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Abstract – Differential Evolution (DE) is a simple, efficient algorithm which has reportedly outperformed many other 

optimization algorithms in terms of convergence speed and robustness over common benchmark problems and real 

world applications. However, one is required to set the values of the control parameters of DE for each problem. Such 

parameter tuning is a time consuming task. The proposed scheme dynamically adapts the mutation step size for better 

exploration and exploitation of the search space. In this paper we propose SaMSDE algorithm that incorporates 

exponential distributions to produce mutation steps with varying lengths and suitably adjusts the current step length. To 

show the performance of our proposed SaMSDE, experiments are carried out on a set of seven well-known benchmark 

problems. Further the proposed SaMSDE is applied to solve supply chain system. Simulation results show that the 

proposed algorithm can effectively enhance the searching efficiency and greatly improve the searching quality. 
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1. Introduction  

 
Global optimization problem is not easy to solve and 

standard deterministic algorithms tend to stop the search 

in local minimum nearest to the input starting point. 

Therefore, heuristic search techniques are widely used by 

the optimization community when obtaining the global 

optimum is not only desirable but is also necessary. Such 

heuristics are often population based search techniques, 

inspired by some natural process like theory of evolution 

(Genetic Algorithms, Differential Evolution etc.) or 

behavior of species (Particle Swarm Optimization, Ant 

Colony Optimization etc).  

Evolutionary algorithms such as Genetic Algorithms 

(GA) [1] and Differential Evolution (DE) [2][3] are able 

to find the acceptable solution within a reasonable time 

limit, but the success of these algorithms depends, to a 

large extent on the careful tuning of control parameters. 

In case of DE which is the focus of the present work, the 

two important parameters are Scaling Factor (F) and 

Crossover Rate (CR). 

Mutation operation plays the most significant role in 

the performance of a DE algorithm. 

Despite having several attractive features, it has been 

observed that DE sometimes does not perform as per the 

expectations. Empirical analysis of DE has shown that it 

may stop proceeding towards a global optimum even 

though the population has not converged even to a local 

optimum [5]. The situation when the algorithm does not 

show any improvement though it accepts new individuals 

in the population is known as stagnation. Besides this, 

DE also suffers from the problem of premature 

convergence. This situation arises when there is a loss of 

diversity in the population. It generally arises when the 

objective function is multi objective having several local 

and global optimums. Like other EA, the performance of 

DE deteriorates with the increase in dimensionality of the 

objective function. Several modifications have been made 

in the structure of DE to improve its performance. One 

class of modification deals with the development of 

adaptive control parameters [9] – [15]. Use of self 

adaptive parameters saves the user from the trouble of 

fine tuning of parameters, 

Many of the developments in DE algorithm design and 

applications can be found in [15]. 

In this paper we introduce a new Differential 

Evolution algorithm SaMSDE, which incorporates 

exponential distribution to produce mutation steps with 

varying lengths and suitably adjusts the current step 

length.  

Performance of SaMSDE is analyzed on a set of seven 

standard unconstrained benchmark functions and a supply 

chain model.  

Optimization of a supply chain model is an integer 

programming problem or a constrained integer-mixed 

problem [12]. Several methodologies for optimizing a 

supply chain have been proposed in the literature so far. 

Regarding evolutionary algorithms, genetic algorithms 

are the most popular for supply chain optimization 

problems [13-18]. 

The remaining paper is organized as follows: Section 

II gives a very brief survey of adaptive control parameter 
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algorithms in DE, an overview of DE is given in the 

Section III, Motivation for the given work and proposed 

algorithms are given in sections IV and V respectively. 

Section VI describes supply chain system in brief. 

Section VII describes parameter settings, performance 

metrices and simulation results. Finally the paper 

concludes with section VIII. 

 

2. Related Work 
 

There are quite different conclusions about the rules 

for choosing the control parameters of DE. Price and 

Storn [1] stated that the control parameters of DE are not 

difficult to choose. On the other hand, Gämperle et al. [6] 

reported that choosing the proper control parameters for 

DE is comparatively difficult than expected. Liu and 

Lampinen [7] reported that effectiveness, efficiency, and 

robustness of the DE algorithm are sensitive to the 

settings of the control parameters. The best settings for 

the control parameters can be different for different 

functions and the same function with different 

requirements for consumption time and accuracy. 

However, there still exists a lack of perfect knowledge on 

how to find reasonably good values for the control 

parameters of DE for a given function [8]. 

