
Advances in Computer Science and its Applications (ACSA) 270
Vol. 2, No. 1, 2012, ISSN 2166-2924
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

Approximation theory of matrices based on its low ranking and

stochastic computation

Behrouz Fathi Vajargah, Ateyeh Jahanbin

Department of Mathematics, University of Guilan, Iran

fathi@guilan.ac.ir, at.jahanbin@yahoo.com

Abstract: This work presents that the way to use the successful approximation of a desired matrix based on stochastic and
SVD algorithms and compared their results together.

Key words. Low rank; Randomized algorithm; Monte Carlo method; Singular value decomposition; Matrix multiplication.

2000 Mathematical Subject: 65F30

1. Introduction. In computations, the data may consist of an � � � matrix �	Then, it is often of interest to evaluate a low-
rank approximation to�, i.e., an approximation �	to the matrix A of rank not bigger than a specified rank	�	, where �	is
smaller than �	and	� Methods such as the singular value decomposition �	
��	can be employed to find an approximation
to �	which is the best in a well-defined sense [9].
Suppose A and B which are � � � and	� � �	, respectively are the two input matrices. We perform c independent trials,
where in each trial we randomly sample an element of { 1, 2, . . . , n} with an appropriate probability distribution P on {1, 2,
. . . , n}. We form an � � 	 matrix C consisting of the sampled columns of A, each scaled appropriately, and we form a
 � �	matrix R using the corresponding rows of B, again scaled appropriately. The choice of P and the column and row
scaling are crucial features of the algorithm. When these are chosen, we show that ��	is a good approximation to AB. More
precisely, we show that

 ‖�� � ��‖� � ��‖�‖�‖�‖� √⁄ �

where ‖. ‖�	denotes the Frobenius norm, i.e.,‖�‖�� � ∑ �����,� . This algorithm can be implemented without storing the

matrices A and B in RAM, provided it can make two passes over the matrices stored in external memory and use ����
� ���	additional RAM to construct C and R [2].
 We are interested in developing and analyzing fast Monte Carlo algorithms for performing useful computations on large
matrices. In this paper we consider the singular value decomposition	�	
��	; based on two related papers [5,6] we consider
matrix multiplication and a new method for computing a compressed approximate decomposition of a large matrix. In this
paper, we present a computational model for computing on massive data sets (the pass-efficient model) in which our
algorithms may naturally be formulated; we also present algorithm for the approximation of the product of two matrices.
Also, we present two algorithms for the computation of low-rank approximations to a matrix [4].
 Recent interest in computing with massive data sets has led to the development of computational models in which the
usual notions of time efficiency and space efficiency have been modified [12,11,1,9,8,3]. In the applications that motivate
these data streaming models[11,3], e.g. the observational sciences and the monitoring and operation of large networked
systems, the data sets are much too large to fit into main memory.

Definition: For a vector !"#$ 	we let	!�	, i = 1, . . . , n, denote the ith element of x and we let |x| � �∑ |!�|�$�'(�)*. For a
matrix �"#+�$	we let,	����, j = 1, . . . , n, denote the jth column of A as a column vector and,	���� i = 1, . . . ,m, denote the
ith row of A as a row vector; thus, if	�,- denotes the (i, j) th element of A. The range of an �"#+�$	 is

range(A) = {y"#+: y = Ax for some x "#$} = span(��(�, ⋯ , ��$�).

The rank of	�, /0�����, is the dimension of /0�1���	and is equal to the number of

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 271

linearly independent columns of	�	; since this is equal to rank(�2) it also equals the
number of linearly independent rows of	�. The null space of �	is

null(A) = {x "#$: Ax = 0}.

For a matrix �"#+�$ 	we interest will be the Frobenius norm,
which is defined by

‖�‖� � �∑ ∑ ����$�'(+�'(�
)
*

If 3/���	is the matrix trace which is the sum of the diagonal elements of	�, then

‖�‖�� � 3/��2�� � 3/���2�.

