
Advances in Computer Science and its Applications (ACSA) 314
Vol. 2, No. 1, 2012, ISSN 2166-2924
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

An Effort Estimation Model for Agile Software Development

Ziauddin, Shahid Kamal Tipu, Shahrukh Zia

 Gomal University, Pakistan

ziasahib@gmail.com

Abstract: Software effort estimation process in any software project is not only essential, but also a very critical
component. The success or failure of projects depends heavily on the accuracy of effort and schedule estimations, among
other things. The emergence of agile methods in the software development field has presented many opportunities and
challenges for researchers and practitioners alike. One of the major challenges is effort estimation for agile software
development. Though traditional effort estimation approaches are used to estimate effort for agile software projects but they
mostly result in inaccurate estimates. This research focuses on development of effort estimation model for agile software
projects. Construction and use of the model is explained in detail. The model was calibrated using the empirical data
collected from 21 software projects. The experimental results show that model has good estimation accuracy in terms of
MMRE and PRED (n).

Keywords: Software Effort Estimation, Agile Software Development, User Stories, Adaptive Systems

1. INTRODUCTION

Software cost estimating has been an important but difficult
task since the beginning of the computer era in the 1940s.
As software applications have grown in size and
importance, the need for accuracy in software cost
estimating has grown, too. Since the early 1950s, software
development practitioners and researchers have been trying
to develop methods to estimate software costs and
schedules [Zia et.al, 2011]. Software cost estimation
models have appeared in the literature over the past three
decades. However, the field of software cost estimation is
still in its infancy.
Although different software effort estimation techniques
have been introduced, which are being effectively used in
traditional software development, however the diversity of
new software development methodologies has resulted in a
situation where existing effort prediction models’
applicability appears to be limited. Agile software
development provides one such difficulty. This
methodology is based on entirely different concept of
software development which is neither suitable to be
calculated by FP analysis technique nor classical effort
estimation methods can be applied that are specifically
developed for sequential software development
methodologies.
Agile software development has been attached much
importance as a new software engineering methodology. It
emphasizes on good communication between the

developers, the rapid delivery of software, and change on
demand is the key of agile software development
(SCHMIETENDORF et.al, 2008). Agile methods of the
software development are increasingly used for industrial
projects. The application of effort estimation methods in
such kind of projects is very difficult, but an important task.
Classical estimation methods need well defined
requirements. Agile methodologies don’t support this
behavior. Rather, they see changed requests as important
challenge. All these make estimation in Agile Software
development a challenging task. This paper gives an
overview of the available estimation techniques and
describes in details estimation technique for Agile software
projects.

1.1 Cost Estimation Techniques

Cost estimation tools, or model-based estimation
techniques use data collected from past projects combined
with mathematical formulae to estimate project cost. These
models need system size as input. The main model-based
techniques include COCOMO, SLIM, RCA PRICE-S,
SEER-SEM, and ESTIMACS. The existing effort
estimation techniques are broadly classified as regression-
based models, learning-oriented models, expert based
approaches and composite-Bayesian methods.
Most of the software estimation models are based on
regression technique (Matson et al., 1994). Regression
models normally use previous data, constructed by

http://www.worldsciencepublisher.org/
mailto:ziasahib@gmail.com

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 315

collecting data on completed projects and developing
regression equations that characterize the relationships
among the different variables (Fairley, 1992). Estimates are
made by substituting the. New project parameters are
substituted into mathematical model. This model is
evaluated on regression data to make estimates. In these
models software development effort is simply dependent
variable of some predicted variables like Size, Effort
adjustment factors, Scaling factors etc. for regression
equation.
Regression models however need certain conditions in
some cases to be fulfilled particularly (Finnie et al., 1997).
These conditions are discussed by Boehm and Sullivan
(1999), and are based on experience from the use of
regression-based models. These typical conditions include
availability of a large dataset, no missing data items, no
outliers, and the predictor variables are not correlated. The
collection of approaches that fall under the heading of
regression-models include ordinary least-squares regression
(OLS), classification and regression trees (CART), stepwise
analysis of variance for unbalanced data sets (stepwise
ANOVA), combinations of CART with OLS regression and
analogy, multiple linear regression, and stepwise regression
(KEAVENEY, 2006).
There are other types of model, called Learning-oriented
models which are based on learning from previous
estimation experience. These models attempt to automate
the estimation process by training themselves from
previous experience to build computerized models (Boehm
et al., 2000). These models are capable of learning
incrementally and refining themselves as new data are
provided over time (Lee et al., 1998). Learning-oriented
models cover a wide area and include techniques such as
artificial intelligence approaches, artificial neural networks,
case-based reasoning (Mukhopadhyay and Kekre, 1992),
machine learning models, decision-tree learning, fuzzy
logic models, knowledge acquisition and rule induction
(Burgess and Lefley, 2001). The main model-based
techniques include COCOMO, SLIM, RCA PRICE-S,
SEER-SEM, and ESTIMACS. These estimation models
produce an estimate of the cost, effort or duration of a
project based on factors such as the size and desired
functionality of the system.
An important expertise based approach was found by
Briand et al. (1998) to be “comparison to similar, past
projects based on personal memory”. The expertise based
approaches are useful when no quantified, empirical data is
available (Boehm et al., 2000). They provide a practical,
low-cost and highly useful process (Johnson et al., 2000).
Another estimation technique used for software effort
estimation is analogy based estimation. The technique
examines past projects and uses the information retrieved as
a guide estimate for the proposed project (Angelis et al.,
2001, Jørgensen et al., 2003). The Checkpoint method is an
example of an analogy-based approach to software
estimation (Fairley, 1992). In this technique heuristics are
derived from actual project data or a formalization of expert
opinion. In order to derive these heuristics some form of

