Status and Prospects. Information and Software
Technology, 41, 937-946.

BOSSAVIT, L. (2003) Project Management, The Movie. Cutter
IT Journal, 16, 18-23.

BRIAND, L. C., EL EMAM, K. & BOMARIUS, F. (1998)
COBRA: A Hybrid Method for Software Cost Estimation,
Benchmarking, and Risk Assessment. Proceedings of the 20th
International Conference on Software Engineering. Kyoto, Japan.

BRIAND, L. C., LANGLEY, T. & WIECZOREK, I. (2000) A
Replicated Assessment and Comparison of Common Software
Cost Modeling Techniques. Proceedings of the 22nd International
Conference on Software Engineering. Limerick, Ireland.

BURGESS, C. J. & LEFLEY, M. (2001) Can Genetic
Programming Improve Software Effort Estimation? A
Comparative Evaluation. Information and Software Technology,
43, 863-873.

CHULANI, S., BOEHM, B. W. & STEECE, B. M. (1999)
Bayesian Analysis of Empirical Software Engineering Cost
Models. IEEE Transactions on Software Engineering, 25, 573-
583.

FAIRLEY, R. E. (1992) Recent Advances in Software Estimation
Techniques. Proceedings of the 14th International Conference on
Software Engineering. Melbourne, Australia

FERENS, D. V. (1988) Software Size Estimation Techniques.
Proceedings of the IEEE 1988 National Aerospace and Electronics
Conference.

FINNIE, G. R., WITTIG, G. E. & DESHARNAIS, J.-M. (1997) A
Comparison of Software Effort Estimation Techniques: Using
Function Points with Neural Networks, Case-Based Reasoning
and Regression Models. Journal of Systems and Software, 39,
281-289.

FOWLER, M. & HIGHSMITH, J. (2001) The Agile Manifesto.
Software Development, August.
GOLDEN, J. R., MUELLER, J. R. & ANSELM, B. (1981)
Software Cost Estimating: Craft or Witchcraft. ACM SIGMIS
Database, 12, 12-14.

HIHN, J. & HABIB-AGAHI, H. (1991) Cost Estimation of
Software Intensive Projects: A Survey of Current Practices.
Proceedings of the 13th International Conference on Software
Engineering. Austin, Texas.

HÖST, M. & WOHLIN, C. (1997) A Subjective Effort Estimation
Experiment. Information and Software Technology, 39, 755-762.

JONES, C. (1996) By Popular Demand: Software Estimating
Rules of Thumb. Computer, 29, 116-118.

JONES, C. (2003) Why Flawed Software Projects are Not
Cancelled in Time. Cutter IT Journal, 16, 12-17.

JØRGENSEN, M. (2003) How Much Does a Vacation Cost? or
What is a Software Cost Estimate? ACM SIGSOFT Software
Engineering Notes, 28, 1-4.

JØRGENSEN, M. (2004a) A Review of Studies on Expert
Estimation of Software Development Effort. Journal of Systems
and Software, 70, 37-60.

JØRGENSEN, M. (2004b) Top-Down and Bottom-Up Expert
Estimation of Software Development Effort. Information and
Software Technology, 46, 3-16.

JØRGENSEN, M., INDAHL, U. & SJØBERG, D. (2003)
Software Effort Estimation by Analogy and "Regression Toward
the Mean". Journal of Systems and Software, 68, 253-262.

JØRGENSEN, M. & MOLØKKEN, K. (2003) A Preliminary
Checklist for Software Cost Management. Proceedings of the 3rd
International Conference on Quality Software

KEAVENEY S. and CONBOY K. (2006) Cost Estimation in
Agile Development Projects. Proceedings of the 14th European
Conf. Information Systems (ECIS)

LEE, A., HUNG CHENG, C. & BALAKRISHNAN, J. (1998)
Software Development Cost Estimation: Integrating Neural
Network with Cluster Analysis. Information & Management, 34,
1-9.

MATSON, J. E., BARRETT, B. E. & MELLICHAMP, J. M.
(1994) Software Development Cost Estimation Using Function
Points. IEEE Transactions on Software Engineering, 20, 275-287.

MENDES, E., WATSON, I., TRIGGS, C., MOSLEY, N. &
COUNSELL, S. (2002) A Comparison of Development Effort
Estimation Techniques for Web Hypermedia Applications.
Proceedings of the 8th IEEE Symposium on Software Metrics

Ziauddin, et al., JES, Vol. 1, No. 4, pp. 91-98, 2012 97

MILLER G.G. (2001) The Characteristics of Agile Software
Processes. Proceedings of the 39th Int’l Conf. and Exhibition on
Technology of Object-Oriented Languages and Systems
(TOOLS’01)

MOLØKKEN-ØSTVOLD, K., JØRGENSEN, M., TANILKAN,
S. S., GALLIS, H., LIEN, A. C. & HOVE, S. E. (2004) A Survey
on Software Estimation in the Norwegian Industry. Proceedings
of the 10th International Symposium on Software Metrics.

MOLØKKEN, K. & JØRGENSEN, M. (2003) A Review of
Software Surveys on Software Effort Estimation. Proceedings of
the 2003 International Symposium on Empirical Software
Engineering.

MUKHOPADHYAY, T. & KEKRE, S. (1992) Software Effort
Models for Early Estimation of Process Control Applications.
IEEE Transactions on Software Engineering, 18, 915-924.