THE SINGULAR VALUE DECOMPOSITION(SVD)

If 	�"#+�$, then there exist orthogonal matrices 4"#+�+and	
"#$�$
and	42�
 � Σ and	Σ is a diagonal matrix m×n such that

42�
 � Σ � 6701�8(, 8�, ⋯ , 89�			,				: � �7�;�, �<

8(= 8� = ⋯ = 89 = 0

Then the 	
�	decomposition of A is given as � � 4Σ
2.
The vectors?�, @�are called the left and right singular vectors of �	respectively, which correspond to the singular value	8�.
The left and the right singular vectors can be computed from the right and the left singular vectors by the
formulas:

�@� � 8�?�																								�2?� � 8�@�
Equivalently, 8(� = 8�� = ⋯ = 8A� B 0are all the positive eigenvalues of the nonnegative definite symmetric matrices	��2,
�2�, with the corresponding orthonormal eigenvectors ?(, ?�, ⋯ , ?A"#+ and @(, @�, ⋯ , @A"#$.
we define r by 8(≥ 8�≥ ・ ・ ・ ≥ 8A> 8AC(= ⋯= 89= 0, then rank(A) = r,

and	/0�1��� � D�0��?(, ⋯ , ?A� �?EE��� � D�0��@AC(, ⋯ , @9�

If we let 4A"#+�Adenote the matrix consisting of the first r columns of U,
A"#A�$denote the matrix consisting of the first r
columns of V , and ΣA "#A�Adenote the principal r × r sub matrix of	Σ, then

� � 4AΣA
A2 � ∑ 8F?F@FGAF'(

Note that this decomposition property provides a canonical description of a matrix as a sum of r rank-one matrices of
decreasing importance. If k ≤ r and we define

�H � 4HIH
H2 � ∑ 8F?F@FGHF'(,				�H � 4H4H2� � �∑ ?F?FGHF' ��		,
�H � �
H
H2 � ��∑ @F@FGHF'(�

�H is the projection of �	onto the space spanned by the top k singular vectors of	�.
Furthermore, the distance between �	and any rank-� approximation to �	is minimized by, �H i.e.,

+�$																	‖JKL‖M*'‖JKJN‖M*'∑ OP*�J�QPRNS)
	LTUV�W:AY$H�L�ZH																																																																																														

‖�H‖�� � ∑ 8F�HF'(,								‖�‖�� � ∑ 8F�AF'(.

APPROXIMATING MATRIX MULTIPLICATION

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 272

Recall that for �"#+�$and �"#$�[, the product ��	may be written as the sum of �	rank-one matrices

�� � ∑ ��F���F�$F'(

From this, a simple algorithm for approximate matrix multiplication suggests itself : pick a random subset of c columns of
�	to form an m × c matrix	�; form an c × p matrix �	out of the corresponding columns of B. Then, intuitively, that the
product ��	is an estimator (entry by entry) of the product	��.
We can sample the columns of �	so that column 7	is chosen with probability \�	 satisfying

\]7 � �^ � \H 		, � � 1⋯�

\H �
`J�N�`ab�Nc�a

∑ dJ�Nc�ddb�Nc�dW
NcR)

e.f.f.		eghijklmno :

Input: �"#+�$, �"#$�[, "pC	D?q	rq0r	1 s s �	, 0�6	;\�<�'($ 	D?q	rq0r	
\� = 0	0�6	∑ \�$�'(� 1
Output: C"#+�tand R"#t�[.
1. For t = 1 to c,
(a) Pick 7F"{1, . . . , n} with Pr [7F= k] =\H, k = 1, . . . , n, independently
and with replacement.
(b) Set ��F�= ���P� u\�P	0�6	��F� � ���P� u\�P⁄v
2. Return C,R

When this algorithm is given as input two matrices �	and	�, a probability distribution ;\�<�'($, and a number c of column-
row pairs to choose, it returns as output matrices �	and �	such that the product ��	is an approximation to	��. Observe that
since

�� � ∑ ��F���F� � ∑ (
tw�xP�

���P����P�tF'(tF'(

 Definition: The sequence of matricesy��+���+�z m=1,2,… where they are independent and identically distribution as	��

we call the��(���(�, ��������, ⋯ perform a sequence of realized simulated matrices of	��.