project data or information are used. These heuristics are,
then, used to estimate productivity, quality or size (Hihn
and Habib-agahi, 1991, Fairley, 1992). Expert judgment
Esitimation is also one of the popular estimation technique
in software effort estimation which is based on the
accumulated experiences of teams of experts in order to
come up with project estimates (Peters and Pedrycz, 1999,
Stamelos and Angelis, 2001). This technique is used where
the estimation process is primarily based on “non-explicit,
non-recoverable reasoning processes”, or perception and
intuition (Jørgensen, 2004b).
Expert Judgment techniques have been criticized by experts
for their reliance on human memory and the lack of
repeatability of such memory-based approaches
(Mukhopadhyay et al. (1992, (Mendes et al., 2002);
however reports have proven it to be the dominant strategy
in software development estimation (Jørgensen, 2004a,
Höst and Wohlin, 1997, Moløkken and Jørgensen, 2003,
Moløkken-Østvold et al., 2004). The Delphi technique and
work breakdown structure (WBS), top-down and bottom-up
estimation (Tausworthe, 1980), reasoning by analogy,
formal reasoning by analogy, informal reasoning by
analogy, and rules of thumb (Jones, 1996) fall under expert
judgment technique.
The strengths of expertise based methods and regression-
based methods were combined to introduce a new
estimation approach called the Bayesian approach which is
a semi-formal estimation process (Ferens, 1988). Bayesian
analysis allows for the fact that the data required for use in
most estimation techniques is typically of poor quality or
incomplete. Expert judgment is incorporated in this
approach to handle the missing data and provide a more
robust estimation process (Boehm and Sullivan, 1999).
Bayesian analysis has been used in many scientific
disciplines and was used in the development of the
COCOMO II model (Chulani et al., 1999, Boehm et al.,
2000). Cost Estimation, Benchmarking and Risk Analysis
(COBRA) is an example of a composite estimation model
(Ruhe et al., 2003).

1.2 Agile Software Development

Agile software development is a group of software
development methods based on iterative and incremental
development, where requirements and solutions evolve
through collaboration between self-organizing, cross-
functional teams. It promotes adaptive planning,
evolutionary development and delivery, a time-boxed
iterative approach, and encourages rapid and flexible
response to change. It is a conceptual framework that
promotes foreseen interactions throughout the development
cycle. The Agile Manifesto introduced the term in 2001.
Early implementations of lightweight methods include
Scrum (1995), Crystal Clear, Extreme Programming
(1996), Adaptive Software Development, Feature Driven
Development, and Dynamic Systems Development Method
(DSDM) (1995). These are now typically referred to as

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 316

agile methodologies, after the Agile Manifesto published in
2001.
 Methods exist on a continuum from adaptive to predictive.
Agile methods lie on the adaptive side of this continuum.
Adaptive methods focus on adapting quickly to changing
realities. When the needs of a project change, an adaptive
team changes as well. Predictive methods, in contrast,
focus on planning the future in detail. A predictive team
can report exactly what features and tasks are planned for
the entire length of the development process. Predictive
teams have difficulty changing direction.

1.2.1 Characteristics of Agile Software Process

Modularity: The key element of agile software process is
modularity which allows a process to be broken into
components called activities.
Iterative: Agile software processes focus on short cycles.
Within each cycle, a certain set of activities is completed.
Time-Bound: Time limits are set for each iteration and
schedule. This duration is called Sprint.
Parsimony: Agile software processes focus on parsimony.
That is, they require a minimal number of activities
necessary to mitigate risks and achieve their goals.
Adaptive: The agile process adapts the process to attack
new found risks, exposed in any iteration Similarly agile
process accommodate any added activity or modification to
the existing activities
Incremental: An agile process does not try to build the
entire system at once. Instead, it partitions the nontrivial
system into increments which may be developed in parallel,
at different times, and at different rates.
Convergent: The basic premise of agile process is to build
the system closer to the reality. This goal is achieved by
applying all possible techniques to ensure success in the
most rapid fashion.
People-Oriented: Agile processes favor people over
process and technology. They evolve through adaptation in
an organic manner. Developers that are empowered raise
their productivity, quality, and performance. After all, they
are the best individuals in the organization to know how to
make these changes.
Collaborative: Agile processes foster communication
among team members. Communication is a vital part of any
software development project. Quickly integrating a large
project while increments are being developed in parallel,
requires collaboration (MILLER, 2001).

1.3 Effort Estimation practice in agile software

Development

In waterfall a team member’s workload capacity is
determined by the manager who estimates how long certain
tasks will take and then assigns work based on that team
member’s total available time. Agile methodology takes a
considerably different approach to determining a team
member’s capacity. First of all, it assigns work to an entire
team, not an individual. Philosophically, this places an

emphasis on collective effort. Second, it refuses to quantify
work in terms of time because this would undermine the
self-organization central to the success of methodology.
This is a major break from waterfall: Instead of a manager
estimating time on behalf of other individuals and assigning
tasks based on conjecture, team members in Scrum use
effort and degree of difficulty to estimate their own work.
Agile Methodology does not prescribe a single way for
teams to estimate their work. However, it does ask that
teams not estimate in terms of time, but, instead, use a more
abstracted metric to quantify effort. Common estimating
methods include numeric sizing, t-shirt sizes, the Fibonacci
sequence and even dog breeds. The important thing is that
the team shares an understanding of the scale it is uses, so
that every member of the team is comfortable with the
scale’s values.
In the Sprint Planning Meeting, the team sits down to
estimate its effort for the stories in the backlog. The
Product Owner needs these estimates, so that he or she is
empowered to effectively prioritize items in the backlog
and, as a result, forecast releases based on the team’s
velocity. This means the Product Owner needs an honest
appraisal of how difficult work will be. Thus it is
recommended that the Product Owner does not observe the
estimation process to avoid pressuring a team to reduce its
effort estimates and take on more work. Even when the
team estimates amongst itself, actions should be taken to
reduce influencing how a team estimates. As such, it is
recommended that all team members disclose their
estimates simultaneously. Because individuals “show their
hands” at once, this process is like a game of poker.
Still, even when teams possess a shared understanding of
their scale, they can’t help but estimate differently. To
arrive at a single effort estimation that reflects the entire
team’s sense of a story’s difficulty, it often requires
numerous rounds of estimation. Veteran teams who are
familiar with the process, however, should reach a
consensus after just a few rounds of planning poker.
Normally effort estimation takes place at the beginning of
new iteration during Release Planning. A Section of the
XP-Project is shown in Figure 1.