MUKHOPADHYAY, T., VICINANZA, S. S. & PRIETULA, M.
J. (1992) Examining the Feasibility of a Case-Based Reasoning
Model for Software Effort Estimation. MIS Quarterly, 16, 155-
171.

PAULK, M. C. (2002) Agile Methodologies and Process
Discipline. CrossTalk, The Journal of Defense Software
Engineering, 15-18.

PETERS, J. F. & PEDRYCZ, W. (1999) Software Engineering:
An Engineering Approach, John Wiley & Sons, Inc.

RUHE, M., JEFFERY, R. & WIECZOREK, I. (2003) Cost
Estimating for Web Applications, Proceedings of the 25th
International Conference on Software Engineering. Portland,
Oregon.

SCHMIETENDORF A., KUNZ M., DUMKE R. (2008) Effort
estimation for Agile Software Development Projects, Proceedings
5th Software Measurement European Forum, Milan

STAMELOS, I. & ANGELIS, L. (2001) Managing Uncertainty in
Project Portfolio Cost Estimation, Information and Software
Technology, 43, 759-768.

Shoukat A., A Reducibility of the Kampéde Fériet Function,
Advances in Computational Mathematics and its Applications
(ACMA), Vol. 1, No. 1, March 2012; pp 76-79

Shubatah M.Q.H., Domination in product fuzzy graphs,Advances
in Computational Mathematics and its Applications (ACMA),
Vol.1,No.3,2012; pp 119-125

Syafadhli A.A.B., Mohamad D. and Sulaiman N.H., Distance-
Based Ranking Fuzzy Numbers, Advances in Computational
Mathematics and its Applications (ACMA), Vol. 1, No. 3, 2012;
pp 146-150

TAUSWORTHE, R. C. (1980) The Work Breakdown Structure in
Software Project Management. The Journal of Systems and
Software, 1, 181-186.

Vajargah B. and Jahanbin A., Approximation theory of matrices
based on its low ranking and stochastic computation, Advances in
Computer Science and its Applications (ACSA), Vol. 2, No. 1,
2012; pp 270-280

Vajargah1 B.F., Moradi M. and Kanafchian M., Monte Carlo
optimization for reducing the condition number of ill conditioned
matrices, Advances in Computational Mathematics and its
Applications (ACMA), Vol. 1, No. 1, March 2012; pp 169-173

Viswanadham K.N.S. and Raju Y.S., Quintic B-spline Collocation
Method for Eighth Order Boundary Value Problems, Advances in
Computational Mathematics and its Applications (ACMA),Vol. 1,
No. 1, March 2012; pp 47-52

Yang X., Zhang Y., A New Successive Approximation to Non-
homogeneous Local Fractional Volterra Equation, Advances in
Information Technology and Management (AITM) Vol. 1, No. 3,
2012; pp 138-141

Ziauddin, Shahid Kamal Tipu, Khairuz Zaman, Shahrukh Zia,
 An Effort Estimation Model for Agile Software Development,
Advances in Computer Science and its Applications (ACSA) Vol.
2, No. 1, 2012; pp 314-324

Ziauddin, Shahid Kamal Tipu, Khairuz Zaman, Shahrukh Zia,
HOW TO USE REGRESSION OUTPUT FOR BETTER
ESTIMATION, Journal of Science (JOS) Vol. 1, No. 3, 2012; pp
40-45
Ziauddin, Shahid Kamal Tipu, Khairuz Zaman, Shahrukh Zia,
Software Cost Estimation Using Soft Computing Techniques,
Advances in Information Technology and Management (AITM)
Vol. 2, No. 1, 2012; pp 233-238

ZIA, Z.; RASHID, A.; UZ ZAMAN, K. (2011) Software cost
estimation for component based fourth-generation-language
software applications, IET Software , 5, Page(s): 103-110

VITAE

Dr. Ziauddin

Dr. Ziauddin is working as Assistant Professor in Institute
of Computing & Information Technology, Gomal
University, D.I.Khan since 1990. He has published more
than 15 research papers in reputed International journals.
His area of expertise is Software Engineering, Software
Process Improvement, Software Reliability Engineering,
Software Development Improvement, Software Quality
Assurance and Requirement Engineering. He is Gold
Medalist from Peshawar University in M.Sc Computer
Science. He has Diploma in Computer Forensics from
School of Education, Indiana University USA.

Shahid Kamal Tipu

Ziauddin, et al., JES, Vol. 1, No. 4, pp. 91-98, 2012 98

Mr. Shahid Kamal Tipu is working as Assistant Professor
in Institute of Computing & Information Technology,
Gomal University, D.I.Khan since 2000. Currently he is
doing his Ph.D. in Malaysia. His area of expertise is
Information System Security and Software Quality. He has
published his research in reputed International Journals. He
is a renowned software engineer in local industry, having
more than 50 software projects to his credit.

Dr. Khair uz Zaman Khan

Dr. Khair uz Zaman Khan is currently working as Director
COMSATS University, Vehari Campus at deputation from
Gomal University where he was acting as Dean of Science.
He performed as Chairman of Economics department for 5
years. From Basic Education to Post Doctorate from UK,
he passed all his examinations with distinction. He is one
the most respected educationist of the country. He has more
than 50 research papers to his credits.
 As a well known economist, he also contributed to various
national projects.

Shahrukh Zia

Mr. Shahrukh Zia is studying in Bachelor of Business
Administration at CBA Gomal University, D.I.Khan. He is
a young researcher, having keen interest in exploring
relationship of business management with other disciplines.
His research has been published in reputed journals.

	REFERENCES

