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Abstract –This paper present an approach to evaluate overvoltages caused by transformer switching based on Radial Basis Function
Neural Network (RBFNN). Such an overvoltage might damage some equipment and delay power system restoration. The developed
ANN is trained with the worst case of the switching condition, and tested for typical cases. The simulated results for a partial of 39-
bus New England test system, show that the proposed technique can estimate the peak values of switching overvoltages with good
accuracy.
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1. Introduction
During the early stages of restoring high voltage

overhead and underground transmission lines, concerns
are with three related overvoltages: sustained power
frequency overvoltages, switching transients (surges), and
harmonic resonance. In the early stages of the restoration,
the lines are lightly loaded; resonance therefore is lightly
damped, which in turn means the resulting resonance
voltages may be very high [1], [2].

If the frequency characteristic of the system shows
resonance conditions around multiples of the fundamental
frequency, very high and weakly damped temporary
overvoltages (TOVs) of long duration may occur when
the system is excited by a harmonic disturbance, such as
the switching of lightly loaded transformers or
transformer saturation [2-4].

Overvoltage will put the transformer into saturation,
causing core heating and copious harmonic current
generation. Circuit breaker called upon to operate during
periods of high voltage will have reduced interrupting
capability. At some voltage even the ability to interrupt
line-charging current will be lost [5-7].

In this paper power system blockset (PSB), a
MATLAB/Simulink-based simulation tool [8], [9] is used
for computation of temporary overvoltages. In order to
study temporary overvoltages for a large number of
possible system configurations, it is necessary to run
many time-domain simulations resulting in a large
amount of simulation time. A way to limit the overall
calculation time is to reduce the number of simulations by
applying analytical or knowledge-based rules to discard a
number of system configurations before an actual time-
domain simulation is carried out. This paper presents the
ANN application for estimation of peak overvoltages
under switching transients during transformer
energization. A tool such as proposed in this paper that
can give the maximum switching overvoltage will be

helpful to the operator during system restoration. Also it
can be used as training tool for the operators. In the
proposed ANN we have considered the most important
aspects, which influence the transient overvoltages such
as source voltage, line length, switching angle, saturation
curve slope and remanent flux. This information will help
the operator to select the proper sequence of transformer
to be energized safely with transients appearing safe
within the limits. Results of the studies are presented for
a partial of 39-bus New England test system to illustrate
the proposed approach.

2. Overvoltages during Transformer
Energization

This paper concentrates on the estimation of harmonic
overvoltages. These are a result of network resonance
frequencies close to multiples of the fundamental
frequency. They can be excited by harmonic sources such
as saturated transformers, power electronics, etc. They
may lead to long lasting overvoltages resulting in arrester
failures and system faults [1].

The major cause of harmonic resonance overvoltage
problems is the switching of lightly loaded transformers
at the end of transmission lines. The harmonic-current
components of the same frequency as the system
resonance frequencies are amplified in case of parallel
resonance, thereby creating higher voltages at the
transformer terminals. This leads to a higher level of
saturation, resulting in higher harmonic components of
the inrush current that again results in increased voltages
This can happen particularly in lightly damped systems,
common at the beginning of a restoration procedure when
a path from a black-start source to a large power plant is
being established and only a few loads are restored yet
[2], [10].

Fig.1 shows the sample system considered for
explanation of the proposed methodology which is a
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portion of 39-bus New England test system. Fig. 2 shows
a sample switching overvoltages at bus 39 when
transformer is energized.

Figure 1. Power system at the beginning of a restoration procedure.
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Figure 2. Voltage at bus 39 after switching of transformer for worst
case condition.

