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Abstract –This paper makes a more detailed description of the assumptions of the model and the mathematics derivation process of 

the formula, and analyzes the sensitivity of the option value of each variable of the model. According to the empirical analysis, we 

find that the Black-Scholes Model has a strong practicality, but also has some limitimations, further research is needed. 
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1. Introduction 
 

Black and Scholes (1973) revolutionized the pricing 

theory of options by showing how to hedge continuously 

the exposure on the short position of an option. Even 

before F.Black and M. Scholes published their model, 

evidence was accumulating that asset returns are not 

normally distributed (or equivalently that asset prices do 

not follow Geometric Brownian Motion with constant 

volatility). It is now reasonably well established that, 

although Geometric Brownian Motion is a good 

approximation in most cases, there are various important 

deviations for different asset classes. This problem was 

addressed by J.C. Cox and S.A. Ross (1976) who 

introduced the constant elasticity of variance (CEV) 

model. R.C. Merton (1976) also addressed this problem. 

Robert Merton started continuous-time financial 

modeling with his explicit dynamic programming 

solution for optimal portfolio and consumption polices. 

This sets the stage for his general equilibrium model of 

security prices, another milestone (1973). His major 

contribution was his arbitrage-based proof of the option 

pricing formula introduced by Fisher Black and Myron 

Scholes (1973), and his continual development of that 

approach to derivative pricing. The original argument of F. 

Black and M. Scholes (1973) is based on a “local no 

arbitrage” assumption. The solution to the general model 

using the Feynman-Kac Formula is from D. Duffie 

(1988), where extensions and numerical approximations 

are noted. This solution extends in application (only in 

this Brownian Motion setting) beyond that of J.M. 

Harrison and D.M. Kreps (1979), in that it allows 

stochastic interest rates and applies under weaker 

conditions on the security process, which need not “span” 

by continuous trading. We have implicitly taken the 

“risk-neutral” pricing concept that the options being 

priced are European options, in that they may be 

exercised only at expiry. M. Parkinson (1977) and R. 

Geske and H. Jphnson (1984) have results on the pricing 

of American options. D. Duffie (1988) derived the 

Black-Scholes Formula in five ways! These are: (1) by a 

limit from discrete-time as the length of a time interval 

shrinks to zero, using the Lindeberg’s Central Limit 

Theorem on a triangular array of random variables; (2) by 

a direct solution to the partial differential equation (PDE) 

derived from an absence of arbitrage which is a Cauchy 

problem of the parabola equation, using Fourier 

transform or four standard form transforms; (3) by an 

indirect solution of this partial differential equation using 

the Feynmen-Kac Formula; (4) by a limit of the 

underlying return process from discrete-time using 

Donsker’s Theorem; and (5) by a change of probability 

measure using Girsanov’s Theorem. These methods have 

extensions well beyond the pricing of an option, but their 

extensions have different ranges of application, and 

individually offer different insights and methods. An 

actuarial approach of option pricing has been proposed by 

Mogens Bladt and Hina Hviid Rydberg (1998). The basic 

idea is the following: discount risk-free asset future prices 

according to the risk-less interest rate and risk asset prices 

according to their expected rate of return. This paper 

studies the Black-Scholes Model of option pricing. It 

makes a more detailed description of the assumptions of 

the model and the mathematics derivation process of the 

formula. And then the paper analyzes the sensitivity of the 

option value of each variable of the model. 

 

2. The Theoretical Analysis of the Model 

 

2.1The Black–Scholes Model Formulation 
 

We illustrate how to use the riskless hedging 

principle to derive the governing partial differential 

equation for the price of a European call option. In their 

seminal paper (1973), Black and Scholes made the 

following assumptions on the financial market. 

 

(i) Trading takes place continuously in time. 

(ii) The riskless interest rate is known and constant over 

time. 

(iii) The asset pays no dividend. 

(iv) There are no transaction costs in buying or selling the 

asset or the option, and no taxes. 

(v) The assets are perfectly divisible. 

