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Abstract – The Faure sequence is one of the most well-known quasi-random sequences used in quasi-Monte Carlo 
applications. In its original and most basic form, the Faure sequence suffers from correlate different dimensions but when 
differences of sample size and dimension is high, the Faure sequence operates better than randomly scrambled version. In 
this paper we analyze various scrambling methods and propose a new method by mixing Faure sequence with the best 
available scrambled version. We demonstrate the usefulness of our method by integration problems. 
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1. Introduction 
 
     The main problem of the Faure sequence is that when 
differences in sample size and dimension are small, integral 
error increases sharply. Other problem of this sequence is 
running time. The purpose of this article is providing new 
method that improves the results. We design their 
algorithms by use of nested functions to be performed time 
less. We compare these methods with other methods by 
error and time tables and a set of test-integrals. Faure sets bRjR 
= b for j = 1, . . . , s and uses powers of the upper triangular 
Pascal matrix modulo b for the generator matrices. The nth 
element of the Faure sequence is expressed as 
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Here φRbR(nP

’
P) is the radical inverse function in base b and nP

’
P = 

(nR0R, nR1R, . . . , nRmR) P

T
P is the digit vector of the b-adic 

representation of n. b is a prime number greater than or 
equal to the dimension s and P is the Pascal matrix modulo 
b whose (i, j)- element is equal to  mod b. The matrix-
vector products PP

j
PnP

’
P for j = 0, . . . , s − 1 are done in modulo 

b arithmetic. Fig.1 illustrates a disadvantage of the Faure 
sequence: the above construction leads to a sequence that 
has correlations between its individual coordinates. This 
leads among others to bad two- dimensional projections and 
also has its consequences when the sequence is used for 
numerical integration .  
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     A solution to this problem consists of randomly 
scrambling the Faure sequence. The next section surveys 
known scrambling schemes. 
 
 
2. Scrambling the Faure sequence 
    
2.1. GFaure sequence 
 
    Tezuka [12, 14] proposed the generalized Faure 
sequence, GFaure, with the jth dimension generator matrix 
CP

(j)
P = AP

(j)
PP P

j−1
P and where the AP

(j)
P for j = 1, . . . , s are 

arbitrary non-singular lower triangular matrices over FRbR. An 
implementation of GFaure in the C programming language  
is given in [14].  
    
 
2.2. Faure sequence with random linear (digit) 
scrambling 
 
    Matousek [6] discusses several simplified versions of 
Owen’s scrambling in which matrices and shift vectors are 
used. The points of a sequence constructed with Matousek’s 
methods have  the form 
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   AP

(j)
P =     ,   gRjR=   

 
    where the gRjR’s and the hRi,jR’s with i > j are chosen 
randomly and independently from {0, 1, . . . , b − 1} and the 
hRj,jR’s  are chosen randomly and independently from {1, 2, . . 
. , b − 1}. Another special ca   of the above scrambling is 
the random linear digit scrambling where the   matrices A(j) 
and the vectors gRjR have the form 
                    

       AP

(j)
P =      ,     gRjR=   

       
      With the hRjR∈ {1, 2, . . . , b − 1} and the gRjR ∈ {0, 1, . . . , 
b − 1} chosen uniformly and independently at  random. 
 
 
2.3. Faure sequence with I-binomial scrambling      
     
        Here, the AP

(j)
P and the gRjR for j = 1, . . . , s are defined as 

 AP

(j)
P =      ,    gRjR=   
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    Where h1 is chosen randomly and independently from 
{1, 2, . . . , b − 1} and hr (r > 1) and gr (r ≥ 1) are chosen 
randomly and independently from {0, 1, . . . , b − 1}. [13] 
 
 
2.4. Striped matrix scrambling 
 
     Owen [1] proposed a scrambling method with matrices 
AP

(j)
P and shift vectors gRjR of the form 

 

  AP

(j)
P =       ,   gRjR=  

 
    Where the hRiR are chosen randomly and independently 
from {1, 2, . . . , b − 1} and the gRiR are chosen randomly and 
independently from {0, 1, . . . , b − 1}. 
 