In practical system a number of factors affect the
overvoltages factors due to energization or reclosing. In
this paper following parameters is considered:

 Source voltage
 Line length
 Closing time of the circuit breaker poles
 Saturation curve slope
 Remanent flux

Source voltage affects the overvoltage strongly. Fig. 3
shows the effect of source voltage on overvoltage peak at
different remanent flux. Fig. 4 shows the effect of line
length on overvoltages at different saturation curve slope.
The saturation curve, and especially the Lsat i.e. the final
slope of this curve, is a key point for the computation of
the inrush currents but is not very easy to obtain. The
transformer manufacturer provides a Lsat slope value with
a dispersion usually considered of ±20 %. Fig. 5 shows
effect of remanent flux on overvoltages at different line
length. Fig. 6 shows the effect of saturation curve slope
on overvoltages at different source voltage.

As discussed above for an existing system the main
factors which affect the peak values of switching
overvoltage are source voltage, line length, switching
angle, saturation curve slope and remanent flux. Here it
should be mentioned that a single parameter often cannot
be regarded independently from the other important
influencing factors. The magnitude of the overvoltages
normally does not depend directly on any single isolated
parameter and a variation of one parameter can often alter
the influence of another parameter, in other words there
exists an interaction between the various system and
breaker parameters. This forbids the derivation of precise
generalized rule of simple formulae applicable to all

cases [11]. So an ANN can help to estimate the peak
values of switching overvoltages generated during
transformer energization. An ANN is programmed by
presenting it with training set of input/output patterns
from which it then learns the relationship between the
inputs and outputs. In next section an ANN-based
approach is described which can give a acceptable
solution of switching transients by the help of which an
operator can take a quick decision at the time of
operation.
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Figure 3. Overvoltage peak at bus 39 vs. source voltage: with line
length = 100 km and saturation curve slope= 0.32 p.u.
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Figure 4. Overvoltage peak at bus 39 vs. line length: with source
voltage=1 p.u. and remanent flux=0.8 p.u.
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Figure 5. Overvoltage peak at bus 39 vs. remanent flux: with source
voltage = 1 p.u. and saturation curve slope= 0.32 p.u.
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Figure 6. Overvoltage peak at bus 39 vs. saturation curve slope: with
line length= 100 km and remanent flux= 0.8 p.u.

3. Proposed Method for Harmonic
Overvoltages Study

3.1. Worst Switching Condition Determination for
Overvoltages Simulation

Normally for harmonic overvoltages analysis, the
worst case of the switching condition must be considered
which it is a function of switching time, transformer
characteristics and its initial flux condition, and
impedance characteristics of the switching bus [12].
Using the worst switching condition, the number of
simulations for each case can be reduced significantly.

In order to determine worst-case switching time, the
following index is defined as
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where 0t is the switching time and 0 is initial transformer
flux. This index can be a definition for the worst-case
switching condition. Using a numerical algorithm, one
can find the switching time for which W is maximal (i.e.,
harmonic overvoltages is maximal).

Fig. 7 shows the result of the PSB frequency analysis
at bus 39. The magnitude of the Thevenin impedance,
seen from bus 39, Zbus39 shows a parallel resonance
peak at 293 Hz. Fig. 8 shows changes of harmonic
currents and W index with respect to the current starting
angle [13], where k is harmonic number. Fig. 2 shows
voltage at bus 39 after transformer switching for the
worst-case condition (i.e., 17°) in one case. Table 1
summarizes the results of overvoltages simulation for
three different switching conditions that verify the
effectiveness of W index.
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Figure 7. Impedance vs. frequency at bus 39.
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Figure 8. Changes of harmonic currents and W index vs. switching
angle.

Table 1. Effect of switching time on the maximum of overvoltage and
duration of Vpeak > 1.3 p.u.

Switching
Angle [deg.] Vpeak [p.u.] Duration of (Vpeak > 1.3 p.u.)

[Sec.]

17 1.6791 0.3494

51 1.6318 0.2746

74 1.2847 0

3.2. Steps of Assessment and Estimation of
Temporary Overvoltages

The steps for harmonic overvoltages assessment and
estimation follow.

1) Determine the characteristics of transformer that
must be energized.

2) Calculate the Zii(h) at the transformer bus for h =
2f0,… ,10f0.