(vi) There are no penalties to short selling and the full use 

of proceeds is permitted. 

(vii) There are no riskless arbitrage opportunities 
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In 1973, Fischer Black and Myron Scholes gave the 

famous Black-Scholes model:  

dSt = µStdt + σStdŴt , µ, σ are constants,    (1) 
Where Ŵt is a standard Brownian motion on (Ω, F, P). 

(St)t∈Ґ is defined on (Ω, F, P), and is adapted to a filtration 

F  = ( F t) t∈Ґ, where Ґ is a time index set and Ґ ⊆ [0,T] 

for some T>0. 

   Under the neutral-risk probability Q, the model is 

dSt=rStdt + σStdWt, that is St=S0e
σWt+(r-σ2/2)t

, where Wt is a 

standard Brownian motion with respect to Q and 

Wt=Ŵt+[(µ-r)/σ]t, r is the risk-free interest rate, and σ is 

the volatility of the underlying stock. Mathematically, the 

prce of the option is given by: c=E[e
rT

ƒ(ST)│F0)], where 

ƒ is the payoff function, ƒ∈L
2
(ST), Ft =σ(Ws, 0≤s≤t), 

t∈[0,∞). E denotes the expectation corresponding to Q. 

Take V(t,y) = Ey(e
-r(T-t)

ƒ(ST-t)), then c=V(0,y) and 

V(t,y) solves the Cauchy problem: 

 

21 2 2V(t,y) σ y V(t,y) ry V(t,y) rV(t,y) 0,(t,y) [0,T) (0, );
2 2

V(T,y) f(y),y (0, ).
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Now apply Itô’s formula to V% (t, x), we conclude 

e
-rT

ƒ(ST) = c+
Tφ dS0 t∫ %

t ,               (2) 

where S% t  = e
-rt

St is the discounted price of the risky 

asset, and d S% t= σS% tdWt, and it is easily known S% t is a 

martingale with respect to the filtration F and the 

probability measure Q; the delta hedging strategy φt  is 

given by φt = ( )y∂ ∂  V(t,St), 0≤t≤T, and φ∈C
1,2

([0,T) 

× R
+
), where C

p,q
([a,b)×B)={f:[a ,b)×B→R , all possible 

partial derivatives of ƒ, where one differentiates at most 

p-times with respect to the first variable and at most 

q-times with respect to the second one, exist and 

continuous on [a,b)×B } 

Take Ψt=Ψ(t, St)=( φt -υa) σS% t, 0≤a≤t≤b, where a is 

some close time, b is the next open time after a. υa∈Fa, υa 

is the optimal variance hedging strategy, that is, 

considering we can’t trade just in the time interval (a,b), 

υa is the hedging strategy φ we can take at time a which 

minimize 

ESa

2

t

b
(φ - )dSa t tϕ∫ %% .            (3) 

It is known by Zhang
[13]

 

          
( )2
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∫

%

%

.        (4) 

We consider European call option. Assume the price of 

the underlying stock satisfy (1.1) and sup E│Ψ(u,Su)│
2 
< 

∞. For an European call option with maturity T and strike 

price X, 

      Vc(t,St)=StN(d1)-X e
- r(T-t)

N(d2) ,         (5) 

For an European put option with maturity T and strike 

price X, 

Vp(t,St)= X e
- r(T-t)

[1-N(d2)] -St[1-N(d1)] ,   (6) 

Where 

     d1=

2
ln(S / X) +[r + (σ / 2)](T - t)t

σ T - t
,       (7) 

     d2=d1-σ T - t ,                        (8) 

N (d1) and N (d2) represent normal probabilities based on 

the values of d1 and d2. We can easily calculate d1 and d2, 

and then look them up in a normal probability table to 

obtain N (d1) and N (d2), and then insert the values of N 

(d1) and N (d2) into the above formula. 

Consider the following example.  

