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Abstract –Leader-follower formation of autonomous underwater vehicles is investigated. Firstly, relative motion equations with
disturbances are constructed, and the equations are converted into a linear system by feedback linearization and then feedforward and
feedback optimal control (FFOC) law is designed for the linear system. Numerical simulations show the effectiveness of the control
scheme.
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1. Introduction

Cooperative control of multiple autonomous
underwater vehicles (AUV) plays an important role on
marine scientific investigation and marine development.
The formation of multi-AUV can significantly enhance
applications on the marine sampling, imaging,
surveillance and communications. Compared to multi-
robot, formation control of multi-AUV is particularly
difficult, especially on controlling attitude and direction
of AUV; what is more, the communication way is
acoustic. When communication distances increases, the
communication qualities deteriorate quickly, which
mainly make time-delay, signal attenuation and
distortion. Although formation control of multiple AUVs
obtains a wide range of attention in recent years, the fruits
on formation control problem are less than ones on land
multi-robot problems. For example, Fiorelli conducted a
collaborative and adaptive sampling research of multi-
AUV at the Monterey Bay [1]; Yu and Ura carried out the
cable-based modular fast-moving and obstacle- avoidance
experiments, and presented an interconnected multi-AUV
system with three-dimension sensors. On the aspect of
formation control framework [2-3], [4] proposed a four-
layer cooperative control strategy based on hierarchical
structure; [5] proposed a hierarchical control framework
based on hybrid model. In addition, Yang converted
nonholonomic system into a chain one and designed a
controller and implemented the leader-follower formation
for multiple AUVs in [6]. Kalantar et al. studied the
distributed formation control [7]. References [8] adopted
the centralized formation control based on virtual
structure.

The principal idea of formation control based on
leader-follower mode is that an AUV tracks one or more
o AUVs in certain desired bearings and separations. This
control mode is of the capacity of switching easily
between different predefined formation modes and
avoiding obstacles quickly. We investigate the formation
control problem of autonomous underwater vehicles
based on leader-follower. Firstly, we model the relative

kinetics equations of two mobile AUVs containing one
leader and one follower. The relative velocity vector is
projected on two directions, along connection line
between them and perpendicular to it. Taking into
account the disturbance in underwater environment, we
establish the system equations of relative movement, and
then we convert the system equations into linear system
equations with a disturbance based on feedback
linearization. Moreover, the feedforward and feedback
optimal control law of the linear system is designed to
reject the effect of the disturbance. Finally, simulations
demonstrate the effectiveness of the control scheme.

2. Problem Description
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Figure 1. Leader-follower formation

Assume that AUV jA tracks AUV iA in a predefined

separation d
ijl and bearing d

ij . So the formation control

pair is shaped naturally.  Ti i i ip x y  and
T

j j j jp x y     denote their coordinates in the

inertial coordinate frame, respectively. iv and jv denote
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the linear velocity of iA and jA , respectively. ijl

denotes the separation between them. ij denotes the

angle between the linear velocity direction of iA and

their connection line. d denotes the distance from the
velocity reference point to the centre of gravity of jA .

1f and 2f denote the underwater disturbances. So the
relative velocity vector is projected on the two directions,
illustrated in Fig. 1, we obtain the following equations:
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3. Controller design for formation control

We transform the equations (1) to linear forms using
input-output feedback linearization.

Choose

1
1 1 1( )j iu G p F u    (2)

where 1 1 2( ) ( )
Td d

ij ij ij ijp k l l k w         is an

auxiliary control input.

Further, we choose appropriate gains 1 2, > 0k k . So the
close-loop linear equations are
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Let 1
d
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We define 1 2[ ]Tx x x and [ ]Tu w , so (4) is
transformed to

x Ax Bu Df   (5)
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, and f denotes the underwater

disturbance vector of the following characteristics

f Gf (6)

where 2 2G R  is a constant matrix.

The dynamics of underwater disturbance is of the
following characteristic:

a) All eigenvalues of G satisfy

Re[ ( )] 0, 1, 2i G i  

b) The initial conditions of exosystem (6) are
unknown.

To balance the tracking performance and energy
consumption, we choose the following infinite-time
quadratic performance index:

dtRuuQxxJ 
  

0
)( (7)

Next, we consider the optimal controller design of the
system (5) with (6).

If and only if ),( BA is completely controllable, ),( CA is

completely observable, C is a full rank matrix and
satisfies the equation TQ C C , and the dynamics of the
disturbance satisfies Error! Reference source not
found. and Error! Reference source not found.,the only
exiting feedforward and feedback optimal control law is
as follows

)]()([)( 1* twPtPxBRtu T  

where P is the unique positive definite solution of
Riccati matrix equation

0 QPSPPAPAT

, and P the unique solution of matrix equation
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with TBBRS 1 .

Substituting the optimal control law * * * T
u w   

into Error! Reference source not found., we obtain the
control law of jA :
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Furthermore, the formation control strategy is as follows:

AUV iA obtains its linear velocity iv , angular velocity

i , steering angle i and ij using its velocity sensors

and gyroscopes. Then iA transmits the data packet

containing the information of iv , i , ij and j to jA .

So AUV jA obtains its control law with ijl (through

sensor) and ij (through computing). In this way, the

leader-follower formation is constructed where jA tracks

iA in the desired separation d
ijl and bearing d

ij .

4. Simulation

The initial state of iA (the leader) in the inertial
coordinate frame is

   (0) (0) (0) (0) 2 1 6T T
i i i ip x y    , and its

linear velocity and angular velocity is 3.5v  and
0  , respectively, and they remain constant during the

simulation period.The initial state of jA (the follower) in

the inertial coordinate frame is

 (0) (0) (0) (0) 1.8 1.2 0
T T

j j j jp x y      .

The desired separation is 7.2d
ijl  and the desired

bearing is 4d
ij  . So we know that the initial state is

1(0) (0) 0.64d
ij ijx l l   and

2 (0) (0) 0.7d
ij ijx      .

The related underwater disturbance matrices are
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The time step is 0.05  and simulation period
is T 200 ; the related gains are

1 21, 1k k  , and 0.2d  .The performance of the
proposed algorithm is simulated and compared with
classic feedback optimal control (FOC) algorithm. The
simulation results demonstrate that the feedforward and
feedback optimal control law has better suppression
effect on the underwater disturbance, shown in Fig.2
through Fig. 5.
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Figure 2. Leader-follower
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Figure 3. ijl with time
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Figure 1. ij with time
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Figure 2. jA with time

5. Conclusions

Leader-follower formation control of autonomous
underwater vehicles is investigated. The performance
of the proposed algorithm is simulated and compared
with FOC. The simulation results demonstrate that
FFOC has better suppression effect on the underwater
disturbance compared to FOC.
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