
Journal of Nature Inspired Computing (JNIC) 34
Vol. 1, No. 2, 2013
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

A Proposed Model for Minimization of Test Suite

1 Ankur Prakash Mudgal

1Amity University Rajasthan, Jaipur, India

Email: ankurmudgal5353@gmail.com

Abstract – Software Testing is a critical part of software development. Software testing and retesting occurs
continuously during the software development lifecycle. As software grows and evolves, new test cases are generated
and added to a test suite to exercise the latest modifications to the software. Over several versions of the development of
the software, some test cases in the test suite may become redundant with respect to the testing requirements for which
they were generated since these requirements are now also satisfied by other test cases in the suite that were added to
cover modifications in the later versions of software. Due to time and resource constraints for retesting the software
every time it is modified, it is important to develop techniques that keep test suite sizes manageable by periodically
removing redundant test cases. This process is called test suite minimization. Test suite reduction (TSR) is to find a
subset of the test suite containing a minimal number of test cases that can satisfy all test requirements. Test suite
reduction techniques attempt to remove redundant test cases. This paper proposes a new model for the minimization of
test suite, which is based on the boolean function simplification.

Keywords – Software testing, test case, test suite minimization, regression testing, PMMTS algorithm.

1. Introduction

Before testing a program, testers have to establish
testing objectives. A testing objective is considered as a
set of testing requirements. Once the set of testing
requirements has been determined, test cases are designed
to collectively satisfy the testing requirements.

A set of test cases that can collectively satisfy all
testing requirements is referred to be a test suite. Test
suite development is an expensive process and
additionally even conscientiously maintained test suite
can grow quite large. Most of the times running an entire
suite is not possible as it takes significant amount of time
to run all tests in a test suite. So researchers have given
various techniques for minimizing test suite. Test suite
minimization techniques lower costs by reducing a test
suite to a minimal subset that maintains equivalent
coverage of original set.

2. Test Suite Reduction

Test suite reduction aims at finding a minimal subset

of the test suite that can cover all requirements. It can be
stated as follows [1]:
Given: A set of testing requirements R = {r1, r2, …,
ri,…, rm} that must be satisfied to provide the desired
test coverage of the program, and a set of subsets {T1,
T2, …,Tm} of a test suite T = {t1, t2, …, ti, …, tn}, one

associated with each of the ri’s such that∀ 　tj ∈ Ti
covers ri.
Problem: Find a minimal cardinality subset of T that
exercises all ri’s exercised by the non-minimized test
suite T

So far, many algorithms have been used for test suite
reduction [1-7], such as, heuristic Algorithm, greedy
algorithm and integer programming algorithm.

Metaheuristics algorithms are also applied to various
software development phases [8-12].

Harrold et al. propose the heuristic algorithm H to
reduce the size of a test suite [6]. The intuition of H is to
select test cases according to their “essentialness”. H
algorithm first groups the requirements r1, r2, …, rm into
R1, …, Ri, …, Rd, where Ri (i = 1, …, d) denotes the set
of all requirements that are satisfied exactly by i test
cases in T, and d is the maximum number of test cases
that a requirement can be satisfied. Intuitively speaking,
test cases that satisfy requirements in Ri are more
“essential” than those that satisfy requirements in Rj.
Obviously, test cases that satisfy requirements in R1 are
essential. Heuristic H starts by selecting test cases to
satisfy requirements in R1 and removes those
requirements satisfied by the selected test cases in R.
Then, it repeatedly selects the test case that can satisfy a
maximum number of unsatisfied requirements in R2 and
removes the requirements satisfied by the selected test
case in R, until all requirements in R2 are satisfied.
Repeatedly, it selects test cases for R3, R4 and so on.

Ankur Prakash Mudgal, et al., JNIC, Vol. 1, No. 2, pp. 34-37, 2013 35

The greedy heuristic algorithm G repeatedly selects
the test case in T that satisfies the maximum number of
unsatisfied requirements in R [1].

Chen and Lau have proposed a heuristics GE and GRE
algorithms [2, 3]. Chen and Lau propose two dividing
strategies, i.e. the essentials strategy and 1-to-1
redundancy strategy [5]. Each guarantees the construction
of the optimal representative sets of the original problem
from those of the sub-problems and the two strategies can
be alternately applied. Moreover, Chen and Lau report a
simulation study on how often an optimal representative
set can be found by means of only the essentials and 1-to-
1 redundancy strategies [4].

In general, finding the optimal representative set is
equivalent to solving the set-covering problem that is NP-
complete[7]. It is the same as the minimization problem
of Boolean functions. Both of them can be classified as
set-covering problems.

This paper proposes a model which is inspired from
the Boolean function simplification to solve the optimal
representative set selection problem.