Figure 1: Effort Estimation in agile Software Development

2. RESEARCH PROBLEM

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 317

Most of the existing effort estimation techniques have been
developed to support traditional sequential software
development methodologies whereas Agile Software
Development is iterative in nature. If these traditional
techniques are used for effort estimation of Agile software
projects, then the results will be definitely inaccurate. On
the other hand, current practice of effort estimation for
Agile software projects is based on single iteration.
Therefore an effort estimation model is needed to predict
development effort of Agile software project, based on
characteristics of Agile Software Development
methodology.

3. PROPOSED MODEL

Most of the Software Effort Estimation Models estimate
Cost, Duration and Personnel for a project. But it will not
be the case for Agile Development.
There are several key differences between the agile
approach to team organization and the traditional approach.

1. Agile teams are "whole teams". Whole team is
an Extreme Programming (XP) practice that
advises you to have sufficient skills within the
team itself to get the job done. The implication is
that the development team has the requisite testing
skills, database skills, user interface skills, and so
on and does not rely on external experts or teams
of experts for these sorts of things.

2. Agile teams are formed (mostly) of generalizing
specialists. A generalizing specialist, sometimes
called a craftsperson, is someone who has one or
more technical specialties (e.g. Java programming,
project management, database administration, ...)
so that they can contribute something of direct
value to the team, has at least a general knowledge
of software development and the business domain
in which they work, and most importantly actively
seeks to gain new skills in both their existing
specialties as well as in other areas, including both
technical and domain areas. Obviously novice IT
professionals, and traditional IT professionals who
are often specialized in just one area, will need to
work towards this goal. Generalizing specialists
are the sweet spot between the two extremes of
specialists, people who know a lot about a narrow
domain, and generalists who know a little about a
wide range of topics.

3. Agile teams are stable. Agilest understand that
changing team structure is detrimental to project
success. We strive to keep our teams as stable as
possible, a goal that is much easier to achieve if
people are generalizing specialists.

 As there is no need to estimate Personnel requirements for
the project, thus the proposed model in intended to
calculate Completion Time and Cost for the Agile Software
project.

 Agile practitioners and Scrum practitioners in particular
have proposed a number of scales for calibrating estimated
effort in projects including:

• Ranking effort on a scale of one to three – one
being the smallest, and three being the largest.

• Using a Fibonacci sequence [1, 2, 3, 5, 8]. A Story
ranked as an eight is a Story that is too large to
accurately estimate and should likely be classified
as an Epic and decomposed into a smaller set of
Stories.

There are other methods, but these are the two most
common ones. In both cases, the estimates are not produced
in terms of units of time; rather they are merely expressions
of Relative Effort which is a good comparative yardstick.
While both of these methods are effective and widely used,
they do not take into account the underlying elements that
affect effort and uncertainty. We have thus developed a
different model that we find to be very effective. This
model is also consistent with the way we develop rankings
of Stories, Defects and Risk.

3.1 Determining the Effort

There is a multitude of factors that affect our ability to
accurately estimate effort. Accurate estimation requires a
multidimensional view to produce accurate and effective
estimates. The challenge, however, is which dimensions do
we measure? If we were to classify the possibilities using a
SWOT according to Internal vs. External influences, we
can eliminate many of the candidates by simply focusing
our attention on the things over which we have influence
and conversely paying less attention to those that we can’t.
We keep the vectors to two so as to keep the process as
simple as possible so that we actually use the process and
don’t try to sidestep it because it is too cumbersome. Using
two vectors also maintains a consistency with the other
areas of the methodology.

3.2 Story Size

Story size is an estimate of the relative scale of the work in
terms of actual development effort. Table 1 shows five
values, assigned to different types of user stories according
to their size. Wording of the Guideline description can be
changed by the Team itself or even the criteria can be
redefined.

Table 1. Story Size Scales
Value Guidelines

5

• An extremely large story
• Too large to accurately estimate
• Should almost certainly be broken down

into a set of smaller Stories
• May be a candidate for separation into a

new project
4 • A very large Story

http://www.agilemodeling.com/essays/generalizingSpecialists.htm

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 318

• Requires the focused effort of a developer
for a long period of time – Think in terms
of more than a week of work

• Should consider breaking it down into a
set of smaller stories

3 • A moderately large story
• Think in terms of two to five days of work

2 • Think in terms of a roughly a day or two
of work

1

• A very small story representing tiny effort
level.

• Think in terms of only a few hours of
work.

3.3 Complexity

This is complexity of either or both the requirements of the
Story and or its technical complexity. Complexity
introduces uncertainty to the estimate – more complexity
means more uncertainty. Table 2 shows 5 values, assigned
to user stories according to their nature. Like Story Size
table, these guidelines are not fixed. These can be adjusted
by the team itself; however we have categorized them to
accommodate all characteristics of Agile software
development methodology.

Table 2. User Story Complexity Scale.
Value Guidelines

5

• Extremely complex
• Many dependencies on other stories, other

systems or subsystems
• Represents a skill set or experience that is

important, but absent in the team
• Story is difficult to accurately describe
• Many unknowns
• Requires significant refactoring
• Requires extensive research
• Requires difficult judgment calls
• Effects of the Story have significant

impact external to the story itself

4

• Very complex
• Multiple dependencies on other stories,

other systems or subsystems
• Represents a skill set or experience that is

important, but not strong in the team
• Story is somewhat difficult for product

owner to accurately describe
• Multiple unknowns
• Comparatively large amount of refactoring

required
• Requires research
• Requires senior level programming skills

to complete
• Requires somewhat difficult judgment

calls
• Effects of the Story have moderate impact

external to the story itself

3

• Moderately complex
• Moderate number of dependencies on

other stories, other systems or subsystems
• Represents a skill set or experience that is

reasonably strong in the team
• Story is somewhat difficult for owner to

accurately describe
• Moderate level of unknowns
• Some refactoring may be required
• Requires intermediate programming skills

to complete
• Requires little research
• Requires few important judgment calls
• Effects of the Story have minimal impact

external to the story itself

2

• Easily understood technical and business
requirements

• Little or no research required
• Few unknowns
• Little if any research required
• Requires basic to intermediate

programming skills to complete
• Effects of the Story are almost completely

localized to the Story itself

1

• Very straightforward with few if any
unknowns

• Technical and business requirements very
clear with no ambiguity

• No unknowns
• No research required
• Requires basic programming skills to

complete
• Effects of Story are completely localized

to the Story itself

Using these two vectors, effort of a particular User Story is
determined using the following simple formula:

ES= Complexity x Size
Effort for the complete project will be sum of efforts of all
individual user stories.

