
Journal of Nature Inspired Computing (JNIC) 1

Vol. 1, No. 1, 2012

Copyright © World Science Publisher, United States

www.worldsciencepublisher.org

Modified Mutation in Differential Evolution Algorithm to

Optimize Supply Chain System

1
Tarun Kumar Sharma,

2
Millie Pant,

3
V.P.Singh

1, 2

 Indian Institute of Technology Roorkee, Roorkee, India
3
 Director General, SCET, Saharanpur, India

Email:{taruniitr1; millidma; singhvp3}@gmail.com

Abstract – Differential Evolution (DE) is a simple, efficient algorithm which has reportedly outperformed many other

optimization algorithms in terms of convergence speed and robustness over common benchmark problems and real

world applications. However, one is required to set the values of the control parameters of DE for each problem. Such

parameter tuning is a time consuming task. The proposed scheme dynamically adapts the mutation step size for better

exploration and exploitation of the search space. In this paper we propose SaMSDE algorithm that incorporates

exponential distributions to produce mutation steps with varying lengths and suitably adjusts the current step length. To

show the performance of our proposed SaMSDE, experiments are carried out on a set of seven well-known benchmark

problems. Further the proposed SaMSDE is applied to solve supply chain system. Simulation results show that the

proposed algorithm can effectively enhance the searching efficiency and greatly improve the searching quality.

Keywords – Self-Adaptation; Mutation; Differential Evolution; Global Optimization, Supply Chain System

1. Introduction

Global optimization problem is not easy to solve and

standard deterministic algorithms tend to stop the search

in local minimum nearest to the input starting point.

Therefore, heuristic search techniques are widely used by

the optimization community when obtaining the global

optimum is not only desirable but is also necessary. Such

heuristics are often population based search techniques,

inspired by some natural process like theory of evolution

(Genetic Algorithms, Differential Evolution etc.) or

behavior of species (Particle Swarm Optimization, Ant

Colony Optimization etc).

Evolutionary algorithms such as Genetic Algorithms

(GA) [1] and Differential Evolution (DE) [2][3] are able

to find the acceptable solution within a reasonable time

limit, but the success of these algorithms depends, to a

large extent on the careful tuning of control parameters.

In case of DE which is the focus of the present work, the

two important parameters are Scaling Factor (F) and

Crossover Rate (CR).

Mutation operation plays the most significant role in

the performance of a DE algorithm.

Despite having several attractive features, it has been

observed that DE sometimes does not perform as per the

expectations. Empirical analysis of DE has shown that it

may stop proceeding towards a global optimum even

though the population has not converged even to a local

optimum [5]. The situation when the algorithm does not

show any improvement though it accepts new individuals

in the population is known as stagnation. Besides this,

DE also suffers from the problem of premature

convergence. This situation arises when there is a loss of

diversity in the population. It generally arises when the

objective function is multi objective having several local

and global optimums. Like other EA, the performance of

DE deteriorates with the increase in dimensionality of the

objective function. Several modifications have been made

in the structure of DE to improve its performance. One

class of modification deals with the development of

adaptive control parameters [9] – [15]. Use of self

adaptive parameters saves the user from the trouble of

fine tuning of parameters,

Many of the developments in DE algorithm design and

applications can be found in [15].

In this paper we introduce a new Differential

Evolution algorithm SaMSDE, which incorporates

exponential distribution to produce mutation steps with

varying lengths and suitably adjusts the current step

length.

Performance of SaMSDE is analyzed on a set of seven

standard unconstrained benchmark functions and a supply

chain model.

Optimization of a supply chain model is an integer

programming problem or a constrained integer-mixed

problem [12]. Several methodologies for optimizing a

supply chain have been proposed in the literature so far.

Regarding evolutionary algorithms, genetic algorithms

are the most popular for supply chain optimization

problems [13-18].

