
Journal of Nature Inspired Computing (JNIC) 19 
Vol. 1, No. 1, 2013 
Copyright © World Science Publisher, United States 
www.worldsciencepublisher.org  

 

 
 

Probabilistic-Based Differential Evolution Algorithm 
 
 

1Morteza Alinia Ahandani, 2Nooreddin Jafari 
 

1,2Department of electrical engineering, Islamic Azad University, Langaroud branch, Langaroud, Iran 
1,2Young Researchers Club, Langaroud Branch, Islamic Azad University, Langaroud, Iran 

 
Email: 1 alinia@iaul.com  

2 jafari@iaul.com  
 

Abstract – In this paper we propose a probabilistic-based differential evolution (DE) algorithm for solving optimization 
problems. One of main drawbacks of DE is its few search efforts which it carries out for exploring the search space. The 
proposed DE with a probability and after providing a better fitness, accepts the generated donor member in mutation 
stage as an offspring. So the proposed algorithm by a new offspring can obtain a better exploration of the search space 
without imposing any additional operator. This improved algorithm is applied on some continuous benchmark functions 
and is compared with some modern and recently proposed differential evolution and other evolutionary algorithms. The 
obtained results demonstrate that the proposed algorithm has a completely comparable performance than other versions 
of DE algorithms. In a later part of the comparative experiments, performance comparisons of the proposed algorithm 
with some other evolutionary algorithms (EAs) shows that it has a better performance than other compared EAs. 
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1. Introduction  
 

The evolutionary algorithms (EAs) are all-purpose and 
approximate optimization methods employed to solve a 
wide variety of optimization problems. The EAs are 
applied on those of problems which there are not any 
analytical methods to solve them or analytical methods 
can not obtain the solution in a rational time. Differential 
evolution (DE) [1] is a simple and population-based EA 
on stochastic search and direct optimization derived from 
genetic algorithms (GAs). Its name was derived from 
natural biological evolutionary processes. 

Simple operator to generate new offspring, easy 
implementation and fast convergence are three main traits 
of DE. These traits cause widespread applications of the 
DE in the fields of optimization problems such as large 
scale passive harmonic filters planning problem [2], 
large-scale economic dispatch problem [3], cancer 
diagnosis [4], scheduling problems [5], optimization of 
supply chain systems [6], and electrical engineering [7], 
state feedback design for aircraft landing system [8], 
engineering design optimization [9], analyzing 
constrained machining conditions [10], image 
thresholding converge [11]. Plagianakos et al. [12] 
proposed a review of major application areas of DE 
algorithm. 

In spite of its traits, the DE has some drawbacks. This 
algorithm has a problem to find high accurate optimal 
solution. The DE similar to most other direct search 
methods uses greedy criterion to accept or reject a new 
generated offspring. In the DE, only an offspring with a 

better fitness than its parents is accepted and those of 
candidates with a worse fitness are rejected. However 
greedy criterion ensures the fast convergence, it increases 
the probability of trapping in local minimums [13]. Also 
the DE has a limited amount of search moves carried out 
to explore whole search spaces. 

To compensate these drawbacks of the DE, a wide 
variety of approaches have been employed in the 
literature. Improving the evolutionary operators of DE or 
using some new operators (see [10], [14] and [15]), 
dynamic and self-adaptive adjusting of DE evolutionary 
operators i.e. amplification factor of the difference vector, 
crossover rate and population size (see [16] and [17]) and 
hybridizing the DE with other local search methods (see 
[18] and [19]) are some utilized approaches to improve 
the DE performance. Also Ahandani et al. [13] proposed 
three modified DE algorithms to compensate limited 
amount of search moves in the original DE. Their 
proposed algorithms employed some operators to 
generate additional donor and offspring members. Also 
Ahandani and Alavi-Rad [20] introduced four new 
versions of the DE algorithms. Their proposed DE, on 
one hand, used the partitioning and shuffling concepts to 
compensate the limited amount of search moves of the 
original DE and, on the other hand, employed the 
opposition-based learning to accelerate the DE without 
making premature convergence.  

This research proposes a modified version of DE 
algorithm for a better exploration of search space without 
imposing a new operator. In this DE algorithm, the 
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generated donor member in the mutation stage can be considered as an offspring with a probability. So based on  
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Figure 1. Steps of the DE. 
 

this idea, the second candidate solution is obtained as an 
offspring without using any new operator. 