E = ∑ (ES)in
i=1

The unit of Effort is Story Point (SP). A Story Point is the
amount of effort, completed in a unit time.

3.4 Determining Agile Velocity

The calculation of Velocity in physics is pretty
straightforward, i.e.

Velocity = Distance / Time
For our purposes, the distance is Units of Effort and Time
(the denominator) is the length of our Sprint. Velocity is
thus calculated:

Vi = Units of Effort Completed / Sprint Time.
The Observed Velocity is simply how many Units of Effort
your team completes in a typical Sprint. In Agile term

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 319

velocity can e defined as how much product backlog effort
a team can handle in one unit of time.

3.4.1 Optimization of Velocity

Optimization is a process that should be completed before
you begin Calibration. There are two things of primary
interest to us in our calibration. They are:

i. The Friction or consistent forces that are a constant
drag on productivity and reduce Project Velocity.

ii. The Variable or Dynamic Forces that decelerate the
project or team members and cause the Project
Velocity to be irregular.

Optimizing both of these factors prior to Calibration will
improve the stability of your Velocity calculation. As the
Velocity is the basis for many of the metrics we use in
Agile and Scrum, it is important to have a predictable
Velocity.

i) Friction: Newton’s First Law States that “Every object
will remain at rest or in uniform motion in a straight line
unless compelled to change its state by the action of an
external force.” Forces that do not propel your project will
slow it down. By minimizing the forces that slow down
your project, you reduce the “Friction” that reduces your
Project Velocity. Less friction means higher Velocity and
greater productivity.
In Software development, there are countless forces that
can affect the Velocity of your team. As a team leader,
project manager or executive, it is up to you to minimize
the external forces that negatively impact on the team’s
velocity. Friction forces are more or less constant. You
can’t eliminate all of them, but you can reduce many of
them. Optimizing them before Calibration is important.
Friction forces include:

• Team composition: Are the right people with the
right skills on the team.

• Process: Changes to your processes: Agile
methods, build, release, testing, etc…

• Environmental factors: Interruptions, noise, poor
ventilation, poor lighting, uncomfortable seating
and desks, inadequate hardware or software, etc…

• Team dynamics: Some team members may not
play nicely with others.

As you can see, most Friction type forces are largely
environmental. Their effects are long term. They are also,
often the easiest to address. Individually, Friction forces are
usually weak forces. Cumulatively, they can have a
significant impact. Obtaining optimal Team Velocity
requires that they be eliminated or reduced.
Tale 3 shows four friction factors with a range of values.
These values have been adjusted according to their risk
severity.

Table 3. Friction Factors
Friction Factor Stable Volatile Highly

Volatile
Very

Highly
Volatile

Team
Composition

1 0.98 0.95 0.91

Process 1 0.98 0.94 0.89
Environmental
Factors

1 0.99 0.98 0.96

Team Dynamics 1 0.98 0.91 0.85

Friction (FR) is calculated as product of all four fraction
factors (FF).

𝐹𝑅 = �(𝐹𝐹)𝑖

4

𝑖=1

ii) Variable or Dynamic Forces: Variable or Dynamic
forces are often unpredictable and unexpected. They
decelerate your project and cause a loss of Velocity. Their
effects are sometimes dramatic, but their influence is often
brief.
Newton’s Second Law states that that “The acceleration of
an object as produced by a net force is directly proportional
to the magnitude of the net force, in the same direction as
the net force, and inversely proportional to the mass of the
object.” For our purposes, we are viewing this from the
perspective of the cost (in terms of productivity) on
individuals in the team, or the team as a whole. If you can’t
eliminate a force that reduces Velocity (deceleration), then
do your best to make it as consistent and predictable as
possible (minimal and infrequent deceleration). The more
consistent and predictable the force, the more consistent
your Velocity will be.

• Team changes: Adding member, losing members,
changing roles and responsibilities.

• New tools: Introduction of new development tools,
database technologies, languages, etc… require
learning, and reduce Velocity until learned.

• Vendor defects: Defects in third party tools and
software requiring developer workarounds eat into
productivity and Velocity.

• Responsibilities outside of the project: Team
members assuming additional responsibilities
outside of the project. Shifting between projects can
have a dramatic effect on productivity.

• Personal issues: Colicky baby at home, personal
health, family dynamics, etc…

• Stakeholders: Stakeholders may not be responsive
to requests for information from the developers or
tester and thus create delays. They may also have
unreasonable expectations of the team.

• Unclear requirements: Lack of clarity or detail in
requirements cause unnecessary churn and rework.

• Changing requirements: New project
specifications might require skills that are non-
existent or weak in the team. Acquiring the skills,
either by introducing new team members, or by an

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 320

existing team member acquiring the skills will
impact productivity.

• Relocation: Moving the team to a new physical
location upsets the rhythm and impacts their
Velocity.

Table 4 show variable or dynamic force factors. Values are
assigned on the basis of same analogy as for Size.

