
Journal of Nature Inspired Computing (JNIC) 26
Vol. 1, No. 2, 2013
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

Implementation of Cyclomatic Complexity Matrix

1Ambuj Kumar Agarwal, 2Dr. Vinodini katiyar

1Teerthanker Mahaveer University, Moradabad, India
*2SRM University, Lucknow, India

Email: ambuj4u@gmail.com

Abstract – Cyclomatic complexity (or conditional complexity) is a software metric (measurement). It directly
measures the number of linearly independent paths through a program's source code. The concept, although not the
method, is somewhat similar to that of general text complexity measured by the Flesch-Kincaid Readability Test.
Cyclomatic complexity is computed using the control flow graph of the program: the nodes of the graph correspond to
indivisible groups of commands of a program, and a directed edge connects two nodes if the second command might be
executed immediately after the first command. Cyclomatic complexity may also be applied to
individual functions, modules, methods or classes within a program.

Keywords – Cyclomatic Complexity, Readability Test

1. Introduction

Cyclomatic complexity (or conditional
complexity) is a software metric (measurement). It
directly measures the number of linearly independent
paths through a program's source code. The concept,
although not the method, is somewhat similar to that
of general text complexity measured by the Flesch-
Kincaid Readability Test. Cyclomatic complexity is
computed using the control flow graph of the
program: the nodes of the graph correspond to
indivisible groups of commands of a program, and
a directed edge connects two nodes if the second
command might be executed immediately after the
first command. Cyclomatic complexity may also be
applied to individual functions, modules, methods or
classes within a program.

One testing strategy, called Basis Path Testing by
McCabe who first proposed it, is to test each linearly
independent path through the program; in this case,
the number of test cases will equal the cyclomatic
complexity of the program.

1.1 Analytic Critiques

McCabe [1976] proposed that a measure of the

complexity is the number of possible paths through
which the software could execute. Since the number
of paths in a program with a backward branch is
infinite, he proposed that a reasonable measure would
be the number of independent paths.
After defining the program graph for a given
program, the complexity calculation would be:

V(G) = e - n +2.
where V(G) = the cyclomatic complexity,
e = the number of edges,
n = the number of nodes.

1.2 Empirical Tests

In Shepperd's comprehensive review of previous

research on the metric, he notes that, among the
numerous empirical validations or uses of the metric,
that the most consistent single result is the high
degree of correlation between McCabe's metric and a
count of source lines of code (SLOC). As evidence of
this, four studies cited by Shepperd had Pearson
correlation coefficients of .9 or greater for these two
metrics. This "empirical criticism" suggest that the
additional effort required for computing and
understanding the McCabe cyclomatic complexity
metric may not be practically worthwhile. However,
as noted by Shepperd, concerns about external
vahdity of the data and analyses in some of the
previous studies can be raised to mitigate some of the
results, particularly those using data on small
programs from student subjects. Therefore, these
results bear validation on data from actual systems. In
particular, applied research in this area does not seek
to determine whether cyclomatic complexity captures
all aspects of complexity in one figure of merit, but
rather looks to answer the overriding question raised
by Shepperd, as to whether cyclomatic complexity
can serve as a "useful engineering approximation".

1.3 Terminology and Notation

Ambuj Kumar Agarwal, et al., JNIC, Vol. 1, No. 2, pp. 26-29, 2013 27

In many of the related software metrics the authors
have given mathematical notation to concretely
describe their metrics fully. However, many of these
notations are merely created just for their specific
metrics. Fortunately Briand proposed a standard
notation that is used to describe software metrics so
that all could readily understand the terminology.

2. A Unified Framework for Coupling

Briand introduced a unified framework for

defining coupling measurement in object-oriented
systems. They review three other previous attempts at
defining such a framework and attempt to improve
and unify the terminology. The previous frameworks
have been proposed by Eder, Ritz and Montazeri and
an earlier attempt by Briand. The framework utilizes
mathematical notation to specifically define the
different types of relationships. There are many
definitions which are stated within the framework, for
brevity, the definitions necessary for understanding
the proposed metrics will be introduced.