The remained sections of this paper are organized 
as follow. In the next section, the original DE 
algorithm is briefly explained. In section 3, the 
proposed modified version of DE is described. The 
simulation results are presented and analyzed in 
section 4 and section 5 concludes the paper. 
 
2. The Differential Evolution 
 

The structure of the DE algorithm is shown in Fig. 1. 
The DE similar to other EAs, starts with an initial 
population extracted randomly from search space. It uses 
three main operators: mutation, crossover and selection. 
In the mutation stage, a weighted difference of two 
random members is added to a third member and a donor 
member is generated. Among different utilized operators 
for this stage, this study uses (1). 

2 1
( ) ( )i best i r rv x x x F x x                            (1) 

where ix  is the current point, bestx  is the best point that 

is found so far, 
1rx  and 

2rx  are two random points that 

are selected from the population, where 1 2r r  and F  

and   are two random numbers within a definite range. 
The DE with this mutation operator is nominated as DE2 
such as Ahandani et al. [13]. 

In the crossover stage, an operator applies between 
generated donor member and a predetermined one to 
generate an offspring presented in (2).  

, 1 ,..., 1j D D D
j

j

v j n n n l
u

x otherwise

         


 (2) 

where ju , jv  and jx  are thj  gene of offspring, donor 

and current individuals, respectively. D  is the dimension 
of problem, n  and l are two random integer number in 
the set of {1, 2,..., }D  that denote starting point and 

number of component, respectively. Also angular 
brackets D   denote a modulo function with modulus 

D . According to (3), to generate u , those of genes are 
among 1n   and n l  must be copied from v  and other 
genes will be copied from x .  

After generation of new member, in the selection stage 
based on a greedy criterion, the offspring is evaluated by 
cost function and if the fitness of new member is better 
than fitness of current member, this candidate replaces 
the current member.  

( ) ( )

( ) ( )
i

i
i i

u f u f x
x

x f u f x


  

                                          (3) 

Thus the DE generates an offspring for each member 
of population in its crossover stage. 
 
3. The Probabilistic Differential Evolution 
 
One of main shortcomings of DE was its few search 
efforts for exploring whole search space. This drawback 
beside of using the greedy criterion to accept or reject 
new generated members causes a fast convergence. The 
probabilistic-based DE (PBDE) is proposed to give 
independently selection possibility to donor member as 
an offspring. In the original DE algorithm, if the fitness 
of generated offspring was less than fitness of current 
member, the current member is preserved in the 
population and this search move is considered as an 
unsuccessful effort. The PBDE after rejection of new 
generated offspring by reason of its worse fitness, the 
generated donor for current member in the mutation stage 
is evaluated. While the donor member has a better fitness 
than current member, it is replaced with donor with a 
probability equal to Prob . Steps of the PBDE are shown 
in Fig. 2. So the PBDE has only an additional stage than 
the original DE (Step5). This stage does not apply any  
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The PBDE algorithm: 
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Figure 2. Steps of the PBDE 

 
additional operator to the DE algorithm and uses the 
generated donor member in Step 2. 

 
4. Simulation Results and Discussion 
 

In this section, after some experiments to set Prob  
parameter of PBDE algorithm, the PBDE is compared 
with results of three modern DE algorithms reported in 
Ahandani et al. [9] on 12 continuous benchmark 
functions, including 6 low dimensional and 6 high 
dimensional functions. Then a comparison among the 
PBDE2 and some other EAs reported in Elbeltagi et al. 
[21] is carried out. The initial population is randomly 
generated by uniform probability distribution in all search 
space. Performance and termination criteria are similar to 
those of used in Ahandani et al. [13]. 

Twenty trial runs are performed for each problem. To 
call a run successful, four threshold values, i.e., 1E-1, 5E-
2, 1E-3 and 1E-10 are considered. The performances of 
the different algorithms are compared using two criteria: 

(I) The success rate (SR), the number of runs that 
algorithm satisfies (4).  

*| ( ) |f f                                                               (4) 

where   is the considered thresholds, *f is the global 
minimum of the cost function and f is the cost of the 
best point found by the algorithm.  