Several instances are available in literature for 

determining the optimal values of these control 

parameters. But it is observed that mostly the control 

settings are problem specific and different scholars have 

different views regarding the optimal values of these 

parameters [2]-[6]. Researchers therefore laid emphasis 

on having adaptive/self adaptive control parameters to 

avoid the careful and time consuming process of fine 

tuning. Ali and Torn [7] proposed a simple rule for 

adapting the F scaling factor value during the search 

process. Quin and Suganthan [9] proposed self-adaptive 

choice of mutation strategy combined with controlled 

random adjusting the values of F and CR. Evolutionary 

self-adaptation of control parameters F and CR suggested 

by Brest et al. [10][11] have proved good convergence in 

the applications. Several other modifications have been 

suggested in the literature [12]-[14]. 

 

3. Overview of DE 

 
DE is an Evolutionary Algorithm (EA) proposed by 

Storn and Price in 1995 [2]. DE starts by randomly 

generating an initial population, when no preliminary 

knowledge about the solution space is available. The 

uniformly distributed random numbers are evaluated 

using the fitness function provided. Then the following 

are executed until maximum number of generation has 

been reached or an optimum solution is found. 

 

Mutation Operation 

 

For each target vector xi,G  at generation G , an 

associated mutated vector is usually generated as follows:     

)( ,3,2,11, GrGrGrGi xxFxv −+=+                               (1) 

where r1 , r2 , r3 ∈  (1,2…,NP ) are randomly chosen integers, 

different from each other and also different from the running 

index i. F is a real and constant factor having value between [0, 

2] and controls the amplification of differential variation       

(xr2, G – xr3, G ). 

 

Crossover Operation 
 

After the mutation phase, the “binominal” crossover 

operation is introduced in order to increase the diversity 

of the perturbed parameter vectors. The parent vector is 

mixed with the mutated vector to produce a trial vector 

uji,G+1,  
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where j, k = {1, 2,…, D (dimension)}; k is the random 

parameter index, chosen once for each i, randj ∈  [0, 1] 

and Cr is a user-specified crossover constant in the range 

[0, 1]. 

 

Selection Operation 

 

Finally selection takes place where a tournament is 

held between the target vector and trial vector and the one 

with better fitness function is allowed to enter the next 

generation. In this way individuals in a new generation 

are as good as or better than the individuals in the 

previous generation. DE contains 4 parents, in which one 

is target vector; xi and three are random vectors xr1, xr2 

and xr3. The detailed pseudocode is given in Figure 1 and 

process is shown in Figure 2. 

 

1: Generate uniformly distributed random population, G   

    (generation) = 1 

2: while termination criterion not met do 

3:   for i = 1; i ≤ NP (Population Size); i = i + 1 

Parents Selection  

(For Original DE, for each vector xi, select randomly three distinct vectors xr1, xr2 and xr3 from the current population 

other than the vector xi ) 

4:   Randomly select r1 , r2 , r3∈{1,2,…,NP}, r1≠r2≠r3≠ i 

5:   for j = 1; j ≤ D (Dimension); j = j + 1 do  

6:   Randomly select jrand ∈  {1, 2… D} 

************************* 

Binomial Crossover for DE (DE/1/rand/bin) 

7:      if (rand () < CR or j = jrand) 

8:      uji,G = xr1,G + F * (xr2,G – xr3,G) 
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9:      else 

10:    uji,G = xji,G  

11:    end if 

12:  end for 

13:  end for  

14:  for i = 1; i ≤ NP; i = i +1 do 

************************* 

Selection  

15:     if f(uji,G) ≤ f(xi,G) 

16:     xi,G+1 = uji,,G 

17:     else          

18:     xi,G+1 = xi,,G 

19:     end if 

************************* 

20:  end for 

21:  G = G + 1 

22:end while 

Figure 1.  Pseudocode of basic DE 
 

 
Figure 2.  Process of DE 

 

4. Motivation 

 
The basic motivation behind the proposed algorithm 

SaMSDE is to balance the exploration and exploitation in 

basic DE. So, the proposed algorithm incorporates 

exponential distributions to produce mutation steps with 

varying lengths and suitably adjusts the current step 

length. Mutation with large step size is likely to produce 

large variations which would facilitate better exploration 

of the undiscovered regions of the search space while 

small step size usually produces small variations that are 

better for exploitation of the already found solutions. The 

appropriateness of small or large steps changes 

dynamically depending on the current stage and maturity 

of the ongoing search process as well as the properties of 

the search space. So, dynamic adaptation of mutation step 

size is quite promising and efficient to solve continuous 

optimization problems. 

 

5. Self Adaptive Mutation Step size  

 
The only structural difference between the proposed 

SaMSDE algorithm and the basic DE is during mutation. 

The scaling factor (F) in eq. (1) is replaced by MSij * rij.  