2.1 Methods

A class has a set of methods. A method can be

either virtual or non-virtual and either inherited,
overridden, or newly defined, all of which have
implications for measuring coupling.

Methods of a Class: For each class c  C let M(c) be

the set of methods of class c.
The Set of all Methods: M(C) is the set of all methods

in the system and is represented as
M(C) =U M(c)

 cC
The Set of Methods Implemented in a Class: M1(c)

M(c) be the set of methods implemented in c,
i.e., methods that c inherits but overrides or
non virtual non inherited methods of c.

Polymorphic Identification: P(m) is the function to
identify which class the method m is
dynamically bound to. P(m) = Cc where m 
M(c)

2.2 Method Invocations

To measure coupling of a class c, it is necessary to

define the set of methods that m  M(c) invokes and
the frequency of these invocations. Method
invocations can be either static or dynamic. For static
invocations, the invoked method is determined by the
type of the variable that references the object. For
dynamic invocations, the invoked method is
determined by a late-binding at run-time to the
polymorphic type. One definition which is needed
here but not defined in the unified framework is the
notion of a transitive relation upon method
invocations. A method invocation may possibly
invoke another method and so on. A proposed
addition to the framework will be defined to account
for this behavior.

The Set of Statically Invoked Methods of m:Let cC,
mM1(c), and m' M(C). Then m' S1M(m)  dC
such that m' M(d) and the body of m has a method
invocation where m' is invoked for an object of static
type class d.
The Set of Polymorphically Invoked Methods of m:
P1M(m) is the set of all polymorphically invoked
methods on m. Let cC, mM1(c), and m'M(C). Then
m'  P1M(m)  dC such that m'  M(d) and the
body of m has a method invocation where m' may,
because of polymorphism and dynamic binding, be
invoked for an object of dynamic type d.
The Transitive Closure on a Set of Invoked
Methods m: T(m) is the transitive closure on a set
of invoked methods. Let m be a method, whether it be
statically or polymorphically invoked. Let m be
defined to be mo, where mo can invoke ml, ml can
invoke m2, and so on.

2.2 Attributes

Classes have attributes which are either inherited or
newly defined.
The Set of all Attributes: A(C) is the set of all
attributes in the system and is represented as
A(C) =UA(c) where cC

2.3 Attribute References

Methods may reference attributes. These attributes
may not be part of the encompassing class, therefore
coupling it to the referenced encompassing class.
The Set of Attributes referenced by the method m: For
each mM(C) let AR(m) be the set of attributes reference
by method m.
2.4 Predicates

To ensure proper usage between terms, a uses predicate
must be defined.
Uses: Let cC, dC. uses(c, d) (mMI(c): m'
MI(d): m'
PIM(m)) V (m  MI(c): a  AI(d) : a  AR(m))

A class c uses a class d if a method implemented in class
c references a method or an attribute implemented in
class d.

3. Proposed Matrix

Ten metrics are proposed that measure different
dimensions of a system when compared to CC and
CBO. The metrics are grouped in a suite which we
call Gray/ Janzen Coupling Complexity Metrics
Suite. Some of the variations on CC look more in
depth on a procedure's possible execution path rather
then solely focusing on a procedure's static nature.
The variations on CBO are upon CBO's coupling
weight to other classes. This weight can be different
depending on exactly how a class is coupled to
another. The different method complexities and
possible method execution paths will be explored.

Ambuj Kumar Agarwal, et al., JNIC, Vol. 1, No. 2, pp. 26-29, 2013 28

3.1 Transitive Cyclomatic Complexity

CC computes a complexity value over a procedure.
By McCabe's definition the number of connected
components (method calls) or P is included within his
complexity metric. It is defined as M = E -N +2P
where the number of method calls is merely
multiplied by two. Transitive Cyclomatic Complexity
attempts to further this value. Instead of only using
2P, TCC will inject the summation of all Cyclomatic.