(II) Average number of function evaluations (FE) in 
all runs that algorithm satisfies (4). 

Also two criteria are considered for termination of 
algorithms: 

(I) *| ( ) | bestf f   , where best is the best considered 

value of thresholds. 
(II) The objective function value does not improve in 

several consecutive iterations. 

Also size of initial population is considered equal to 
100 for those of function with a dimension less than 10 
and 200 for those of function with 10 number of 
variables. Values of   and F  are considered equal to 
two random number in the range of [0,1] which are 
considered different for each variable. The obtained 
results of applying the PBDE2 on benchmark functions 
and its comparison with other algorithms are shown in 
Tables 1 to 4. 

Table 1 shows the effect of different values of Prob  
on the performance  of the PBDE2. The obtained results 
demonstrate that by increasing Prob , the number of 
function evaluations to reach the considered accuracy is 
decreased. On ML5 function 0Prob   and 0.3Prob   
have the best success rate but 0.3Prob   is faster than 

0Prob  . Also on all other low-dimensional functions, 
the PBDE2 with 1Prob   has the fastest performance. 
On function with 10 variables, 1Prob   obtains the 
fastest performance, except on GR function. On this 
function, 0.15Prob   has the best success rate and 

0.3Prob   obtains the best number of function 
evaluations. With incorporation between two considered 
measures to compare different values of Prob  i.e. 
number of function evaluations and success rate, it is 
considered 0.3Prob   is a proper selection. 

Fig. 3 shows convergence characteristic curves for the 
all considered values for Prob  in the PBDE2 algorithm, 
in terms of the fitness value of the median run of 
algorithm, with over 10 independent runs on MSH, ES, 
EF10 and GEPE functions. These curves show that how 
the PBDE2 by increasing the number of function 
evaluations  
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Table 1. The results of experiments for adjusting parameter of Prob  for 1E-3 threshold value. Values in parentheses show the 
function dimension. 

Fun (Dim) 
 0  0.15  0.3  0.5  1 
 SR FE  SR FE  SR FE  SR FE  SR FE 

Low-Dimensional Functions 
MSH(2)  100 8543  100 12040  100 8457  100 12085  100 7245 
ML5(5)  40 4248  10 802  40 2544  20 1409  20 1364 
ES(2)  100 9546  100 8612  100 7368  100 7273  100 5953 
GP(2)  100 3547  100 3014  100 2589  100 2658  100 2299 
TP3(2)  100 3642  100 2854  100 2535  100 2577  100 2382 
Him(2)  100 2959  100 3382  100 2867  100 2683  100 2425 
GR(10)  80 170162  100 315282  80 206572  80 476941  70 317786 
EF10(10)  100 108694  100 105012  100 95248  100 95099  100 83037 
ACK(10)  100 32823  100 31464  100 30114  100 29204  100 26610 
GEPE(10)  100 89501  100 86385  100 82273  100 81050  100 76203 
ZAK(10)  100 88034  100 74060  100 62428  100 52710  100 37804 
ROS(10)  0 -  0 -  0 -  0 -  0 - 
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Figure 3. Median convergence characteristics for PBDE2 over 4 functions (2 low dimensional functions with 20000 function 
evaluations and 2 high dimensional functions with 10 variables and 150000 function evaluations). (a) MSH function. (b) ES function. 

(c) EF10 function. (d) GEPE function. 
 

converges toward the optimal solution, and how major 
values of Prob  obtain a faster performance. 

Table 2 and 3 compare the performance of the 
PBDE2 and results reported in Ahandani et al. [13] 
on 6 low-dimensional functions and 6 high-
dimensional functions with 10 variables. Ahandani et 
al. [13] proposed three modified versions of DE 
algorithm i.e. bidirectional DE (BDE), shuffled DE 
(SDE) and shuffled bidirectional DE (SBDE) and 
compared them with original DE algorithm. The 
obtained results demonstrate that the PBDE2 has a 
comparable performance than other algorithms. For 
example, the PBDE2 has a faster performance then 
the DE2 and BDE2 algorithms on MSH function. 

Also the PBDE2 has a better success rate then BDE2 
and fastest performance on ML5 function. 