The remaining paper is organized as follows: Section

II gives a very brief survey of adaptive control parameter

Tarun Kumar Sharma, et al., JNIC, Vol. 1, No. 1, pp. 1-8, 2012 2

algorithms in DE, an overview of DE is given in the

Section III, Motivation for the given work and proposed

algorithms are given in sections IV and V respectively.

Section VI describes supply chain system in brief.

Section VII describes parameter settings, performance

metrices and simulation results. Finally the paper

concludes with section VIII.

2. Related Work

There are quite different conclusions about the rules

for choosing the control parameters of DE. Price and

Storn [1] stated that the control parameters of DE are not

difficult to choose. On the other hand, Gämperle et al. [6]

reported that choosing the proper control parameters for

DE is comparatively difficult than expected. Liu and

Lampinen [7] reported that effectiveness, efficiency, and

robustness of the DE algorithm are sensitive to the

settings of the control parameters. The best settings for

the control parameters can be different for different

functions and the same function with different

requirements for consumption time and accuracy.

However, there still exists a lack of perfect knowledge on

how to find reasonably good values for the control

parameters of DE for a given function [8].

Several instances are available in literature for

determining the optimal values of these control

parameters. But it is observed that mostly the control

settings are problem specific and different scholars have

different views regarding the optimal values of these

parameters [2]-[6]. Researchers therefore laid emphasis

on having adaptive/self adaptive control parameters to

avoid the careful and time consuming process of fine

tuning. Ali and Torn [7] proposed a simple rule for

adapting the F scaling factor value during the search

process. Quin and Suganthan [9] proposed self-adaptive

choice of mutation strategy combined with controlled

random adjusting the values of F and CR. Evolutionary

self-adaptation of control parameters F and CR suggested

by Brest et al. [10][11] have proved good convergence in

the applications. Several other modifications have been

suggested in the literature [12]-[14].

3. Overview of DE

DE is an Evolutionary Algorithm (EA) proposed by

Storn and Price in 1995 [2]. DE starts by randomly

generating an initial population, when no preliminary

knowledge about the solution space is available. The

uniformly distributed random numbers are evaluated

using the fitness function provided. Then the following

are executed until maximum number of generation has

been reached or an optimum solution is found.

Mutation Operation

For each target vector xi,G at generation G , an

associated mutated vector is usually generated as follows:

)(,3,2,11, GrGrGrGi xxFxv −+=+  (1)

where r1 , r2 , r3 ∈ (1,2…,NP) are randomly chosen integers,

different from each other and also different from the running

index i. F is a real and constant factor having value between [0,

2] and controls the amplification of differential variation

(xr2, G – xr3, G).

Crossover Operation

After the mutation phase, the “binominal” crossover

operation is introduced in order to increase the diversity

of the perturbed parameter vectors. The parent vector is

mixed with the mutated vector to produce a trial vector

uji,G+1,







 =∀≤

=
+

+
otherwisex

kjCrrandifv
u

Gji

jGji

Gji

,

1,

1,

)1,0(
 (2)

where j, k = {1, 2,…, D (dimension)}; k is the random

parameter index, chosen once for each i, randj ∈ [0, 1]

and Cr is a user-specified crossover constant in the range

[0, 1].

Selection Operation

Finally selection takes place where a tournament is

held between the target vector and trial vector and the one

with better fitness function is allowed to enter the next

generation. In this way individuals in a new generation

are as good as or better than the individuals in the

previous generation. DE contains 4 parents, in which one

is target vector; xi and three are random vectors xr1, xr2

and xr3. The detailed pseudocode is given in Figure 1 and

process is shown in Figure 2.