Use the Black-Scholes-Merton Model to calculate 

the prices of European call and put options on an asset 

priced at 68.5. The exercise price is 65, the continuously 

compounded risk-free rate is 4 percent, the options expire 

in 110 days, and the volatility is 0.38. There are no cash 

flows on the underlying. 

Solution: The time to expiration will be T= 110/365 

= 0.3014. Then d1 and d2 are 

 

d1=0.4135 

d2=0.2049 

 

Looking up in the normal probability table, we have 

 

N (0.41) =0.6591 

N (0.20) =0.5793 

 

Plugging into the option price formula 

 

C=7.95 

P=3.67 

 

2.2 Inputs to the Black-Scholes Model 
 

The Black-Scholes Model has five inputs: the 

underlying price, the exercise price, the risk-free rate, the 

time to expiration, and the volatility. Let us now take a 

look at the various inputs required in the Black-Scholes 

Model. We need to know where to obtain the inputs and 

how the option price varies with these inputs. 

 

2.2.1 The Underlying Price  
 

The price should generally be obtained as a quote or 

trade price from a liquid, open market. Call option prices 

should be higher the higher the underlying price and the 

put option price should be lower. 

The relationship between the option price and the 

underlying price has a special name: It is called the 

option delta. In fact, the delta can be obtained 

approximately from the Black-Scholes formula as the 

value of N (d1) for calls and N (d1)-1 for puts. More 

formally, the delta is defined as 

 

Delta=
Change in option price

Change in underlying price
 

 

The above definition for delta is exact; the use N (d1) for 

calls and N (d1)-1 for puts is approximate. 

Delta is improtant as arisk measure. Traders, 

especially dealers in options, use delta to construct 
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hedges to offset the risk they have assumed by buying 

and selling options. 

Gamma is a numerical measure of how sensitive the 

delta is to a change in the underlying—in other words, 

how much the delta changes. When gamma is large, the 

delta changes rapidly and cannot provide a good 

approximation of how much the option moves for each 

unit of movement in the underlying. We shall not concern 

ourselves with measuring and using gamma, but we 

should know a few things about the gamma and, therefore, 

about the behavior of the delta. 

Gamma is larger when there is more uncertainty 

about whether the option will expire in-or 

out-of-the-money. This means that gamma will tend to be 

large when the option is at-the-money and close to 

expiration. In turn, this statement means that delta will be 

a poor approximation for the option’s price sensitivity 

when it is at-the-money and close to the expiration day. 

Thus, delta hedges will wok poorly. When the gamma is 

large, we may need to use a gamma-based hedge, which 

would require that we add a position in another option to 

the delta-hedge position of the underlying and the option. 

We shall not take up this advanced topic here. 

 

2.2.2 The Exercise Price 
 

The exercise price is easy to obtain. It is specified in 

the option contract and does not change. Therefore, it is 

not worthwhile to speak about what happens when the 

exercise price changes, but we can talk about how the 

option price would differ if we choose an option with a 

different exercise price. The call option price will be 

lower the higher the exercise price and the put option 

price will be higher.  

 

2.2.3 The Risk-Free Rate 
 

Call options increase in value as the risk-free rate 

increases. Put options decrease in values as the risk-free 

rate increases. Indeed, the price of a European call or put 

option does not change much if we use different inputs 

for the risk-free rate.  

Suppose the discrete risk-free rate quoted in annual 

terms is r. Then continuous rate is r
c
=ln (1+r). 

The sensitivity of the option price to the risk-free 

rate is called the rho. We shall not concern ourselves with 

the calculation of rho.  

 

2.2.4 Time to Expiration 
 

Time to expiration is an easy input to determine. An 

option has a definite expiration date specified in the 

contract.  We simply count the number of days until 

expiration and divide by 365, as we have done with 

forward and futures contracts.  

As expiration approaches, the option price moves 

toward the payoff value of the option at expiration, a 

process known as time value decay. The rate at which the 

time value decays is called the option’s theta. We shall 

not concern ourselves with calculating the specific value 

of theta, but be aware that if the option price decreases as 

time moves forward, the theta will be negative. 