Also results of Table 3 show that the PBDE2 has a 
better success rate than the DE2 and BDE2 algorithms on 
GR function; however it has a slow performance on this 
function. Also the PBDE2 has a better success rate than 
the DE2 and BDE2 on ZAK function. On EF10, ACK 
and GEPE functions, the PBDE2 has a similar success 
rate but a slower performance. In an overall consequence, 
the PBDE2 obtains a better, or at least comparable, 
performance than original DE2 and BDE2 algorithms. On 
the other side, the SDE2 and SBDE2 have a faster 
performance than the PBDE2 algorithm; however their 
success rate is completely comparable. 
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Table 2.  The comparison of PBDE2 and results reported of Ahandani et al. [13] in terms of success rate and number of function 
evaluation for low-dimensional functions. 

Threshold  
Algorithm 1E-10  1E-3  5E-2  1E-1  

FE  SR  FE  SR  FE  SR  FE  SR  
MSH   

22750  100  8875  100  6775  100  6370  100  DE2 
24151  100  10437  100  7510  100  6911  100  BDE2 
3660  100  1920  100  1500  100  1500  100  SDE2 
9805  100  4381  100  3550  100  3550  100  SBDE2 
15652  100  8457  100  6421  100  6071  100  PBDE2 

ML5   
6085  40  2880  40  1795  40  2430  60  DE2 
7306  35  3415  35  2175  35  2848  50  BDE2 
4760  60  2560  60  1760  60  2280  80  SDE2 

137490  100  37670  100  16630  100  13730  100  SBDE2 
4725  40  2544  40  1423  50  1587  60  PBDE2 

ES   
8510  100  4715  100  3150  100  2830  100  DE2 
4285  100  4285  100  4285  100  3805  100  BDE2 
4100  100  2100  100  2100  100  2100  100  SDE2 
82964  100  5057  100  5057  100  5057  100  SBDE2 
9848  100  7368  100  3619  100  3293  100  PBDE2 

GP   
5520  100  2445  100  1620  100  1415  100  DE2 
8353  100  3710  100  2220  100  1993  100  BDE2 
4100  100  2100  100  2100  100  2100  100  SDE2 
6750  100  3450  100  3450  100  3450  100  SBDE2 
5749  100  2589  100  1117  100  995  100  BDE2 

TP3   
-  0  1830  100  1340  100  1340  100  DE2 
-  0  1830  100  1340  100  1340  100  BDE2 
-  0  2100  100  2100 100  2100  100  SDE2 
-  0  4000  100  3010  100  3010  100  SBDE2 
-  0  2535  100  1963  100  1823  100  PBDE2 

Him   
5890  100  1910  100  1020  100  970  100  DE2 
8995  100  3106  100  1472  100  1155  100  BDE2 
2460  100  1260  100  1260  100  1260  100  SDE2 
5032  100  2615  100  2615  100  2615  100  SBDE2 
6912  100  2867  100  1195  100  955  100  PBDE2 

 
Table 4 shows a comparison among the proposed 

algorithm and results of Elbeltagi et al. [21]. 
Elbeltagi et al. [21] have compared four continuous 
algorithms i.e. the GAs, memetic algorithms (MAs), 
particle swarm optimization (PSO) and shuffled frog 
leaping (SFL) on two continuous benchmark 
functions. Results of table 4 demonstrate that the 
PBDE2 has a better performance than other 
algorithms. The BDE2 has a success rate of 100 on 
all cases. The MAs and the PSO have only a 
comparable performance on GR and EF0 functions, 
respectively. 
 
5. Conclusions 

 
This paper proposed a probabilistic-based DE 

algorithm named PBDE. The PBDE is an effort to 
associate the generated member in the mutation stage of 
DE for utilization independently as an offspring. The DE 
beside of its considerable traits such as simple operator to 
generate new offspring, easy implementation and fast 
convergence has a limited amount of search moves to 
explore whole search space. The PBDE2 apply an 
additional move to original DE without utilizing a new 
operator. The proposed algorithm was applied on some 
continuous benchmark functions and was compared with 

some modern and recently proposed DE and other EAs. 
The obtained results demonstrated that the PBDE2 had a 
completely comparable performance than other versions 
of DE algorithms. Also it outperformed other compared 
EAs in the considered paper. 
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