1: Generate uniformly distributed random population, G

 (generation) = 1

2: while termination criterion not met do

3: for i = 1; i ≤ NP (Population Size); i = i + 1

Parents Selection

(For Original DE, for each vector xi, select randomly three distinct vectors xr1, xr2 and xr3 from the current population

other than the vector xi)

4: Randomly select r1 , r2 , r3∈{1,2,…,NP}, r1≠r2≠r3≠ i

5: for j = 1; j ≤ D (Dimension); j = j + 1 do

6: Randomly select jrand ∈ {1, 2… D}

Binomial Crossover for DE (DE/1/rand/bin)

7: if (rand () < CR or j = jrand)

8: uji,G = xr1,G + F * (xr2,G – xr3,G)

Tarun Kumar Sharma, et al., JNIC, Vol. 1, No. 1, pp. 1-8, 2012 3

9: else

10: uji,G = xji,G

11: end if

12: end for

13: end for

14: for i = 1; i ≤ NP; i = i +1 do

Selection

15: if f(uji,G) ≤ f(xi,G)

16: xi,G+1 = uji,,G

17: else

18: xi,G+1 = xi,,G

19: end if

20: end for

21: G = G + 1

22:end while

Figure 1. Pseudocode of basic DE

Figure 2. Process of DE

4. Motivation

The basic motivation behind the proposed algorithm

SaMSDE is to balance the exploration and exploitation in

basic DE. So, the proposed algorithm incorporates

exponential distributions to produce mutation steps with

varying lengths and suitably adjusts the current step

length. Mutation with large step size is likely to produce

large variations which would facilitate better exploration

of the undiscovered regions of the search space while

small step size usually produces small variations that are

better for exploitation of the already found solutions. The

appropriateness of small or large steps changes

dynamically depending on the current stage and maturity

of the ongoing search process as well as the properties of

the search space. So, dynamic adaptation of mutation step

size is quite promising and efficient to solve continuous

optimization problems.

5. Self Adaptive Mutation Step size

The only structural difference between the proposed

SaMSDE algorithm and the basic DE is during mutation.

The scaling factor (F) in eq. (1) is replaced by MSij * rij.

)(* ,3,2,11, GrGrijijGrGi xxrMSxv −+=+  (3)

MSij is the scaling factor that keeps the knowledge of

separately for every dimension, j of every individual xi, rij

randomly range in [0, 1].

MSij is initialized to 1 during the beginning of the search

process. As the search progresses across several local

19

r1 … r2 … r3 …

1. Randomly choose a
base Vector

2. Choose 2 population members
randomly

Current
population

45 71 68 59 62 82

Trial Vector

Next Gen.

Population

F

+ -

+

X

3. Build weighted

difference vector

19

Cost
Value

4. Add third randomly

chosen vector to get

noisy vector

?

6. Smaller cost value survive in next Gen.

+

5. Perform Crossover with target vector

Tarun Kumar Sharma, et al., JNIC, Vol. 1, No. 1, pp. 1-8, 2012 4

minima and plateaus or flat regions, the MSij values are

automatically adjusted by the adaptation scheme in order

to take care of the current situation. Large values for MSij

would expand the product MSij * rij in order to promote

large mutation steps for better exploration of the search

space and quickly get rid of local minima. On the

contrary, small values (less than unity) for MSij would

shrink the product MSij * rij (in (3)) and thus facilitate

small mutation steps ensuring exploitation in the vicinity

of current search points. Whether exploitation or

exploration would be better at current search stage might

not be apparent or could not be predicted beforehand. So

SaMSDE employs two different exponential distributions

in order to produce different range of scaling factor (i.e.

MSij) values for explorations and exploitations. The

adjusted scaling factors (i.e., MSij values) are the

weighted average of the current scaling factor values and

the random values generated anew from the two

exponential distributions. The procedure is further

explained in the following pseudocode (Figure.4) along

with the two distributions used for explorations and

exploitations. To adapt the MSij values, SaMSDE

generates two gaussian random values, r[1] and r[2] from

the ranges (0, -10] and (0, 10]. Now, for every individual

solution two different offspring solutions are generated

by (3): by using MSij, 1 = 2
r [1]

 and MSij, 2 = 2
r [2]