Complexities computed on all methods that can
possibly be executed on the static types invoked.

E is the number of edges and N is the number of
nodes in the control flow graph of a method m. The
plus one is used for when the CC of a method that has
no decision points still maintains some complexity or
more specifically a value of one.

4. Conclusions

Metrics are never fully validated until they have

been tried and tested for many projects. These
metrics have only been used on two industry projects
totalling four different analyses across four versions.
This is hardly a conclusive result for absolute proof
of their accuracy. Future experiments can further
investigate the accuracy of these metrics with other
projects.

An experimental group could volunteer to use
these metrics in developing software and supply
feedback of their use. Analyses could be performed
on the amount of work that is generated from the
results of the metrics as well as another measurement
judging the impact of this work on the overall system.
Some examples could include showing the CC values
of overall methods within the system and comparing
them at a later date to see if the CC has decreased in
particular classes. If this is the case it could be
classified that this decrease was in response to a
value that surpassed a particular threshold for a
metric.

Threshold values for metrics are a hard goal. As
discussed previously it is thought to be the case that
the entire range of the metric's values must be taken
into account when creating a threshold value. An
algorithm for figuring out the threshold value of a
metric depending on its current range of values would
be an interesting piece of research.

Acknowledgements

I would like to express my sincere gratitude to my
advisor Prof. Dr. Vinodini Katiyar for the continuous
support of my PhD study and research, for his
patience, motivation, enthusiasm, and immense
knowledge. His guidance helped me in all the time of
research. I could not have imagined having a better
advisor and mentor for my research.

References

[1] A. B. Binkley and S. R. Schach. Validation of the coupling
dependency metric as a predictor of run-time failures and
maintenance measures. In Proceedings of the 1998 (20th)
International Conference on Software Engineering, pages 452-
455, Apr 1998.
[2] A. Beszedes, T. Gergely, S. Farago, T. Gyimothy, and F.
Fischer. The dynamic function coupling metric and its use in
software evolution. In CSMR '07. 11th European Conference on
Software Maintenance and Reengineering, pages 103-112, Mar
2007.
[3] A. Dunsmore, M. Roper, and M. Wood. Practical
code inspection for object oriented systems: an experimental
comparison. IEEE Software, 20(4):21-29, July1Aug 2003.
[4] Albert L. Baker, Stuart H. Zweben (1980), “A Comparison
of Measures of Control Flow Complexity”, IEEE Transactions
On Software Engineering, Vol. SE-6.
[5] Albrecht, A. J. and J. E. Gaffney. Jr. “Software Function,
Source Lines of Code, and Development Effort Prediction: A
Software Science Validation”, IEEE Trans. Software
Eng. SE-9, 6, Nov. 1983, pp. 639-648.
[6] Arifoglu, A.: A Methodology for Software Cost Estimation,
ACM Sigsoft, vol.18 no.2, 1993.
[7] Arthur, L. J. “Measuring Programmer Productivity and
Software Quality”, New York, John Wiley, 1985.
[8] Austin, Robert D., Lister, Timothy R., Demarco, T.
“Measuring & Managing Performance in Organizations”, New
York, Dorset House, June, 1996.
[9] B. Henderson-Sellers. Object-Oriented Metrics: Measures of
Complexity. Object-Oriented Series. Prentice Hall, Upper
Saddle River, New Jersey, 07458, 1996.
[10] Banker, R.D., Datar, S.M., Zweig, D.: Software
Complexity and Maintainability CiteSeer Scientific Literature
Digital Library and Search Engine.
[11] Barbacci, M.R., Klein, M.H., Longstaff, T.A.,
Weinstock, C.B.: Quality Attributes of a Software Architecture
(last accessed 02.04.2010)
[12] Basci, D., Misra, S.: Measuring and Evaluating a
Design Complexity Metric for XML Schema Documents’ Code.
Journal of Information Science and Engineering. Sep. 2009,
pp.1415-1425.
[13] Basci, D., Misra, S: ‘Data Complexity Metrics for
Web-Services’ Advances in Electrical and Computer
Engineering, Volume 9, Number 2, 2009, pp.9-15.
[14] Basili, V.R.: Qualitative Software Complexity
Models: A Summary. In Tutorial on Models and Methods for
Software Management and Engineering. IEEE Computer
Society Press, Los Alamitos, California, 1980.
[15] Boehm, B. W. “Software Engineering Economics”,
 Englewood Cliffs, New Jersey, Prentice-Hall, 1981.
[16] Boehm, Barry W.; "Improving Software
Productivity"; Computer, September 1987; pp. 43-57.
[17] Bruegge, B., Dutoit, A.H.: Object-Oriented Software
Engineering – Using UML, Patterns, and Java, 2nd International
Edition, Prentice Hall, 2004.
[18] C. Rajaraman and M. R. Lyu. Reliability and
maintainability related software coupling metrics in c++
programs. In Proceedings of the Third International Symposium
on Software Reliability Engineering, pages 303-311, Oct 1992.