Table 4. Dynamic Force Factors

Variable Factor Normal High Very
High

Extra
High

Expected Team
Changes

1 0.98 0.95 0.91

Introduction of New
Tools

1 0.99 0.97 0.96

Vendor’s Defect 1 0.98 0.94 0.90
Team member’s
responsibilities
outside the project

1 0.99 0.98 0.98

Personal Issues 1 0.99 0.99 0.98
Expected Delay in
Stakeholder response

1 0.99 0.98 0.96

Expected Ambiguity
in Details

1 0.98 0.97 0.95

Expected Changes in
environment

1 0.99 0.98 0.97

Expected Relocation 1 0.99 0.99 0.98

Dynamic Force (DF) is calculated as product of all nine
variable factors (VF)

𝐷𝐹 = �(𝑉𝐹)𝑖

9

𝑖=1

Deceleration is the rate of negative change of velocity. In
our case, deceleration is the product of Friction and
Dynamic Forces affecting the velocity. It is calculated as

D=FR x DF
In order to adjust Velocity to more predictable range, we
calculate Final Velocity as:

V = (Vi)D

3.5 Completion Time

In order to estimate duration needed to complete the
project, it is calculated as:

T = E
V

 Days

=
∑ (ES)in
i=1
(Vi)D

 Days

The unit of T in this calculation is Days which can be then
converted to Months, dividing by No. of Working Days
per month, Thus

T = ∑ (ES)in
i=1
(Vi)D

∗ 1
WD

 Months

Where WD is Work Days per Month.

3.6 Development COST

Although there is no such attribute in this model to
calculate cost, however, fortunately, team in the Agile
Software Development is constant. By taking Development
Team Salary as Unit, we conducted a survey of 14
Pakistani companies, at CMMI level 3 to calculate monthly
expenditure per project. There are companies that have
more than one team, developing more than one parallel
project, therefore all the expenses have been calculated for
one project per month. Average Expenses per month along
with their ratio to Team Salary are presented in Tale 5.

Table 5. Team salary Ratio with other Expenses

Expenditure Head Amount Ratio with
Team Salary

Team Salary 560679 1
Non Technical Staff
Salary 183451 0.327194348
Equipment 34821 0.062105055
Depreciation 8736 0.015581108
Rent 14634 0.026100496
Travelling 38279 0.068272577
Furniture 2356 0.004202048
Utility Bills 27541 0.049120798
Copyright &
Licensing 15239 0.027179545
Software Purchase &
Subscription 12781 0.022795575
Repair & Maintenance 8393 0.01496935
Stationary 5782 0.010312496
Marketing 4782 0.008528944
Other Expenses 24790 0.044214247

 Net Ratio 1.680576587

By taking the Net Ratio, the Development Cost is
calculated as:

COST=1.681*TS*T
where TS is monthly Team Salary and T is calculated Time
in Months.

3.7 Uncertainty of Calculation

Prediction of completion time determination depends on
your confidence in your estimates, for example, if you are
100% confident in your estimate then the calculated time
will also e the most probable time, but if you are not
confident in your estimation then the calculated time is only

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 321

a probable prediction. In this case the time may very in a
rage depending on your confidence level. We call this range
as Span of Uncertainty. Lower bound of this range is
Optimistic Point whereas upper bound is Pessimistic Point.
In order to calculate confidence effect on Time, we
introduce another variable for Confidence Level (CL) to be
used to calculate Optimistic and Pessimistic Time.

Time𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒 = T

Time𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 =
1 − (100 − 𝐶𝐿)

100
∗ T

Time𝑃𝑒𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐 =
1 + (100 − 𝐶𝐿)

100
∗ T

Span of Uncertainty = Time𝑃𝑒𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐 − Time𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐

3.8 Summary of the Model

INPUT
• N No of User Stories
• Work Days per Month (WD)
• Monthly Team Salary (TS)
• No of Days in one Sprint (Sprint Time)
• Units of Effort Completed by the Team in one

Sprint
• Estimator Confidence in estimation (CL)

METRICS
• Story Size Metric (Table 1)
• Story Complexity Metric (Table 2)
• Friction Factor Metric (Table 3)
• Variable Factor Metric (Table 4)

EVALUATION
Completion time (T) is calculated as

T = ∑ (ES)i
n
i=1
(Vi)D

∗ 1
WD

 Months
Where WD is No of Work Days in a Month and ES is the
User Story Effort, Calculated as

ES=Complexity x Size
Vi is the Initial or Raw Velocity, calculated as

Vi = Units of Effort Completed / Sprint Time.
Sprint Time is the No of Days in sprint.
In order to adjust velocity against friction and dynamic
forces, deceleration (D) is calculated as:

D=FR x DF
Where FR is product of all four friction factors (FF),
described in Table, which is calculated as:

𝐹𝑅 = �(𝐹𝐹)𝑖

4

𝑖=1

And DF is the product of all nine variable factors, described
in Table, which is calculated as

𝐷𝐹 = �(𝑉𝐹)𝑖

9

𝑖=1

Estimated Cost of the project is calculated as
COST=1.681*TS*T

Where TS is the Team Salary and T is Estimated Time.
By using Confidence Level in estimates (CL), Probable,
Optimistic and Pessimistic Time estimates are calculated
as:

Time𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑒 = T

Time𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 =
1 − (100 − 𝐶𝐿)

100
∗ T

Time𝑃𝑒𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐 =
1 + (100 − 𝐶𝐿)

100
∗ T

Span of Uncertainty = Time𝑃𝑒𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐 − Time𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐

3.9 Example

INPUT

No of User Stories = 53
Team Velocity = 51
Sprint Size = 10 Days
No of Working days per Month = 22
Monthly Team Salary = 500000
Confidence Level in Estimation = 90%

Friction Factors
Team Composition 0.95
Process 0.89
Environmental Factors 0.98
Team Dynamics 0.85

Dynamic Force Factors
Expected Team Changes 0.98
Introduction of New Tools 0.97
Vendor’s Defect 0.94
Team member’s responsibilities
outside the project 0.98
Personal Issues 0.98
Expected Delay in Stakeholder
response 0.96
Expected Ambiguity in Details 0.98
Expected Changes in environment 0.97
Expected Relocation 0.98

RESULTS

EFFORT = 300 SP
INITIL VELOCITY = 5.1
FRICTION FACTOR (FR) = 0.704302
DYNAMIC FORCES = 0.76749
DECELRATION = 0.540545

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 322

VELOCITY = 2.4
TIME = 5.2 MONTHS
COST = 5241671.27 (PAK Rs)
TIME Probable = 5.2 MONTHS
TIME Optimistic = 5.6 MONTHS
TIME Pessimistic = 6.9 MONTHS
COST Probable = 5241671.27 (PAK Rs)
COST Optimistic = 4717504.14 (PAK Rs)
 COST Pessimistic = 5765838.40 (PAK Rs)

4. EXPERIMENTAL ANALYSIS

In order to measure estimation accuracy of the model, we
collected data of 21 previously developed projects from 6
software houses. These projects have been developed using
Agile Software development methodology. This
experimental analysis was performed by a group of
research students, who were unaware of actual results.
Table 6 shows results of the study along with MRE for
Time and Cost of individual estimate.