. Since

r[1] < 0 and r[2]> 0, the scaling factor MSij,1 = 2
r[1]

would

generate small steps for better exploitation, while MSij,2 =

2
r[2]

 would produce large steps for more search space

exploration. SaMSDE evaluates the fitness of each

offspring and accepts the better one. Also, it moves MSij

from its current value to the new scaling factor (MSij, 1 or

MSij, 2) based on which one produces better offspring

using the formula:

 SFij = r1 * MSij + (1 - r1) * MSij, K (4)

where r1, r2∈rand[-0.5, 0.5]. These two distributions

produce the scaling factor values for exploration and

exploitation respectively. Exponential distributions

provide wide range of values as scaling factors

facilitating very small to very large jumps ensuring from

little to large explorations and exploitations.

1. Follow Steps 1 to 4 from Figure 1.

2. for each i ∈NP

3. for j = 1 to D

{

4. for k = 1 to 2

{

5. r[k] = rand[0, τ k]

6. MSij,k = 2
r[k]

7. vij,k = vij computed from (3) by using MSij = MSij,k

8. temp_ vi = vi, but vij replaced by vij,k

9. f[k] = f(temp_vi)

}

10. find k such that f[k] is the minimum over f[temp_vi]

11. Calculate MSij using eq. (4)

}

12. Follow steps 5 to 22, but replace step 8 by eq. (3)

Figure 3. Pseudocode for the adaptation of

mutation step size in DE

6. Self Adaptive Mutation Step size

Experimental Setting

In this section, the proposed SaMSDE algorithm is

validated on a set of seven benchmarks taken from [17].

In order to investigate the performance of the proposed

SaMSDE we compared it with the DE algorithm and

PSO. DE, proposed SaMSDE are implemented in Dev-

C++ and the experiments are conducted on a computer

with 2.00 GHz Intel (R) core (TM) 2 duo CPU and 2- GB

of RAM. In order to make a fair comparison of DE and

the proposed algorithm, we fixed the same seed for

random number generation so that the initial population is

same for both the algorithms. For each problem, the

SaMSDE is independently run 30 times. The parameter

setting is taken as follows:
Mutation strategy DE/rand/1/bin

Population size NP 50

Scaling factor (F) 0.5

Crossover probability 0.9

Iterations 5000

Value to Reach (VTR) 10-06

Maximum NFE 300000

Performance Criteria

Four performance criteria are selected to evaluate the

performance of the algorithms. These criteria are

described as follows:

Mean Fitness and Standard Deviation

The average of function fitness value that an algorithm

can find, using predefined maximum NFEs, is recorded in

each run and then average of the function fitness values

are calculated. Also the average and standard deviation of

the fitness values are calculated.

NFEs [18]

The number of fitness function evaluations (NFEs) is

recorded when the VTR is reached before to reach

maximum NFE. i.e we set the termination criteria as

VTRff globaloptimal ≤− and record average NFE of

successful run over 30 runs.

Convergence Graphs [18]

The convergence graphs show the mean fitness

performance of the total runs, in the respective

experiments.

Acceleration rate (AR) in % [19]

This criterion is used to compare the convergence speeds

between SaMSDE and DE. It is defined as follows:

%
lg

lglg

orithmaone

orithmaotherorithmaone

NFE

NFENFE
AR

−
=  (5)

Simulated Results

Tarun Kumar Sharma, et al., JNIC, Vol. 1, No. 1, pp. 1-8, 2012 5

The simulated results based on the above experimental

setting are given in Table-1, Table-2 and Table-3. In

Table-1 we have taken the results on the basis of average

error. In this case NFEs are fixed at 105 to estimate the

average of minimum fitness function value in 30 runs.

From the Table-1 it can be clearly observed that for all

benchmark functions SaMSDE gives better results than

PSO and DE. A two tail sample t-test [20]-[21] is also

applied to analyze the statistical significance of the

proposed algorithm. We have checked the significant

difference of SaMSDE with respect to DE at 5% level of

significance. For statistical analysis, we consider the null

hypothesis and alternative hypothesis as:

H0: There is no significant difference between the mean

fitness value of SaMSDE and others algorithms.