Ambuj Kumar Agarwal, et al., JNIC, Vol. 1, No. 2, pp. 26-29, 2013 29

[19] Card, D. N. and W. W. Agresti. “Measuring Soft ware
Design Complexity.” J. Syst. and Software 8, 3 (June 1988),
185-197.
[20] Cerino, D. A. “Software Quality Measurement Tools
And Techniques.” Proc. COMPSAC 86.Washington, D. C.:
IEEE Computer Society, Oct. 1986, 160-167.
[21] Chidamber S.R., Kemerer, C.F.: A Metric Suite for
object oriented esign. IEEE Transactions Software Engineering,
SE-6(1994)476-493. 86
[22] Conte, S. D., H. E. Dunsmore, and V. Y. Shen.
Software Engineering Metrics and Models.Menlo Park, Calif.:
Benjamin/Cummings, 1986.
[23] Conte, S. D.; Dunsmore, H. E.; and Shen, V. Y.;
Software Engineering Metrics and Models;
Benjamin/Cummings Publishing Qarapany, Inc., 1986.
[24] Cote, V., P. Bourque, S. Oligny, and N. Rivard.
“Software Metrics: An Overview of Recent
Results.” J. Syst. and Software 8, 2 (March 1988), 121-131.
[25] Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst,
and T. Love. “Measuring the Psychological Complexity of
Software Maintenance tasks with the Halstead and McCabe
Metrics”, IEEE Trans. Software Eng. SE-5, 2 (March 1979), pp.
96-104.

[26] Tarun Kumar Sharma, Millie Pant, V.P. Singh,
Improved Local Search in Artificial Bee Colony using Golden
Section Search, Journal of Engineering, 1:1(2012) 14-19.
[27] Tarun Kumar Sharma, Millie Pant, V.P. Singh,
Adaptive Bee Colony in an Artificial Bee Colony for Solving
Engineering Design Problems, Advances in Computational
Mathematics and its Applications, 1:4(2012) 213-221.
[28] Avanaksh Singh Sambyal and Prikhshayat
SinghRouting Misbehavior in MANets and How it Impact
QoS!, Advances in Computer Science and its Applications,
1:1(2012) 84-88.
[29] S.Balaji, Lakshmi.A, V.Revanth, M.Saragini and
V.Venkateswara Reddy, Authentication techniques for
engendering Session passwords with colors and text, Advances
in Information Technology and Management, 1:2(2012) 71-78.
[30] C.Narasimha and B.Jalaja Kumari, Secured
Multicasting over MANET’s through EGMP, Advances in
Information Technology and Management, 1:2(2012) 90-96.
[31] M. Sreedevi,.C.Narasimha and R.Seshadri, Efficient
Data Delivery Over MANET’s through Secured EGMP,
Advances in Asian Social Science, 2:3(2012) 512-516.