3. Proposed model for minimization of test
suite (PMMTS)

3.1 Related concepts

The number of requirements in R may be finite or
infinite. However, from a pragmatic point of view, we
assume that R is finite, and for each requirement r ∈ R,
there is a test case in the input domain that satisfies r. As
a result, a finite test suite T always exists. We use m and
n to denote the size of R and T, respectively.

An n × (m+1) Boolean matrix A = [aij] is used to
describe the satisfaction relation between ∀ ti ∈ T and
∀
rj ∈ R.
 0 ti cannot test rj
 Where aij =
 1 ti can test rj

for i = 1, 2, …, n and j = 1, 2, …, m. ai(m) = i. ai =
(ai1ai2 …aim) is the i-th row vector, bj = (a1ja2j…..anj)T
is the j-th column vector. C1(ai) is the count of “1” in ai
and C1(bj) is the count of “1” in bj. The axioms follows
in Boolean algebra can also be used here.

Example 1: It is assumed that R = {r1, r2, …, r8} and T =
{t1, t2, …, t7}. A relationship between eight test
requirements and seven test cases are shown in Table 1. It
leads to a 7 × 9 matrix A = [aij].

 Table.1 Relationship Chart of Example 1

Test Requirements
 ri

Test Cases
Ti

r1 t1, t5
r2 t5
r3 t 1, t 2, t 3
r4 t 3, t 6
r5 t 1, t 4
r6 t 1, t 6

r7 t 3, t 4, t 7

r8 t2, t 3, t 4, t 7

 A =

Because test cases t1, t2,…, tn are mutually
independent, so we can construct the prime implicant
chart of example 1 in Table 2. This chart is named as
covering chart and can be expressed by matrix A.

Table 2. Covering Chart of Example 1

 r1 r2 r3 r4 r5 r6 r7 r8

t1 1 0 1 0 1 1 0 0

t2 0 0 1 0 0 0 0 1

 t3 0 0 1 1 0 0 1 1

t4 0 0 0 0 1 0 1 1

t5 1 1 0 0 0 0 0 0

t6 0 0 0 1 0 1 0 0

t7 0 0 0 0 0 0 1 1

Then, some rules as follows will be applied to reduce
the chart until the optimal representative set been found.

Rule 1: For ∀ ai ∈ A, if each “1” in ai can be
completely contained by other aj ∈ A for j ≠ i, then ai
can be removed from the chart without affecting the
completeness of the test suite. It means that for ai, if

)1...111(
ij

ji aa
 , then ai can be

removed from the chart

1 0 1 0 1 1 0 0 1

0 0 1 0 0 0 0 1 2

0 0 1 1 0 0 1 1 3

0 0 0 0 1 0 1 1 4

1 1 0 0 0 0 0 0 5

0 0 0 1 0 1 0 0 6

0 0 0 0 0 0 1 1 7

Ankur Prakash Mudgal, et al., JNIC, Vol. 1, No. 2, pp. 34-37, 2013 36

Rule 2: During application of Rule 1, if ∃ ai, ak, they
satisfy that if

 ,

)1...111(
ij

ji aa

)....(aa

kj
jk 1111

 and C1(ai) ≤
C1(ak), then ai can be removed from the chart.

Rule 3: For ∀ bi ∈ A, if each “1” in bi can be
completely contained by other bj ∈ A for j ≠ i, then bj
can be removed from the chart without changing the
completeness of the test suite. It means that

T

ji bb)1...111(
,

then bj can be removed from the chart.

Rule 4: The use of Rule 1, Rule 2 and Rule 3 repeatedly
will not affect the completeness of the test suite.
The maintenance of the completeness of the test suite is
explained briefly by the following example.
Example 2: Consider a2 ∈ A in Example 1, where a2 =
(00100001), it means that the test case t2 can test r3 and
r8. However, r3 and r8 can also be tested by t3, so {r3, r8}
can also be test by T’ = T - {t2}. It results t2 to be a
redundant test case and can be removed from T.

Consider b2 ∈ A in Example 1, where
Tb)0000100(2  , it means that {t5} can test r2. For b1

∈ A, where
Tb)1000100(1  , {t1, t5} can test r1. Thus,

t5 can test both r2 and r1. Therefore, if r1 is removed from
the covering chart, the completeness of the test suite will
not change.

3.2 Algorithm on proposed method for
minimization of test suite (PMMTS)

Step 1. Construct matrix A based on the relationships
between test case set T and test requirement set R;
Step 2. Calculate C1(ai);
Step 3. A→A’ by applying Rule 1 and Rule 2;
Step 4. Calculate C1(bi);
Step 5. A’→A” by applying Rule 3. If there is more than
one bi, all of them should be removed;
Step 6. Loop Step 2 - Step 5 until no redundant ai or bi in
matrix;
Step 7. Print the obtained matrix A”;
Step 8. Print ai(m).