Definition: For m=1,2,…,L	��+���+� independent realized stochastic matrices with property {���+���+�� � ��

i.e.		��+���+� with the same distribution as matrix ��	where {���+���+�� � �� , then | � (
}∑ ��+���+�}+'(is called the

Monte Carlo simulated matrix of	��.

Implementation of the sampling and running time. To implement the �.~.~	algorithm, it must be decided which
elements of the input to sample and those elements must then be sampled. In the case of uniform sampling one can decide
before the input is seen which column-row pairs to sample. Then, a single pass over the matrices is sufficient to sample the
columns and rows of interest and to construct �	and	�; this requires O(c(m+ p)) additional time and space. We will see
below that it is useful to sample according to a non uniform probability distribution that depends on column and row
lengths, e.g.
In order to decide which column-row pairs to sample in such a case, one pass through the matrices and O(�) additional time

and space is sufficient; in the additional space running totals of ̀��H�`�and ̀��H�`� are kept, so that after the first pass`��H�`,
`��H�`, k = 1, . . . , n, and thus the probabilities, can be calculated in O(n) additional time.
Then in a second pass the columns and rows of interest can be sampled and �	and R can be constructed and stored; this
requires O(c(m + p)) additional space and time. Thus, in addition to either one or two passes over the data, for both uniform
and non uniform sampling, O(c(m+n+p)) additional space and time is sufficient to sample from the matrices �	and �	of the
input and to construct the matrices �	and	�.

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 273

Lemma 1. Suppose	�"#+�$, �"#$�[, "�Csuch that 1 ≤ c ≤ n,and	;\�<�'($ are such that \�≥0 and	∑ \�$�'(� 1. Construct
�	and �	with the �.~.~	algorithm, and let ��	be an approximation to	��.Then [5]

{�������� � ������

0/�������� � (
t∑

JxN* bxN*
wN � (

t �������$H'(.

Lemma 2. Suppose	�"#+�$, �"#$�[, "�Csuch that 1 ≤ c ≤ n,and 	;\�<�'($ are such that \�≥0 and	∑ \�$�'(� 1 . Construct
�	and �	with the �.~.~	algorithm, and let ��	be an approximation to	��. Then [5]

{]‖�� � ��‖��^ � ∑ `J�N�`*`b�N�`*
twN � (

� ‖AB‖��$H'(

Furthermore, if

\H � `J�N�``b�N�`
∑ dJ�Nc�ddb�Nc�dW
NcR)

Then

{]‖�� � ��‖��^ � (
t �∑ `��H�``��H�`$H'(�� � (

t ‖��‖�� .

We will say that the sampling probabilities \H � `��H�``��H�` ∑ `��Hc�` d��Hc�d$
Hc'(v are the optimal probabilities since they

minimize {]‖�� � ��‖��^, which as Lemma 2 shows is one natural measure of the error. We will say that a set of sampling

probabilities 	;\�<�'($ are nearly optimal probabilities if \H = �`��H�``��H�` ∑ `��Hc�` d��Hc�d	$
Hc'(v for some positive constant

β ≤ 1.