Table 6. Experimental Results

P.No Effort Vi D V
Sprint
Size

Work
days

Team
Salary

Act:
Time

Est
time

Actual
Cost

Estimated
cost

Time
MRE

Cost
MRE

1 156 4.2 0.687 2.7 10 22 230000 63 58 1200000 1023207.14 7.93 14.73

2 202 3.7 0.701 2.5 10 21 260000 92 81 1600000 1680663.89 11.95 5.04

3 173 4 0.878 3.3 10 22 250000 56 52 1000000 992269.51 7.14 0.77

4 331 4.5 0.886 3.8 10 22 300000 86 87 2100000 2002767.22 1.16 4.63

5 124 4.9 0.903 4.2 10 22 300000 32 29 750000 676081.32 9.375 9.84

6 339 4.1 0.903 3.6 10 22 400000 91 95 3200000 2895132.85 4.39 9.52

7 97 4.2 0.859 3.4 10 22 250000 35 29 600000 540113.84 17.14 9.98

8 257 3.8 0.833 3 10 22 250000 93 84 1800000 1614078.94 9.67 10.32

9 84 3.9 0.646 2.4 10 22 190000 36 35 500000 507264.58 2.77 1.45

10 211 4.6 0.758 3.2 10 22 250000 62 66 1200000 1267179.55 6.45 5.59

11 131 4.6 0.758 3.2 10 22 250000 45 41 800000 786732.223 8.88 1.65

12 112 3.9 0.773 2.9 10 22 200000 37 39 650000 597142.61 5.40 8.13

13 101 3.9 0.773 2.9 10 22 200000 32 35 600000 538494.68 9.375 10.25

14 74 3.9 0.773 2.9 10 22 200000 30 26 400000 394545.65 13.33 1.36

15 62 3.9 0.773 2.9 10 22 200000 21 22 350000 330561.22 4.76 5.55

16 289 4 0.742 2.8 10 22 250000 112 103 2000000 1971485.44 8.03 1.42

17 113 4 0.742 2.8 10 22 250000 39 40 800000 770857.32 2.56 3.64

18 141 4 0.742 2.8 10 22 250000 52 50 1000000 961866.44 3.84 3.81

19 213 4 0.742 2.8 10 22 250000 80 76 1500000 1453032.29 5 3.13

20 137 3.7 0.758 2.7 10 22 220000 56 51 800000 854347.55 8.92 6.79

21 91 3.7 0.758 2.7 10 22 220000 35 34 550000 567484.33 2.85 3.17

MMRE (Time) = 7.19 %
MMRE (Cost) = 5.76 %

PRED Time (7.19) = 57.14 %
PRED Cost (5.76) = 61.90 %

7.19% MMRE for Time and 5.76% MMRE for Cost have
been observed, which is fairly low rate. Prediction at the
average MMRE for Time and Cost is 57.14% and 61.9%
respectively, which means that estimated results for Time
are predicted to be 57.14% lower than calculated MMRE
whereas estimated results for Cost are predicted to be
61.9% lower than calculated MMRE for Cost. It is quite
satisfactory and acceptable estimation accuracy.

CONCLUSION

In this paper a software effort estimation model for Agile
Software projects has been presented. The model uses User
Stories of as base for estimation. In order to address
different challenges faced by the agilest, the model is
developed to accommodate most of the characteristics of
Agile methodology, especially Adaption and Iteration. The
model is practically implantable. There may be certain
flaws in the model, therefore it is hoped that the work put

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 323

forward in this paper will serve as an opening for further
discussion and investigation.

REFERENCES

AGARWAL, R., KUMAR, M., YOGESH, MALLICK, S.,
BHARADWAJ, R. M. & ANANTWAR, D. (2001) Estimating
Software Projects. ACM SIGSOFT Software Engineering Notes,
26, 60-67.

ANGELIS, L., STAMELOS, I. & MORISIO, M. (2001) Building
a Software Cost Estimation Model Based on Categorical Data.
Proceedings of the 7th International Software Metrics Symposium.

BECK, K., BEEDLE, M., VAN BENNEKUM, A., COCKBURN,
A., CUNNINGHAM, W., FOWLER, M.,
HIGHSMITH, J., HUNT, A., GRENNING, J., MELLOR, S.,
JEFFRIES, R., KERN, J., MARICK, B., MARTIN, R. C.,
SCHWABER, K., SUTHERLAND, J. & THOMAS, D. (2001)
The Agile Manifesto.

BOEHM, B. W., ABTS, C. & CHULANI, S. (2000) Software
Development Cost Estimation Approaches: A Survey. USC-CSE.

BOEHM, B. W. & SULLIVAN, K. J. (1999) Software
Economics: Status and Prospects. Information and Software
Technology, 41, 937-946.

BOSSAVIT, L. (2003) Project Management, The Movie. Cutter
IT Journal, 16, 18-23.

BRIAND, L. C., EL EMAM, K. & BOMARIUS, F. (1998)
COBRA: A Hybrid Method for Software Cost Estimation,
Benchmarking, and Risk Assessment. Proceedings of the 20th
International Conference on Software Engineering. Kyoto, Japan.

BRIAND, L. C., LANGLEY, T. & WIECZOREK, I. (2000) A
Replicated Assessment and Comparison of Common Software
Cost Modeling Techniques. Proceedings of the 22nd International
Conference on Software Engineering. Limerick, Ireland.

BURGESS, C. J. & LEFLEY, M. (2001) Can Genetic
Programming Improve Software Effort Estimation? A
Comparative Evaluation. Information and Software Technology,
43, 863-873.

CHULANI, S., BOEHM, B. W. & STEECE, B. M. (1999)
Bayesian Analysis of Empirical Software Engineering Cost
Models. IEEE Transactions on Software Engineering, 25, 573-
583.