 

)(* ,3,2,11, GrGrijijGrGi xxrMSxv −+=+                   (3) 

MSij is the scaling factor that keeps the knowledge of 

separately for every dimension, j of every individual xi, rij 

randomly range in [0, 1]. 

MSij is initialized to 1 during the beginning of the search 

process. As the search progresses across several local 
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minima and plateaus or flat regions, the MSij values are 

automatically adjusted by the adaptation scheme in order 

to take care of the current situation. Large values for MSij 

would expand the product MSij * rij in order to promote 

large mutation steps for better exploration of the search 

space and quickly get rid of local minima. On the 

contrary, small values (less than unity) for MSij would 

shrink the product MSij * rij (in (3)) and thus facilitate 

small mutation steps ensuring exploitation in the vicinity 

of current search points. Whether exploitation or 

exploration would be better at current search stage might 

not be apparent or could not be predicted beforehand. So 

SaMSDE employs two different exponential distributions 

in order to produce different range of scaling factor (i.e. 

MSij) values for explorations and exploitations. The 

adjusted scaling factors (i.e., MSij values) are the 

weighted average of the current scaling factor values and 

the random values generated anew from the two 

exponential distributions. The procedure is further 

explained in the following pseudocode (Figure.4) along 

with the two distributions used for explorations and 

exploitations. To adapt the MSij values, SaMSDE 

generates two gaussian random values, r[1] and r[2] from 

the ranges (0, -10] and (0, 10]. Now, for every individual 

solution two different offspring solutions are generated 

by (3): by using MSij, 1 = 2
r [1]

 and     MSij, 2 = 2
r [2]

. Since 

r[1] < 0 and r[2]> 0, the scaling factor MSij,1 = 2
r[1] 

would 

generate small steps for better exploitation, while MSij,2 = 

2
r[2]

 would produce large steps for more search space 

exploration. SaMSDE evaluates the fitness of each 

offspring and accepts the better one. Also, it moves MSij 

from its current value to the new scaling factor (MSij, 1 or 

MSij, 2) based on which one produces better offspring 

using the formula: 

 SFij = r1 * MSij + (1 - r1) * MSij, K                                      (4) 

where r1, r2∈rand[-0.5, 0.5]. These two distributions 

produce the scaling factor values for exploration and 

exploitation respectively. Exponential distributions 

provide wide range of values as scaling factors 

facilitating very small to very large jumps ensuring from 

little to large explorations and exploitations. 

 

1. Follow Steps 1 to 4 from Figure 1. 

2. for each i ∈NP 

3. for j = 1 to D 

{ 

4. for k = 1 to 2 

{ 

5. r[k] = rand[0, τ k] 

6. MSij,k = 2
r[k]

 

7. vij,k = vij computed from (3) by using MSij = MSij,k 

8. temp_ vi = vi, but vij replaced by vij,k   

9. f[k] = f(temp_vi) 

} 

10. find k such that f[k] is the minimum over f[temp_vi] 

11. Calculate MSij using eq. (4)  

} 

12. Follow steps 5 to 22, but replace step 8 by eq. (3) 

Figure 3.  Pseudocode for the adaptation of 

mutation step size in DE 

 

6. Self Adaptive Mutation Step size  

 

Experimental Setting  
 

In this section, the proposed SaMSDE algorithm is 

validated on a set of seven benchmarks taken from [17]. 

In order to investigate the performance of the proposed 

SaMSDE we compared it with the DE algorithm and 

PSO. DE, proposed SaMSDE are implemented in Dev-

C++ and the experiments are conducted on a computer 

with 2.00 GHz Intel (R) core (TM) 2 duo CPU and 2- GB 

of RAM. In order to make a fair comparison of DE and 

the proposed algorithm, we fixed the same seed for 

random number generation so that the initial population is 

same for both the algorithms. For each problem, the 

SaMSDE is independently run 30 times. The parameter 

setting is taken as follows: 
Mutation strategy DE/rand/1/bin 

Population size NP 50 

Scaling factor (F) 0.5 

Crossover probability 0.9 

Iterations 5000 

Value to Reach (VTR) 10-06 

Maximum NFE 300000 

 

Performance Criteria  
 

Four performance criteria are selected to evaluate the 

performance of the algorithms. These criteria are 

described as follows:  

 

Mean Fitness and Standard Deviation 
 

The average of function fitness value that an algorithm 

can find, using predefined maximum NFEs, is recorded in 

each run and then average of the function fitness values 

are calculated. Also the average and standard deviation of 

the fitness values are calculated. 