Theorem 1. Suppose #+�$,	�"#$�[, "�Csuch that 1 ≤ c ≤ n, and 	;\�<�'($ are such that 	∑ \�$�'(� 1and such that for
some positive constant β ≤ 1

 \H = �`J�N�``b�N�`
∑ dJ�Nc�ddb�Nc�dW
NcR)

Construct �	and �	with the �.~.~	algorithm, and let ��	be an approximation to��.
Then [5],

{]‖�� � ��‖��^ s (
�t ‖�‖��‖�‖��

Furthermore, let δ ∈ (0, 1) and	� � 1 u8 �⁄ log�1 �⁄ �	Then, with probability atleast 1 − δ,

‖�� � ��‖�� s �*
�t ‖�‖��‖�‖��

In particular, if c ≥ 1/���, then by using Jensen’s inequality it follows that

{]‖�� � ��‖��^ s �‖�‖��‖�‖��

and if, in addition, c ≥��/���, then with probability at least 1 − δ

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 274

‖�� � ��‖� s �‖�‖�‖�‖� .

By taking B = �2and applying Jensen’s inequality, we have the following theorem as a corollary of Theorem 1.

Theorem 2. Suppose Aϵ#��� ,	Bϵ#���, cϵpCsuch that 1 ≤ c ≤ n, and 	;P,<,'(� are such that 	∑ \�$�'(� 1	and such that

	\H = �`��H�``��H�` ∑ `��Hc�` d��Hc�d	$
Hc'(v for some positive constant β≤ 1.Furthermore, let δ ∈ (0, 1) and

� � 1 u8 �⁄ log�1 �⁄ �.Construct �	(and	� � �2)

with the �.~.~	algorithm, and let ��2be an approximationto ��2. Then [5],

{]‖��2 � ��2‖�^ s (
u�t ‖�‖��

and with probability at least 1 − δ,

‖��2 � ��2‖� s �
u�t ‖�‖�� .

Linear Time SVD Algorithm (L.T.SVD)

Input: �"#+�$, �"#$�[, , �"pC	D?q	rq0r	1 s � s s �	, 0�6	;\�<�'($ 	D?q	rq0r	
\� = 0	0�6	∑ \�$�'(� 1

Output: �H"#+�$	0�6	8F���, r � 1,⋯ , �.
1. For t = 1 to c,
(a) Pick 7F"1, . . . , n with Pr [7F= α] =\�, α = 1, . . . , n.
(b) Set ���P� u\�P	.v

2. Compute �2�	and its SVD; say �2� =∑ 8F�����F�FGtF'(
3. Compute qF � ��F 8F���	⁄ for t = 1, . . . , k.

4. Return	�H, where �H�F� � qF	, 0�6	8F���, t = 1, . . . , k.

Linear time SVD approximation

Given a matrix �"#+�$we wish to approximate its top k singular values and the corresponding singular vectors. The
strategy behind the Linear Time 	
�	algorithm is to pick c columns of the matrix	�, rescale each by an appropriate factor to
form a matrix	�ϵ#���, and then compute the singular values and corresponding left singular vectors of the matrix �, which
will be approximations to the singular values and left singular vectors of	�, in a sense we make precise later. These are
calculated by performing an 	
�	of the matrix ��2to compute the right singular vectors of �	and from them calculating the
left singular vectors of	�.
It will be shown that if the probabilities	;\�<�'($ are chosen judiciously, then the left singular vectors of � are with high
probability approximations to the left singular vectors of	�.

We will show that in addition to this error the matrix �H�H2� has an error that depends on ‖��2 � ��2‖� . Then, using the
results of Theorem 2, we will show that this additional error depends on ‖�‖��.

Theorem 3. Suppose �"#+�$and let �H	be constructed from the �. 3. 	
�	algorithm. Then [6],

‖� � �H�H2�‖�� s ‖A � A�‖�� 2√�‖��2 � ��2‖�.

Theorem 4. Suppose	�"#+�$; let�H be constructed from the �. 3. 	
�	algorithm by sampling c columns of A with

probabilities	;\�<�'($ such that �� = �`����`� ‖�‖��v 	for some positive β ≤ 1, and le	t. Let		� � 1 u8 �⁄ log�1 �⁄ �	. E�r	ε B
0	 . If = 4� ���⁄ , then [6],

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 275

{]‖� � �H�H2�‖��^ s ‖A � A�‖�� ε‖�‖��

and if = 4��� ���⁄ , then with probability at least 1 − δ,

‖� � �H�H2�‖�� s ‖A � A�‖�� ε‖�‖��.