FAIRLEY, R. E. (1992) Recent Advances in Software Estimation
Techniques. Proceedings of the 14th International Conference on
Software Engineering. Melbourne, Australia

FERENS, D. V. (1988) Software Size Estimation Techniques.
Proceedings of the IEEE 1988 National Aerospace and Electronics
Conference.

FINNIE, G. R., WITTIG, G. E. & DESHARNAIS, J.-M. (1997) A
Comparison of Software Effort Estimation Techniques: Using
Function Points with Neural Networks, Case-Based Reasoning
and Regression Models. Journal of Systems and Software, 39,
281-289.

FOWLER, M. & HIGHSMITH, J. (2001) The Agile Manifesto.
Software Development, August.
GOLDEN, J. R., MUELLER, J. R. & ANSELM, B. (1981)
Software Cost Estimating: Craft or Witchcraft. ACM SIGMIS
Database, 12, 12-14.

HIHN, J. & HABIB-AGAHI, H. (1991) Cost Estimation of
Software Intensive Projects: A Survey of Current Practices.
Proceedings of the 13th International Conference on Software
Engineering. Austin, Texas.

HÖST, M. & WOHLIN, C. (1997) A Subjective Effort Estimation
Experiment. Information and Software Technology, 39, 755-762.

JONES, C. (1996) By Popular Demand: Software Estimating
Rules of Thumb. Computer, 29, 116-118.

JONES, C. (2003) Why Flawed Software Projects are Not
Cancelled in Time. Cutter IT Journal, 16, 12-17.

JØRGENSEN, M. (2003) How Much Does a Vacation Cost? or
What is a Software Cost Estimate? ACM SIGSOFT Software
Engineering Notes, 28, 1-4.

JØRGENSEN, M. (2004a) A Review of Studies on Expert
Estimation of Software Development Effort. Journal of Systems
and Software, 70, 37-60.

JØRGENSEN, M. (2004b) Top-Down and Bottom-Up Expert
Estimation of Software Development Effort. Information and
Software Technology, 46, 3-16.

JØRGENSEN, M., INDAHL, U. & SJØBERG, D. (2003)
Software Effort Estimation by Analogy and "Regression Toward
the Mean". Journal of Systems and Software, 68, 253-262.

JØRGENSEN, M. & MOLØKKEN, K. (2003) A Preliminary
Checklist for Software Cost Management. Proceedings of the 3rd
International Conference on Quality Software

KEAVENEY S. and CONBOY K. (2006) Cost Estimation in
Agile Development Projects. Proceedings of the 14th European
Conf. Information Systems (ECIS)

LEE, A., HUNG CHENG, C. & BALAKRISHNAN, J. (1998)
Software Development Cost Estimation: Integrating Neural
Network with Cluster Analysis. Information & Management, 34,
1-9.

MATSON, J. E., BARRETT, B. E. & MELLICHAMP, J. M.
(1994) Software Development Cost Estimation Using Function
Points. IEEE Transactions on Software Engineering, 20, 275-287.

MENDES, E., WATSON, I., TRIGGS, C., MOSLEY, N. &
COUNSELL, S. (2002) A Comparison of Development Effort
Estimation Techniques for Web Hypermedia Applications.
Proceedings of the 8th IEEE Symposium on Software Metrics

MILLER G.G. (2001) The Characteristics of Agile Software
Processes. Proceedings of the 39th Int’l Conf. and Exhibition on
Technology of Object-Oriented Languages and Systems
(TOOLS’01)

Ziauddin, ACSA, Vol. 2, No. 1, pp. 314-324, 2012 324

MOLØKKEN-ØSTVOLD, K., JØRGENSEN, M., TANILKAN,
S. S., GALLIS, H., LIEN, A. C. & HOVE, S. E. (2004) A Survey
on Software Estimation in the Norwegian Industry. Proceedings
of the 10th International Symposium on Software Metrics.

MOLØKKEN, K. & JØRGENSEN, M. (2003) A Review of
Software Surveys on Software Effort Estimation. Proceedings of
the 2003 International Symposium on Empirical Software
Engineering.

MUKHOPADHYAY, T. & KEKRE, S. (1992) Software Effort
Models for Early Estimation of Process Control Applications.
IEEE Transactions on Software Engineering, 18, 915-924.

MUKHOPADHYAY, T., VICINANZA, S. S. & PRIETULA, M.
J. (1992) Examining the Feasibility of a Case-Based Reasoning
Model for Software Effort Estimation. MIS Quarterly, 16, 155-
171.

PAULK, M. C. (2002) Agile Methodologies and Process
Discipline. CrossTalk, The Journal of Defense Software
Engineering, 15-18.

PETERS, J. F. & PEDRYCZ, W. (1999) Software Engineering:
An Engineering Approach, John Wiley & Sons, Inc.

RUHE, M., JEFFERY, R. & WIECZOREK, I. (2003) Cost
Estimating for Web Applications, Proceedings of the 25th
International Conference on Software Engineering. Portland,
Oregon.

SCHMIETENDORF A., KUNZ M., DUMKE R. (2008) Effort
estimation for Agile Software Development Projects, Proceedings
5th Software Measurement European Forum, Milan

STAMELOS, I. & ANGELIS, L. (2001) Managing Uncertainty in
Project Portfolio Cost Estimation, Information and Software
Technology, 43, 759-768.

Shoukat A., A Reducibility of the Kampéde Fériet Function,
Advances in Computational Mathematics and its Applications
(ACMA), Vol. 1, No. 1, March 2012; pp 76-79

Shubatah M.Q.H., Domination in product fuzzy graphs,Advances
in Computational Mathematics and its Applications (ACMA),
Vol.1,No.3,2012; pp 119-125

Syafadhli A.A.B., Mohamad D. and Sulaiman N.H., Distance-
Based Ranking Fuzzy Numbers, Advances in Computational
Mathematics and its Applications (ACMA), Vol. 1, No. 3, 2012;
pp 146-150

TAUSWORTHE, R. C. (1980) The Work Breakdown Structure in
Software Project Management. The Journal of Systems and
Software, 1, 181-186.