3) Calculation of worst switching condition for
simulation.

4) Run PSB simulation.
5) Calculation overvoltage peak.
6) Repetition of above steps with various system

parameters to learning artificial neural network.
7) Testing artificial neural network with different

system parameters.
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Figure 9. The structure of RBF neural network.

4. Radial Basis Function Neural Network
Fig. 9 shows the structure of the RBF neural network,

which comprises of three layers. The hidden layer
possesses an array of neurons, referred to as the
computing units. The number of such units can be varied
depending on user’s requirement [14], [15]. Different
basis functions like spline, multiquadratic, and Gaussian
functions have been studied, but the most widely used
one is the Gaussian type. In comparison to the other types
of neural network used for pattern classification like back
propagation feedforward networks, the RBF network
requires less computation time for learning and has a
more compact topology. The Gaussian RBF is found not
only suitable in generalizing a global mapping but also in
refining local features without altering the already learned
mapping. Each hidden unit in the network has two
parameters called a center (ω) and a width (σ) associated
with it. The response of one such hidden unit to the
network input is expressed as
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where ωk is the center vector for kth hidden unit, σk is the
width of the Gaussian function, and || || denotes the
Euclidean norm. The output layer comprises a number of

nodes depending on the number of fault types to be
classified which perform simple summation. The
response of each hidden unit (1) is scaled by its
connecting weights (α’s) to the output nodes and then
summed to produce the overall network output. The
overall network output is expressed as
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where k indicates the total number of hidden neurons in
the network, αmk is the connecting weight of the kth
hidden unit to mth output node, and αmo is the bias term
for the corresponding mth output neuron.

The learning process of the RBFNN involves with the
allocation of new hidden units and tuning of network
parameters. The learning process is terminated when the
output error goes under the defined threshold [16].

4.1. Testing

All experiments have been repeated for different
system parameters. After learning, all parameters of the
trained networks have been frozen and then used in the
retrieval mode for testing the capabilities of the system on
the data not used in learning. The testing data samples
have been generated through the PSB program by placing
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the parameter values not used in learning, by applying
different parameters. A large number of testing data have
been used to check the proposed solution in the most
objective way at practically all possible parameters
variation. Percentage error is calculated as:

100
PSB

PSBANN
error(%) 


 (4)

The proposed model tested with portion of 39-bus
New England test system. Various cases of transformer
energization are taken into account and corresponding
peak values estimated from trained model.

Table 2. Case 1 some sample testing data and output

S.V. L.L. Lsat Φ0 VPSB VRBF errorV

0.925 95 0.34 0.1 1.4322 1.4061 1.8216
0.925 105 0.34 0.7 1.5868 1.5969 0.6392
0.925 135 0.38 0.5 2.0273 2.0523 1.2344
0.925 155 0.26 0.3 1.4626 1.4223 2.7549
0.975 85 0.34 0.3 1.3773 1.3509 1.9162
0.975 115 0.34 0.1 1.5817 1.5674 0.9025
0.975 145 0.3 0.7 1.7852 1.7703 0.8345
0.975 175 0.3 0.5 2.4214 2.3067 4.7359
1.025 105 0.38 0.3 1.7533 1.7884 2.0017
1.025 135 0.38 0.7 2.2154 2.2328 0.7842
1.025 155 0.34 0.1 1.5835 1.6044 1.3175
1.075 85 0.3 0.7 1.5817 1.5517 1.8936
1.075 95 0.26 0.7 1.7605 1.7025 3.2947
1.075 135 0.34 0.1 2.2708 2.2861 0.6742
1.075 175 0.38 0.1 2.8332 2.8954 2.1937

S.V. = source voltage, L.L. = line length [km], Lsat = saturation curve slope [p.u.], Φ0 = remanent flux [p.u.], and errorV = voltage error [%].

5. Case Study
In this section, the proposed algorithm is demonstrated

for two case studies that are a portion of 39-bus New
England test system, of which its parameters are listed in
[17]. The simulations are undertaken on a single phase
representation.