Implementation details and running time

To measure the approximation error we defined the relative error of the approximation as,‖� � �H�H2�‖�� ‖�‖��⁄ where �	is
the original data matrix and �H�H2� is k-rank approximation to A given by L.T.SVD algorithm. the optimal error
‖� � �H‖�� ‖�‖��⁄ where �H is the optimal �-rank approximation to matrix	�. The best approximation is given by singular
value decomposition, which is too time consuming for very large m and n.
Given the elements to be sampled, the matrix �	can then be constructed in one additional pass; this requires additional space
and time that is	����. Given �"#+�t, computing �2� requires ����additional space and �(��) additional time, and
computing the 	
�	of	�2� requires �() additional time. Then computing �H	requires k matrix-vector multiplications for
a total of �����additional space and time. Thus, overall �(�+�) additional space and �(�� +) additional time are
required by the �. 3. 	
�	algorithm.

Constant Time SVD Algorithm (C.T.SVD)

Input:		�"#+�$, , ¡, �	"	pC	D?q	rq0r	1 s ¡ s �, 1 s s �, 0�6	1 s � s min�¡, � , ;\�<�'($ 	D?q	rq0r	\� =0	0�6	∑ \�$�'(� 1.
Output: 8F�¥�, r � 1,⋯ E	0�6	�¦§"#+�§ .

1. For t=1 to c,
 �0�		\7�	7F"1,⋯ , �	¡7rq Pr]7F � ©^ � \� , © � 1,⋯ , �, 0�6	D0@�	y�7F , \�F� ∶ r � 																1, ⋯ , z.
 �«�		�r		 ���P� u\�P 	.v 	��¬r�	rq0r	�	7D	�¬r	�!�E77rE�	¬�Dr/?r�6	7�	��~. �
2. �q¬¬D�	y�z�'(

+ 	D?q	rq0r	� � `����`� ‖�‖��v 	.
3. For t=1 to w,

�0�	\7�	®F 	"	1, ⋯ ,�	¡7rq Pr]®F � ©^ � �, © � 1,⋯ ,�.
�«�		�r		¥�F� � ���P� u¡�P⁄ .

4. �¬��?r�	¥2¥	0�6	7rD		
�. 	0�	¥2¥ � ∑ 8F��¥�¯F¯FGtF'(.
5. °±	0	‖. ‖� 	«¬?�6	7D	6�D7/�6, D�r	² � � 100�.⁄
6. ��r		E � min;�,max	;r ∶ 	8F��¥� = ²‖¥‖�� }}.
7. ��r?/�	D7�1?E0/	@0E?�D	;8F�¥�<F'(§ 	0�6	rq�7/	¬//�D�¬�67�1	D7�1?E0/	@�r¬/D	;¯F<F'(§ .

Constant time SVD approximation (C.T.SVD)

Given a matrix �"#+�$	we now wish to approximate its top �	singular values and the corresponding singular vectors the
�. 3. 	
�	algorithm is to pick c columns
of the matrix	�, rescale each by an appropriate factor to form a matrix 	�	"#+�t, and then compute approximations to the
singular values and left singular vectors of the matrix �, which will then be approximations to the singular values and left
singular vectors of	�. In the �. 3. 	
�	algorithm, the left singular vectors of the matrix � are computed exactly. With the
�. 3. 	
�	algorithm, sampling is performed again, drawing rows of �	to construct a matrix	¥"�´�t. The 	
�	of ¥2¥ is
then computed; let ¥2¥ � �∑µGµ�2 � �∑µ� �2. The singular values and corresponding singular vectors so obtained are
with high probability approximations to the singular values and singular vectors of �2� and thus to the singular values and
right singular vectors of �. Note that this is simply using the �. 3. 	
�	algorithm to approximate the right singular vectors
of � by randomly sampling rows of �.
In that case, �H2�H � °H, �H2�H was an orthonormal projection, and �H2�H� was our rank at most k approximation to A. In
the constant time model, we do not have access to	�H but instead to�¦§, where the columns of	�¦§, i.e., q¶F � ��2 8F¥⁄ 		t = 1,
. . . , ℓ, do not form an orthonormal set. However, if � and ¥	are constructed by sampling with optimal probabilities, then