Note that both call and put values decrease as the 

time to expiration decreases. We previously noted that 

European put options do not necessarily do this. For some 

cases, European put options can increase in value as the 

time to expiration decreases, the case of a positive theta, 

but that is not so for our put. Most of the time, option 

prices are higher the longer the time to expiration. For 

European puts, however, some exceptions exist. 

 

2.2.5 Volatility 
 

Volatility is the standard deviation of the 

continuously compounded return on the stock. We have 

also noted that the volatility is an extremely important 

variable in the valuation of an option. In addition, as we 

illustrate here, option prices ae extremely sensitive to the 

volatility. Call option prices should be higher the higher 

the volatility. Put option does too. 

Volatility is the only variable that cannot be obtained 

easily and directly from another source. We can calculate 

it base on the historical data of the company value. 

The formula for the volatility is estimated as follows 

 

s=
n n1 12 2

u - ( u )
i in -1 n(n -1)i=1 i=1

∑ ∑ ,(i=1,2,...,n)    (9) 

u = ln(S S )
i i i-1

,  (i=1,2,...,n)               (10) 

u
iS = S e

i i-1
, (i=1,2,...,n)                    (11) 

 

Where 

n+1 = the number of observations 

Si = assessed value for company of the end of the 

i-th interval 

ui = continuous compounding return 

As the standard deviation of ui is σ τ and s is 

estimates of σ τ ,σ can be estimated as s
*
. 

s
*
=

s

τ
,                              (12) 

Where: 

τ = the length of the interval (annual) 

 

The standard error of this estimates approximately 

*S 2n . 

The relationship between option price and volatility 

is called the vega, which—albeit considered an option 

Greek—is not actually a Greek word. We shall not 

concern ourselves with the actual calculation of the Vega, 

but know that the Vega is positive for both calls and puts, 

meaning that if the volatility increases, both call and put 

prices increase. Also, the Vega is larger the closer the 

option is to being at-the-money. 

 

Figure 1. Direction of Black-Scholes European Option Prices for a Change in the Five Model Inputs 

Sensitivity Factor Inputs Calls Puts 

Delta Asset price Positively related Delta>0 Negatively related Delta<0 
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Vega Volatility Positively related Vega>0 Positively related Vega>0 

Rho Risk-free rate Positively related Rho>0 Negatively related Rho<0 

Theta Time to expiration Value→0 as call→maturity 

Theta<0 

Value→0 as put→maturity 

Theta<0 

 Exercise price Negatively related Positively related 

 

3. Applications of the Black-Scholes Model 
 

The convertible bonds give the holder a call option 

right, so that we can use the option pricing theory to 

establish its valuation model. The Black-Scholes option 

pricing model is more mature and widely recognized as 

the option pricing method. There are many scholars using 

the Black-Scholes Model to price convertible bonds. 

We can select three convertible bonds in the market; 

the data is shown in Table 1. 

  

Table 1.convertible bonds samples (January 5, 2009) 

Company Dahuang Haima Wuzhou 

Code 110598 125572 110368 

maturity 5 5 5 

Coupon rate 1.5/1.8/2.1/2.4/2.7 1.5/1.8/2.2/2.5/2.7 1.3/1.5/1.7/1.9/2.1 

Listing date December 28,2007 January 30,2008 March 14,2008 

Conversion date June 19,2008 July 16,2008 August 29,2008 

Initial conversion price 14.32 18.33 10.14 

Latest conversion price 10.08 3.6 4.73 

Data sources: Shanghai Stock Exchange 

 

 

(i) Calculate the price of pure bond 

 

Because the maturities of the convertible bonds that 

we choose are 5 years, the risk-free interest rate we use is 

the rate of trading treasury bonds with the same maturity. 