The matrix transformation given below shows the
solution procedure of Example1 by using the PMMTS
algorithm

So far, A changes to an identity matrix if the last column
is ignored.
The optimal representative set of Example 1 is {t1, t3, t5}.

4. Results

We have considered 10 different problems with
different no. of requirements and their different satisfying
test cases. The following table and graph describes about
the reduction in no. of test cases on applying our PMMTS
algorithm. There is maximum of 66.6% reduction in “B”
and minimum of 42.8% in “G”.

Table.3 Containing Data of 10 Problems

Problem

Original
No. of
Test
cases

Reduced
No. of
Test
Cases

Reduction
in Test
Cases
(in %)

A 9 4 55.5
B 9 3 66.6
C 9 4 55.5
D 8 3 62.5
E 8 4 50
F 8 4 50
G 7 4 42.8
H 7 3 55.5
I 6 4 33.3
J 6 3 50

Ankur Prakash Mudgal, et al., JNIC, Vol. 1, No. 2, pp. 34-37, 2013 37

Figure 1: Graphical representation of Table 3.

5. Discussion

The reduction of test suite is to find an optimal

representative set, which means to find a minimal subset
from a given set to satisfy given requirements. Both the
minimization of Boolean functions and the reduction of
test suite are equivalent to solving the set covering
problem. So the methods to solve the minimization of
Boolean functions problem can also be adapted to solve
the reduction of test suite problem.

6. Conclusions

The PMMTS algorithm given in the paper can be used

at testing and maintenance phases of software
development.The algorithm has been implemented in
java language. The cost of implementing the algorithm is
almost negligible but it saves the cost and effort of
running extra test cases. the results of experiments show
its certain advantages.

References

[1] M.J. Harrold, R. Gupta, and M.L. Soffa, “A

methodology for controlling the size of a test suite”,
ACM Transactions on Software Engineering and
Methodology, Vol. 2, No. 3, 1993,pp. 270−285.

[2] A.J. James and J.H. Mary, “Test-Suite Reduction and
Prioritization for Modified Condition and Decision
Coverage”,IEEE Transactions on Software
Engineering, Vol. 29, No. 3,2003, pp. 195-209.

[3] T.Y. Chen and M.F. Lau, “A new heuristic for test
suite reduction”, Information and Software
Technology, Vol. 40, Nos. 5-6, 1998, pp. 347–354

[4] T.Y. Chen and M.F. Lau, “Dividing strategies for the
optimization of a test suite”, Information Processing
Letters,Vol. 60, No. 3, 1996, pp. 135–141.

[5] T.Y. Chen and M.F. Lau, “Heuristics towards the
optimization of the size of a test suite”, Proceedings
of the Third International Conference on Software
Quality Management, Seville, 1995, pp. 415–424.

[6] T.Y. Chen and M.F. Lau, “On the divide-and-
conquer approach towards test suite reduction”,
Information Science,Vol. 152, 2003, pp. 89−119

[7] J.G. Lee and C.G. Chung, “An optimal
representative set selection method”, Information

and Software Technology, Vol. 42, No. 1, 2000, pp.
17−25.

[8] Tarun Kumar Sharma and Millie Pant, “Enhancing
the Food Locations in an Artificial Bee Colony
Algorithm”, Soft Computing, Springer

[9] Tarun Kumar Sharma and Millie Pant, “Halton
Based Initial Distribution in Artificial Bee Colony
Algorithm and its Application in Software Effort
Estimation”, International Journal of Natural
Computing Research (IJNCR), IGI Publication,
USA, vol. 3(2), pp. 86 - 106, 2012. (DOI:
10.4018/jncr.2012040105).

[10] Tarun Kumar Sharma, Millie Pant, V.P.Singh,
Improved Local Search in Artificial Bee Colony
using Golden Section Search, Journal of Engineering
(JOE) Vol. 1, No. 1, 2012, pp. 14-19.

[11] Tarun Kumar Sharma, Millie Pant and V.P. Singh,
“Adaptive Bee Colony in an Artificial Bee Colony
for Solving Engineering Design Problems”.
Advances in Computational Mathematics and its
Applications (ACMA) Vol. 1 No.4, 2012, pp. 213 -
221.

[12] Tarun Kumar Sharma, Millie Pant, V.P.Singh,
Modified Mutation in
Differential Evolution Algorithm
to Optimize Supply Chain
System; Journal of Nature
Inspired Computing (JNIC), vol.
1(1), pp. 1-8, 2012.

Ankur Prakash Mudgal done his Masters in Computer
Science in 2010. Presently associated with Amity
University Rajasthan as a Lecturer in the department of
Information Technology. He has three years of
experience. His key research areas are Software Testing,
Complexity Analysis.