Vajargah B. and Jahanbin A., Approximation theory of matrices
based on its low ranking and stochastic computation, Advances in
Computer Science and its Applications (ACSA) Vol. 2, No. 1,
2012; pp 270-280

Vajargah1 B.F., Moradi M. and Kanafchian M., Monte Carlo
optimization for reducing the condition number of ill conditioned
matrices, Advances in Computational Mathematics and its
Applications (ACMA), Vol. 1, No. 1, March 2012; pp 169-173

Viswanadham K.N.S. and Raju Y.S., Quintic B-spline Collocation
Method for Eighth Order Boundary Value Problems, Advances in
Computational Mathematics and its Applications (ACMA),Vol. 1,
No. 1, March 2012; pp 47-52

Yang X., Zhang Y., A New Successive Approximation to Non-
homogeneous Local Fractional Volterra Equation, Advances in
Information Technology and Management (AITM) Vol. 1, No. 3,
2012; pp 138-141

Yu-min J., Ting X, WANG Q. and SU J., Task Planning based on
Intelligence Algorithm under Uncertainty, Advances in
Information Technology and Management (AITM) Vol. 1, No. 4,
2012; pp 166-169

Zhang Y. and Lenan Wu, Artificial Bee Colony for Two
Dimensional Protein Folding, Advances in Electrical Engineering
Systems Vol. 1, No. 1, March 2012, pp 19-23

Zhang Z., Pattern Recognition by PSOSQP and Rule based
System, Advances in Electrical Engineering Systems Vol. 1, No.
1, March 2012; pp 30-34

ZIA, Z.; RASHID, A.; UZ ZAMAN, K. (2011) Software cost
estimation for component based fourth-generation-language
software applications, IET Software , 5, Page(s): 103-110

	2. Research Problem
	Most of the existing effort estimation techniques have been developed to support traditional sequential software development methodologies whereas Agile Software Development is iterative in nature. If these traditional techniques are used for effort e...
	Therefore an effort estimation model is needed to predict development effort of Agile software project, based on characteristics of Agile Software Development methodology.
	3. Proposed Model
	Most of the Software Effort Estimation Models estimate Cost, Duration and Personnel for a project. But it will not be the case for Agile Development.
	There are several key differences between the agile approach to team organization and the traditional approach.
	As there is no need to estimate Personnel requirements for the project, thus the proposed model in intended to calculate Completion Time and Cost for the Agile Software project.
	Agile practitioners and Scrum practitioners in particular have proposed a number of scales for calibrating estimated effort in projects including:
	3.2 Story Size
	3.3 Complexity

	The unit of Effort is Story Point (SP). A Story Point is the amount of effort, completed in a unit time.
	3.4 Determining Agile Velocity
	Very Highly Volatile
	Highly Volatile
	Volatile
	Stable
	Friction Factor
	3.4.1 Optimization of Velocity
	i) Friction: Newton’s First Law States that “Every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.” Forces that do not propel your project will slow it down. B...
	ii) Variable or Dynamic Forces: Variable or Dynamic forces are often unpredictable and unexpected. They decelerate your project and cause a loss of Velocity. Their effects are sometimes dramatic, but their influence is often brief.

	0.91
	0.95
	0.98
	1
	Team Composition
	0.89
	0.94
	0.98
	1
	Process
	0.96
	0.98
	0.99
	1
	Environmental Factors
	0.85
	0.91
	0.98
	1
	Team Dynamics
	Dynamic Force (DF) is calculated as product of all nine variable factors (VF)
	𝐷𝐹=,𝑖=1-9-,(𝑉𝐹)-𝑖..
	3.8 Summary of the Model
	UINPUT
	 N No of User Stories
	 Work Days per Month (WD)
	 Monthly Team Salary (TS)
	 No of Days in one Sprint (Sprint Time)
	 Units of Effort Completed by the Team in one Sprint
	 Estimator Confidence in estimation (CL)
	UMETRICS
	 Story Size Metric (Table 1)
	 Story Complexity Metric (Table 2)
	 Friction Factor Metric (Table 3)
	 Variable Factor Metric (Table 4)
	UEVALUATION
	Completion time (T) is calculated as
	And DF is the product of all nine variable factors, described in Table, which is calculated as
	𝐷𝐹=,𝑖=1-9-,(𝑉𝐹)-𝑖..
	3.9 Example
	UINPUT
	No of User Stories = 53
	Team Velocity = 51
	Sprint Size = 10 Days
	No of Working days per Month = 22
	Monthly Team Salary = 500000
	Confidence Level in Estimation = 90%
	Friction Factors
	Dynamic Force Factors
	URESULTS
	EFFORT = 300 SP
	INITIL VELOCITY = 5.1
	DECELRATION = 0.540545
	VELOCITY = 2.4
	TIME = 5.2 MONTHS
	COST = 5241671.27 (PAK Rs)
	TIME RProbableR = 5.2 MONTHS
	TIME ROptimisticR = 5.6 MONTHS
	TIME RPessimisticR = 6.9 MONTHS
	COST RProbableR = 5241671.27 (PAK Rs)
	COST ROptimisticR = 4717504.14 (PAK Rs)
	COST RPessimisticR = 5765838.40 (PAK Rs)
	4. Experimental ANALYSIS
	In order to measure estimation accuracy of the model, we collected data of 21 previously developed projects from 6 software houses. These projects have been developed using Agile Software development methodology. This experimental analysis was perform...
	Table 6. Experimental Results
	MMRE (Time) = 7.19 %
	MMRE (Cost) = 5.76 %
	PRED Time (7.19) = 57.14 %
	PRED Cost (5.76) = 61.90 %
	7.19% MMRE for Time and 5.76% MMRE for Cost have been observed, which is fairly low rate. Prediction at the average MMRE for Time and Cost is 57.14% and 61.9% respectively, which means that estimated results for Time are predicted to be 57.14% lower t...
	CONCLUSION
	In this paper a software effort estimation model for Agile Software projects has been presented. The model uses User Stories of as base for estimation. In order to address different challenges faced by the agilest, the model is developed to accommodat...
	REFERENCES