 

NFEs [18] 
 

The number of fitness function evaluations (NFEs) is 

recorded when the VTR is reached before to reach 

maximum NFE. i.e we set the termination criteria as 

VTRff globaloptimal ≤−  and record average NFE of 

successful run over 30 runs. 

 

Convergence Graphs [18]  
 

The convergence graphs show the mean fitness 

performance of the total runs, in the respective 

experiments.  

 

Acceleration rate (AR) in % [19] 
 

This criterion is used to compare the convergence speeds 

between SaMSDE and DE. It is defined as follows: 

%
lg

lglg

orithmaone

orithmaotherorithmaone

NFE

NFENFE
AR

−
=                      (5) 

 

Simulated Results  
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The simulated results based on the above experimental 

setting are given in Table-1, Table-2 and Table-3. In 

Table-1 we have taken the results on the basis of average 

error. In this case NFEs are fixed at 105 to estimate the 

average of minimum fitness function value in 30 runs. 

From the Table-1 it can be clearly observed that for all 

benchmark functions SaMSDE gives better results than 

PSO and DE. A two tail sample t-test [20]-[21] is also 

applied to analyze the statistical significance of the 

proposed algorithm. We have checked the significant 

difference of SaMSDE with respect to DE at 5% level of 

significance. For statistical analysis, we consider the null 

hypothesis and alternative hypothesis as:  

H0: There is no significant difference between the mean 

fitness value of SaMSDE and others algorithms.  

H1: Mean fitness value of SaMSDE is better than others 

algorithms.  

The calculated t-value of all function is greater than        

t-table value that shows the significant better performance 

in the comparison of DE.  

In the Table-2, we fixed VTR as given in experimental 

setting and then calculated the average NFE of 30 runs. 

From Table-2 we can see that the proposed SaMSDE 

gives the better results for every function in the 

comparison to the other algorithms. From the Table-2 it is 

clear that the proposed SaMSDE is faster than PSO & DE 

by 39.96% & 29.33% respectively. Best and worst 

function values in 30 runs are shown in Table-3. 

Figure 4(a)-(b) shows the convergence graph of 

SaMSDE with the comparisons of DE and PSO. NFEs 

taken to estimate the average of minimum fitness 

function value in 30 runs are also presented graphically in 

Figure 5. 

 

Table 1. Comparison of SaMSDE with PSO, DE algorithm in terms of NFEs and AR(%), Here 3/1 implies SaMSDE vs 

PSO, and 3/2 implies SaMSDE vs DE 

F PSO DE SaMSDE AR (3/1) AR (3/2) 

F1 43600 26380 16360 62.477064 37.983321 

F2 97630 74370 62890 15.097818 15.436332 

F3 468200 330840 160600 65.698419 51.456898 

F4 61880 76680 54362.5 12.148513 29.104721 

F5 29110 19500 17880 38.577808 8.3076923 

F6 53220 52590 37190 30.120256 29.283134 

F7 50040 33540 22220 55.595524 33.750745 

Average AR(%) 39.96 29.33 

Table 2. Best and (Worst) Function values in 30 runs 

F PSO DE SaMSDE 

F1 
6.04453e-005 

0.000100962 

8.69549e-005 

0.000100901 

8.33852e-005 

0.00010096 

F2 
5.56861e-006 

9.98884e-006 

6.06769e-005 

9.44291e-005 

4.78849e-006 

9.93995e-006 

F3 
0.00993023 

0.0100924 

0.000685359 

0.00099867 

0.086481 

0.0987919 

F4 
7.86592e-005 

9.89971e-005 

4.68213e-006 

9.74202e-006 

5.57054e-006 

7.79099e-006 

F5 
0 

0 

0 

0 

0 

0 

F6 
8.7398e-005 

0.000100506 

8.79372e-005 

9.95211e-005 

8.80526e-005 

0.000100549 

F7 
9.19165e-005 

0.000100997 

9.12616e-006 

0.000100094 

2.37059e-005 

9.89772e-005 
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Figure 1. Convergence graph of Function (a) F4 and (b) F6 
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Figure 2. NFEs taken to estimate the average of minimum fitness function value in 30 runs 

 

6. Conclusions 

 
In the present study we propose a scheme that 

dynamically adapts the mutation step size for better 

exploration and exploitation of the search space. The self 

adaptive mutation step size helps in increasing the 

diversity which in turn helps in balancing exploration and 

exploitation of the search space which finally helps in 

improving the solution quality and the convergence rate 

of an algorithm. This is evident from the empirical 

studies done in the present study. We are continuing our 

work towards the theoretical development of the 

proposed algorithms and extending them for solving 

constrained and real optimization problems..  
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