 
2.5. Nonlinear scrambling 
 
    For which the jth coordinate of the nth point has the 
general form: 
 
   xRnRP
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   The matrices AP

(j)
P and the vectors gRj Rfor j = 1, . . . , s may 

be chosen as in the previously discussed scrambling 
methods. Note that when random linear digit scrambling is 
combined with the bijections Ф and Ψ, this form of 
scrambling becomes a special case of the generalized linear 
random scrambling as given in Definition2.3 of [1]. 
If Ψ is applied and we take Ф to be the identity mapping, 
then denote this by “pre-inversive scrambling”. If Ψ is the 
identity mapping and Ф is applied, then call this “post-
inversive scrambling”. 
 
2.6. Optimal Faure sequence 
 
      Currently, various scrambling methods have been 
proposed, that to some extent solves problem of the Faure 
sequence dependency in high-dimensional. Almost these 
scrambling methods operate the same. Provide a new         

method that will operate similar to the previous scrambling 
method is not difficult. We must seek ways to improve the 
situation. With review two-dimensional projections of 
Faure sequences in different dimensions and comparison 
with the scrambling methods also comparison numerical 
integration’s error, we realize that when difference of 
sample size and dimension is high, The Faure sequence 
works better than randomly scrambled version. On this 
basis, we present a new method. In all algorithms, we use 
nested functions and runtime have improved somewhat.  
 
 
3. MFaure sequence 
 
     In this section, we use the Faure sequence when 
difference of sample size and dimension is high and best 
existing scramble when difference of sample size and 
dimension is low. But the question is: What is the 
difference. We consider the difference equal to (bP

4
P-1) and 

for the second time consider equal to (bP

2
P) and compare the 

results. Here b is the smallest prime number greater than or 
equal dimension s. The nth element of the MFaure 
sequence has the general form: 
 

XRnR=                              

(1) 
  
     We will call this ‘’MFaure sequence’’. Another method 
is the following 
                  

XRnR=                                

(2) 
                   
      We will call this ‘’M2Faure sequence’’. Figs. 2 and 3 
show two-dimensional projections of 1024 points of a 40-
dimensional MFaure sequence respectively M2Faure 
sequence. 
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4. Numerical integration 
 
    A method to compare the quality of the sequences is to 
apply the sequences in high-dimensional integration 
problems [10]. 
 
   Consider the following test-integrals: 
 
 I1 (f) =          (3)   
                    
 I2 (f) =          (4) 
 
 I3 (f) =           (5) 
 

    For (3), all variables are equally important and the 
truncation dimension is approximately the same as the 
nominal dimension. This is the most difficult case for 
numerical integration. For (4), the importance of the 
successive variables is decreasing. We refer to [15] for 
more details. The relative integration errors for the test 
functions (3) and (4) and (5) are given in Figs. 4 and 5 and 
6 respectively. As can be seen in Figs, The MFaure and 
M2Faure sequences operate better than others. And the 
M2Faure sequence operates better than the MFaure 
sequence. There is the fact that no scrambling method 
outperforms the others, all scrambling methods have similar 
behavior. 
 

 
                                   Fig4. Relative error against number of sample points for test-integral (3) for i = 1, . . . , s in 5 dimension. 
 



Behrouz Fathi Vajargah & Elham Radmoghaddam, ACSA, Vol. 2, No. 1, pp. 306-313, 2012 311 

 

 
                           Fig5. Relative error against number of sample points for test-integral (4) for i = 1, . . . , s in 5 dimension. 
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                               Fig6. Relative error against number of sample points for test-integral (5) for i = 1, . . . , s in 5 dimension. 
 
6. Conclusions 
 
     A first conclusion to be drawn from our experiments is 
that if differences of sample size and dimension are high, 
clearly our methods operate better than others. Secondly, if 
this difference is small, operate like the best available 
scrambling method. Using the evaluation of numerical 
integrals, we did not find any significant differences 
between the different scrambling methods. 
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