H1: Mean fitness value of SaMSDE is better than others

algorithms.

The calculated t-value of all function is greater than

t-table value that shows the significant better performance

in the comparison of DE.

In the Table-2, we fixed VTR as given in experimental

setting and then calculated the average NFE of 30 runs.

From Table-2 we can see that the proposed SaMSDE

gives the better results for every function in the

comparison to the other algorithms. From the Table-2 it is

clear that the proposed SaMSDE is faster than PSO & DE

by 39.96% & 29.33% respectively. Best and worst

function values in 30 runs are shown in Table-3.

Figure 4(a)-(b) shows the convergence graph of

SaMSDE with the comparisons of DE and PSO. NFEs

taken to estimate the average of minimum fitness

function value in 30 runs are also presented graphically in

Figure 5.

Table 1. Comparison of SaMSDE with PSO, DE algorithm in terms of NFEs and AR(%), Here 3/1 implies SaMSDE vs

PSO, and 3/2 implies SaMSDE vs DE

F PSO DE SaMSDE AR (3/1) AR (3/2)

F1 43600 26380 16360 62.477064 37.983321

F2 97630 74370 62890 15.097818 15.436332

F3 468200 330840 160600 65.698419 51.456898

F4 61880 76680 54362.5 12.148513 29.104721

F5 29110 19500 17880 38.577808 8.3076923

F6 53220 52590 37190 30.120256 29.283134

F7 50040 33540 22220 55.595524 33.750745

Average AR(%) 39.96 29.33

Table 2. Best and (Worst) Function values in 30 runs

F PSO DE SaMSDE

F1
6.04453e-005

0.000100962

8.69549e-005

0.000100901

8.33852e-005

0.00010096

F2
5.56861e-006

9.98884e-006

6.06769e-005

9.44291e-005

4.78849e-006

9.93995e-006

F3
0.00993023

0.0100924

0.000685359

0.00099867

0.086481

0.0987919

F4
7.86592e-005

9.89971e-005

4.68213e-006

9.74202e-006

5.57054e-006

7.79099e-006

F5
0

0

0

0

0

0

F6
8.7398e-005

0.000100506

8.79372e-005

9.95211e-005

8.80526e-005

0.000100549

F7
9.19165e-005

0.000100997

9.12616e-006

0.000100094

2.37059e-005

9.89772e-005

0

100

200

300

400

500

0 1000 2000 3000 4000 5000

NFE

F
it

n
e
ss

 V
a
lu

e

DE SaSMDE PSO

(a)

Tarun Kumar Sharma, et al., JNIC, Vol. 1, No. 1, pp. 1-8, 2012 6

0

4

8

12

16

20

0 1000 2000 3000 4000 5000

NFE

F
it

n
e
ss

 V
a
lu

e

DE PSO SaSMDE

(b)

Figure 1. Convergence graph of Function (a) F4 and (b) F6

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 2 3 4 5 6 7

FUNCTIONS

N
F

E
 (

P
S

O
/D

E
)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

N
F

E
 (

S
a
M

S
D

E
)

PSO DE SaMSDE

Figure 2. NFEs taken to estimate the average of minimum fitness function value in 30 runs

6. Conclusions

In the present study we propose a scheme that

dynamically adapts the mutation step size for better

exploration and exploitation of the search space. The self

adaptive mutation step size helps in increasing the

diversity which in turn helps in balancing exploration and

exploitation of the search space which finally helps in

improving the solution quality and the convergence rate

of an algorithm. This is evident from the empirical

studies done in the present study. We are continuing our

work towards the theoretical development of the

proposed algorithms and extending them for solving

constrained and real optimization problems..