5.1. Case 1

Fig. 1 shows a one-line diagram of a portion of 39-bus
New England test system which is in restorative state.
The generator at bus 30 is a black-start unit. The load 39
shows cranking power of the later generator that must be
restored by the transformer of bus 39. When the
transformer is energized, harmonic overvoltages can be
produced because the transformer is lightly loaded.

Results for a sample test data are presented in Table 2
and also shown in Figs. 10–11. Table 2 contains the some
sample result of test data of case 1. Values in column
VPSB are the absolute values of peak voltage at bus 39
calculated by PSB program where the VRBF values are the
values simulated by trained network.

Fig. 10 shows overvoltage peak at bus 39 vs. the
source voltage while other parameter like line length,
saturation curve slope and remanent flux, constant at 125
km, 0.34 p.u. and 0.5 p.u., respectively. Fig. 11 shows
overvoltage peak at bus 39 vs. the remanent flux when
other parameter like source voltage, line length,
saturation curve slope, constant at 1.025 p.u., 95 km and
0.26 p.u., respectively.

5.2. Case 2

As another example, the system in Fig. 12 is
examined. It represents the same system as the one in Fig.
1, but a few restoration steps later. In the next step of the
restoration, unit at bus 29 must be restarted. In order to
provide cranking power for this unit, the transformer at
bus 29 should be energized. In this condition, harmonic
overvoltages can be produced because the load of the
transformer is small.
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Figure 10. Overvoltage peak vs. source voltage at bus 39 simulated by
ANN and PSB while line length 125km, saturation curve slope 0.34p.u.
and remanent flux 0.5p.u...
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Figure 13. Overvoltage peak vs. remanent flux at bus 39 simulated by
ANN and PSB while source voltage 1.025 p.u., line length 95 km and
saturation curve slope 0.26 p.u..

Figure 12. Studied system for case 2.

Table 3. Case 2 some sample testing data and output

S.V. L.L. Lsat Φ0 VPSB VRBF errorV

0.925 95 0.26 0.5 1.4995 1.5311 2.1074
0.925 115 0.34 0.3 1.6319 1.6527 1.2716
0.925 135 0.38 0.1 2.0581 2.1345 3.7109
0.925 165 0.3 0.7 1.8396 1.8121 1.4935
0.975 95 0.38 0.3 1.5387 1.5188 1.2948
0.975 125 0.34 0.3 1.9377 1.9082 1.5237
0.975 155 0.34 0.5 2.0493 2.0774 1.3694
0.975 175 0.26 0.7 2.0351 2.0177 0.8562
1.025 95 0.38 0.3 1.6183 1.6712 3.2706
1.025 125 0.34 0.3 2.0372 2.0445 0.3561
1.025 155 0.3 0.5 2.2047 2.1647 1.8126
1.075 95 0.26 0.5 1.7396 1.7915 2.9855
1.075 115 0.34 0.7 1.8967 1.8557 2.1629
1.075 145 0.38 0.5 2.3236 2.2807 1.8479
1.075 165 0.38 0.7 2.1047 2.0934 0.5376

S.V. = source voltage, L.L. = line length [km], Lsat = saturation curve slope [p.u.], Φ0 = remanent flux [p.u.], and errorV = voltage error [%].

The various cases of transformer energization are
taken into account and corresponding peak overvoltages
are computed from PSB program. Summary of few result
are presented in Table 3. It can be seen from the results
that the ANN is able to learn the pattern and give results
to acceptable accuracy.

6. Conclusion
In this paper an RBFNN approach has been suggested

to estimate the peak overvoltages due to transformer
energization. The results from this scheme are close to
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results from the conventional method and helpful in
predicting the overvoltage of the other case studies within
the range of training set. The proposed ANN approach is
tested on a partial 39-bus New England test system. This
method omits time-consuming time-domain simulations
and it is suitable for real time applications during system
restoration. Also it can be used as a training tool for the
operators.
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