So the risk-free rate is 2.51%. We can calculate the 

theoretical price of pure bond which is shown in Table 2 

 

Table 2. The price of pure bond 

Company Dahuang Haima Wuzhou 

price 98.01 98.19 99.19 

 

(ii) Calculate the price of the option component 

 

We can calculate the theoretical price of the option 

component based on Black-Scholes Model. There are two 

parameters, risk-free rate and stock price volatility, to be 

calculated. Since the risk-free interest rate used in the 

model is a continuous compound rate, we can calculate 

the risk-free rate r= ln(1+2.51%)=0.0248. In the empirical 

analysis, we choose 247 days. We can calculate the stock 

price volatilities, which are shown in Table 3. 

 

Table 3. The stock price volatilities 

Company volatility 

Dahuang 0.533 

Haima 0.682 

wuzhou 0.631 

 

Based on the Black-Sholes formula (5), we calculate the 

theoretical price of the option shown in Table 4. 

 

Table 4. The price of option component 

Company Stock price Conversion price Volatility Option price 

Dahuang 11.44 10.08 0.533 5.3879 

Haima 3.31 3.60 0.682 3.6872 

Wuzhou  4.49 4.73 0.631 3.2102 

 

According to the analysis, we can plus the price of pure 

bond and the price of the option component, and then 

compare them with the market price. The results are 

shown in Table 5. 

 

Table 5. Comparison of the theoretical price and market 

price 

Company Theoretical price Market price 

Dahuang 103.4 120.68 

Haima 111.88 111.15 

Wuzhou 112.4 111.78 

 

From the above analysis, we can see that the 

operability of calculation for convertible bonds based on 

Black-Scholes Model is relatively strong. Because the 

Black-Scholes Model does not include variables which 

reflect investors’ risk appetite, the model does not need to 

estimate the expected rate of return for investors. It does 

not need to forecast future cash flows of dividends and 

the expected growth of dividends, which, to some extent, 

overcome the defects of the traditional option pricing 

methods. However, because the Black-Scholes Model is 

under certain assumptions which cannot accurately 

describe the actual situation of the real market, the 

Black-Scholes Model also has its limitations that may 

make deviations to occur. Therefore, the application of 

the Black-Scholes Model is not a complete denial of the 

traditional option methods, nevertheless, it is an 
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ideological update.  
 

4. Conclusions 
 

This paper intends to study option pricing problems 

based on the Black-Scholes Model. At the beginning of 

seventy years，Fiseher Black and Myron Scholes have 

made   the unprecedented work in the domain of the 

option pricing theory, they proposed the first complete 

option pricing model, which named the Black-Scholes 

Model, widely accepted by the theory and the industrial 

world. The formula of Black-Scholes analyzes the pricing 

of option and risk management from the quantitative view. 

This is a powerful sustainment for the option’s 

popularization. Afterwards, breakthrough is achieved in 

the research of financial phenomenon, which enters the 

stage of quantitative study from the qualitative 

investigation. However, in the reality financial market, 

their idealized condition has limitation. A mass of finance 

practice has indicated that there is a serious warp between 

the hypothesis of Black-Seholes model about the 

underlying asset Price and the realistic markets. 

Therefore，many scholars put forward many new kinds of 

option pricing models by relaxing some assuming 

conditions of Black-Scholes model. The option pricing 

theory is becoming mature. Such as, according to the 

hypothesis of Geometric Brownian Motion that the price 

of object is supposed to comply with log-normal 

distribution, some experts pointed that the factual 

distribution with fat-tail, which was not in accordance 

with log-normal distribution, should be improved in the 

light of the results of marketed empirical study. J.C. Cox 

and S.A. Ross asserted that the movement of the price of 

object was not constantly changeable but displayed an 

array of bounces, which confirmed to Poisson distribution 

(J.C. Cox and S.A. Ross, 1976). Merton maintained that 

the change of the price of object was still continuous in 

an objective manner after being fully diffused. 

As it is, a variety of researches involved the method 

of option valuation are increasingly discussed and 

advanced because the development of option is 

everlasting in theory. In reality, option is complicated and 

with widespread use. Consequently, studying the 

universality and individuality of the methods of option 

valuation is of great significance for the research of 

intricate option valuation [17-24]. 
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