Appendix A

Function Function Definition D Range Optimum

Sphere ∑ −+=
=

n

i
i ixxnxf

1

2

1
))2cos(10(10)(π 30 [-5.12, 5.12] 0

Rastringin ∑=
=

n

i i
xxf

1

2

2
)(30 [-5.12, 5.12] 0

Rosenbrock’s () ()[]∑
−

=

+ −+−=
1

1

222

13 1100)(
n

i

iii xxxxf
10 [-30, 30] 0

Griekwank 1)cos()(
1 1

2

4000
1

4 +−= ∑ ∏
= =

n

i

n

i
i

x

i
ixxf 30 [-600, 600] 0

Step ∑
=

+=
n

i

ixxf
1

2

5 |)5.0(|)(30 [-100, 100] 0

Ackly ex
n

x
n

f
n

i

i

n

i

i ++







−














−−= ∑∑

==

20)2cos(1exp12.exp*20
11

2

6 π

30 [-32, 32] 0

Colliville
)1)(1(8.19)1()1(1.10

)1()(90)1()(100)(

42

2

4

2

2

2

3

22

34

2

1

22

127

−−+−+−

+−+−+−+−=

xxxx

xxxxxxxf 4 [-10, 10] 0

References

[1] Goldberg D., Genetic Algorithms in Search

Optimization and Machine Learning. Addison-

Wesley, (1989).

[2] Storn R. and Price K. V., Differential evolution—a

simple and efficient heuristic for global optimization

over continuous spaces, J. GlobalOptimization, vol.

11, pp. 341–359, (1997).

[3] Price K. V., Storn R., and J. Lampinen, Differential

Evolution: A Practical Approach to Global

Optimization. Springer, (2005).

[4] ——, “Critical values for the control parameter of

the differential evolution algorithms,” in MENDEL

2002, 8th International Conferenceon Soft

Computing, R. Matouˇsek and P. Oˇsmera, Eds.

Brno: University of Technology, 2002, pp. 62–67.

[5] R. G¨amperle, S. D. M¨uller, and P. Koumoutsakos,

“A parameter study for differential evolution,” in

Advances in Intelligent Systems Fuzzy Systems,

Tarun Kumar Sharma, et al., JNIC, Vol. 1, No. 1, pp. 1-8, 2012 7

Evolutionary Computing, A. Grmela and N. E.

Mastorakis, Eds. Athens: WSEAS Press, 2002, pp.

293–298.

[6] T. B¨ack and H. P. Schwefel, “An overview of

evolutionary algorithms for parameter optimization,”

Evolutionary Computation, vol. 1, no. 1, pp. 1–23,

1993.

[7] M. M. Ali and A. T¨orn, “Population set based global

optimization algorithms: Some modifications and

numerical studies,” Computers and Operations

Research, vol. 31, pp. 1703–1725, 2004.

[8] J. Liu and J. Lampinen, “A fuzzy adaptive

differential evolution algortithm,” Soft Computing,

vol. 9, pp. 448–462, 2005.

[9] A. K. Qin and P. N. Suganthan, “Self-adaptive

differential evolution algorithm for numerical

optimization,” Proceedings of the 2005 IEEE

Congress on Evolutionary Computation, vol. 2, pp.

1785–1791, 2005.

[10] J. Brest, B. Boˇskovi´c, S. Greiner, V. ˇZumer, and

M. Mauˇcec, “Performance comparison of self-

adaptive and adaptive differential evolution

algorithms,” Soft Computing-A Fusion of

Foundations, Methodologies and Applications, vol.

11, no. 7, pp. 617–629, 2007.

[11] J. Brest, S. Greiner, B. Boˇskoviˇc, M. Mernik, and

V. ˇZumer, “Selfadapting control parameters in

differential evolution: A comparative study on

numerical benchmark problems,” IEEE Transactions

on Evolutionary Computation, vol. 10, pp. 646–657,

2006.

[12] Salman, A. Engelbrecht, and M. Omran, “Empirical

analysis of self-adaptive differential evolution,”

European Journal of Operational Research, vol.

183, no. 2, pp. 785–804, 2007.