with high probability the columns of �¦§are approximately orthonormal,	�¦§·�¦§ ¸ °§ , and �¦§�¦§· � ∑ 	q¶¹	q¶¹º§F'(s
approximately an orthonormal projection. Applying this to	�, we will get our low-rank approximation.

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 276

Theorem5. Suppose	�"#+�$; let a description of �¦§ be constructed from the �. 3. 	
�	algorithm by sampling c columns

of �	with probabilities 	;\�<�'($ and w rows of � with probabilities 	y�z�'(
+

where �� � `����`� ‖�‖��v and � � `����`� ‖�‖��v

. 	
E�r	� � 1 u8log�2 �⁄ � and	ε B 0 . If a Frobenius norm bound is desired, and hence the C.T. 	
�	algorithm is run with γ

= /100k, then by choosing = ���� �»⁄ columns of A and

	¡ = ���� �»⁄ 	rows of � we have that with probability at least 1 – δ [6],

¼� �	�¦§2�¦§�¼�
� s ‖A � A�‖�� ε‖�‖��.

Example1: Let �"#+�$ و �"#$�[. We want to evaluate an approximation of �� by Monte Carlo method where � and �
have the same structure as explained in �.~.~ method.

 200 150 100 50 10 �

 �, �, �

0.0021 0.0027 0.0033 0.0074 0.0402 �, � � 500, � � 300
0.0019 0.0027 0.0038 0.0074 0.0394 �, � � 1000, � �

900

0.0020 0.0024 0.0037 0.0076 0.0382 �, � � 1500, � �
1000

0.0020 0.0025 0.0038 0.0075 0.0373 �, � � 2000, � �
1000

Table 1: Relative error of results in example 1

It is well known that the relative error is 		‖JbKÀU‖M*‖J‖M*
.

Fig 1: Error of results based on number of iterations based on	�.~.~ Algo

In table 2, we compare the computational time needed for approximating �� by �� multiplication, using � 2					,						� �
200 and the corresponding time needed for obtaining �� multiplication where we show them by r7��1 and r7��2,
respectively.

 Relative Error lknÁÂ lknÁÃ n,Ä, Å

0.0021 3.909653 1.6869 �, � � 500, � �
300

0.0019 50.051374 4.812916 �, � � 1000, � �
900

e
rr

o
r

number of iteration

m=n=500,p=300

m=m=1000,p=900

m=n=1500,p=1000

m=n=2000,p=1000

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 277

0.0020 125.800965 7.815693 �, � � 1500, � �
1000

0.0020 249.492549 10.503226 �, � � 2000, � �
1000

Table 2: Computational time for �� and ��

Fig 2: Comparison of computational time for obtaining �� and ��

We note that the computational time for obtaining �� based on algorithm �.~.~ is significantly less than the
corresponding time for evaluating ��.

Example 2: Suppose that	�"#+�$. Using a fixed � � 1 and increasing (the number of columns that we select them
randomly), we want to evaluate the relative error, the computational time of both �. 3. 	
� and optimal 	
� algorithms
and compare them together. We note that for 			� � 1				,				� � � � 1500 the relative error sand speed of optimal are
0.2497 and 203.	215822 seconds, respectively.