[13] M. Omran, A. Salman, and A. Engelbrecht, “Self-

adaptive Differential Evolution,” Proceedings of the

2005 International Conference on Computational

Intelligence and Security, pp. 192–199, 2005.

[14] Teo, J., Exploring Dynamic Self-adaptive

Populations in Differential Evolution, Soft

Computing - A Fusion of Foundations,

Methodologies and Applications, Vol. 10 (8), pp.

673 – 686, (2006).

[15] Chakraborty, U. K., Advances in Differential

Evolution, (Ed.) Springer-Verlag, Heidelberg,

(2008).

[16] Mohammad Shafiul Alam et. al, Self-adaptation of

Mutation Step Size in Artificial Bee Colony

Algorithm for Continuous Function Optimization, In

Proc. 13th International Conference on Computer

and Information Technology, pp. 69 - 74.

[17] Liyuan J., Wenyin G., HongbinW.: An Improved

Self-adaptive Control Parameter of Differential

Evolution for Global Optimization. ISICA 2009,

CCIS 51, pp. 215–224, Springer-Verlag Berlin

Heidelberg (2009).

[18] Suganthan, P., Hansen, N., Liang, J.: Problem

Definitions and Evaluation Criteria for the CEC2005

Special Session on Real-Parameter Optimization.

(2005).

[19] Rahnamayan, S., Tizhoosh, H., Salama, M.:

Opposition-Based Differential Evolution. IEEE

Transactions on Evolutionary Computation 12(1),

64–79 (2008).

[20] Zhu, R. ―Statistical Analysis Methods, China

Forestry Publishing House, Beijing, China (1989).

[21] Zhang, M., Luo, W. and Wang, X. Differential

Evolution with Dynamic Stochastic Selection for

Constrained Optimization,‖ Information Science:

An International Journal, vol 178, pp 3043-3074

(2008).

Vitae

Tarun Kumar Sharma did his MCA

in 2001, M.Tech (IT) in 2009 and presently pursuing

Ph.D from Indian Institute of Technology (IIT) Roorkee,

India. He has almost 9 years of teaching experience in

Engineering College. His key areas are Evolutionary

Computing; Software Engineering; Computer based

Optimization Techniques; ERP. His research interest

includes swarm intelligence algorithms and their

applications in various complex engineering design

problems. His publications are in Journals and

International Conferences of repute. He volunteered in

SocPros-2011, an First International Conference on Soft

Computing for Problem solving. He is peer reviewer of

many IEEE conferences and International Journals. He is

student member of Machine Intelligence Research (MIR)

Labs, WA, USA.

Millie Pant is working as an assistant professor in

Department of Paper Technology, Indian Institute of

Technology (IIT), Roorkee, India since 2007. Her

research interest includes evolutionary and swarm

intelligence algorithms and their applications in various

complex engineering design problems. Her publications

are in Journals and International Conferences of repute.

She has published over 100 referred on evolutionary

algorithms (GA, PSO, DE and ABC) and their

applications in electrical design problems, image

processing papers. She has been program committee

member of over 10 International events and Program

Committee Chair of SoCProS-211. She is Program

Committee Chair of the 7
th

 International Conference on

Bio-Inspired Computing: Theories and Application (BIC-

TA 2012) and SoCProS-2012 (International Conference

on Soft Computing for Problem Solving).

V.P. Singh received the Bachelor’s degree from

Meerut University, India in the year 1970, Master’s and

Tarun Kumar Sharma, et al., JNIC, Vol. 1, No. 1, pp. 1-8, 2012 8

Ph. D degrees in Applied mathematics from the

University of Roorkee (now, Indian Institute of

Technology Roorkee), India, in 1972, and 1978

respectively. Prof. Singh is currently with SCET

Saharanpur, as a Director General. Previously he was

Professor in the Department of Paper Technology, IIT

Roorkee. His special fields of interests include Applied

and Industrial Mathematics, Mathematical Modelling of

Pulp washing problems. He has number of publications in

journal of repute and has been reviewer for number of

Journals and Conferences.