 Time Relative Error

3.720119 0.2509 200

8.071144 0.2502 400

31.635689 0.2499 600

55.630737 0.2498 800

91.607197 0.2498 1000

144.304089 0.2497 1200

Table 3: Relative error and computational time of optimal SVD algorithm

Relative error of optimal � rank approximation is
‖JKJN‖M*
‖J‖M*

Relative error of the L.T. SVD algorithm is
¼JKÈNÈNGJ¼M

*

‖J‖M*

500×300 1000×900 1500×1000 2000×1000

time1 1.6869 4.812916 7.815693 10.503226

time2 3.909653 50.051374 125.800965 249.492549

ti
m

e
(m

in
)

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 278

Fig 3: Error of results for optimal SVD algorithm based on c

As we see with increasing c, the relative error in �. 3. 	
� algorithm is reduced. Now, if we set � 2		,				� � 1	, with
increasing the number of iterations � in Monte Carlo method, we compare the relative error in �. 3. 	
� and 	
�
algorithms in table 4.

 Time Relative Error É
3.041115 0.2509 100

4.121195 0.2504 200

5.228417 0.2501 300
6.309273 0.2500 400

7.386124 0.2499 500

8.472105 0.2499 600

9.565714 0.2499 700

10.678412 0.2498 800

Table 4: Error of results for Monte Carlo algorithm based on �

e
rr

o
r

c

total number of sampled columns optimal SVD

e
rr

o
r

number of iteration(L)

monte carlo method(L.T.SVD) optimal SVD

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 279

Fig 5: Comparison of errors in optimal 	
� and Monte Carlo algorithms

From Fig 5, we conclude that with increasing the relative error will close to optimal 	
� error.

Now, we compare the computational time using Monte Carlo (�. 3. 	
�) and optimal 	
�	algorithms.

Fig 6: comparison of need time for approximation using MC and 	
�	methods.

References

[1] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, J. ACM, to appear.
[2] R. Agrawal, J.Gerhrke, D.Gunopulos, and P. Raghavan, Automaticsubspace clustering of high dimensional data for data
mining applications, Proc. ACM SIGMOD Conf. onManagement of Data, 1998, 94-105.
[3] D. Barbara, C. Faloutsos, J. Hellerstein, Y. Ioannidis, H. V. Jagadish, T. Johnson, R. Ng, V. Poosala, K. Ross, and K. C.
Sevcik, The New Jersey data reduction report, Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 1997.
[4] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices II: Computing a low-rank
approximation to a matrix, SIAM J. Comput., 36 (2006), pp.158–183.
[5] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices I:Approximating matrix
multiplication, SIAM J. Comput., 36 (2006), pp. 132–157.
[6] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices II: Computing a low-rank
approximation to a matrix, SIAM J. Comput., 36 (2006), pp. 158–183.
[7] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices III: Computing a compressed
approximate matrix decomposition, SIAM J. Comput., 36 (2006), pp. 184–206.
[8] P. Drineas and R. Kannan, Pass efficient algorithms for approximating large matrices, in Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 223–232.
[9] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, An approximate L1-difference algorithm for massive data
sets, in Proceedings of the 40th Annual IEEE Symposium on the Foundations of Computer Science, 1999, pp. 501–511.
[10]G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, London,1989.
[11] M. R. Henzinger, P. Raghavan, and S. Rajagopalan, Computing on Data Streams, Tech Report 1998-011, Digital
Systems Research Center, Palo Alto, CA, 1998.

ti
m

e
(m

in
)

error

monte carlo method(L.T.SVD)

total number of sampled columns

optimal SVD

Behrouz Fathi Vajargah & Ateyeh Jahanbin, ACSA, Vol. 2, No. 1, pp. 270-280, 2012 280

[12] J. I. Munro and M. S. Paterson, Selection and sorting with limited storage, in Proceedings of the 19th Annual IEEE
Symposium on Foundations of Computer Science, 1978, pp. 253–
258.

