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Abstract – In this paper we propose novel technique to solve the ill-conditioned system of linear equations Ax = b. For 
given a matrix A , we find two invertible diagonal matrices 1D  and 2D  by Simulated Annealing method, such that  
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 (  denoting the set of all diagonal matrices) relative to a given matrix norm. With this step carried out, the solution of 
the system =Ax b  is effected by solving the system 1 2 1( ) =D AD y D b  and then calculating 2=x D y  . 
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1. Introduction  

A system of equations is considered to be ill-
conditioned if a small change in the coefficient 
matrix or a small change in the right hand side 
results in a large change in the solution vector. 
It is well known that for a system of equations 
with an ill-conditioned matrix, an erroneous 
solution can be obtained which seems to satisfy 
the system quite well. Various measures of the 
ill-conditioning of a matrix have been proposed. 
For example, the condition number associated 
with the linear equation Ax = b gives a bound 
on how inaccurate the solution x will be after 
approximation. Note that this is before the 
effects of round-off error are taken into account; 
conditioning is a property of the matrix, not the 
algorithm or floating point accuracy of the 
computer used to solve the corresponding 
system. In particular, one should think of the 
condition number as being (very roughly) the 
rate at which the solution, x, will change with 
respect to a change in b. Thus, if the condition 
number is large, even a small error in b may 
cause a large error in x. On the other hand, if the 
condition number is small then the error in x 
will not be much bigger than the error in b. 

The condition number is defined more 
precisely to be the maximum ratio of the 

relative error in x divided by the relative error in 
b. 
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This is easily transformed to 

   1 1|| || / || || . || || / ||A e e b A b    

The maximum value (for nonzero b and e) is 
easily seen to be the product of the two operator 
norms: 

1( ) || || . || ||A A A   

The same definition is used for any 
consistent norm, i.e. one that satisfies ( ) 1A  . 

When the condition number is exactly one, 
then the algorithm may find an approximation 
of the solution with an arbitrary precision. 
However it does not mean that the algorithm 
will converge rapidly to this solution, just that it 
won't diverge arbitrarily because of inaccuracy 
on the source data (backward error), provided 
that the forward error introduced by the 
algorithm does not diverge as well because of 
accumulating intermediate rounding errors. 
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The condition number may also be infinite, 
in which case the algorithm will not reliably 
find a solution to the problem, not even a weak 
approximation of it (and not even its order of 
magnitude) with any reasonable and provable 
accuracy. 

We shall now describe how to modify a 
given ill-conditioned matrix in order to make it 
a better conditioned one. Then we shall apply a 
new stochastic procedure to the modified 
system to obtain a solution. In this paper we 
propose novel techniques to solve the system of 
linear equations Ax = b. For given a matrix A , 
we find two invertible diagonal matrices 1D  

and 2D  by Simulated Annealing method, such 
that  
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 (   denoting the set of all diagonal matrices) 
relative to a given matrix norm. With this step 
carried out, the solution of the system bAx =  is 
effected by solving the system bDyADD 121 =)(  

and then calculating yDx 2=   [1, 2, 5, 10]. 
 
2. Simulated annealing algorithm 

Simulated annealing (SA) is a stochastic 
approach for minimizing multivariate functions 
based on the principles of thermodynamics. 
Simulated annealing is proposed in Kirkpatrick, 
Gelatt and Vecchi (1983) and Cerny (1985) for 
finding the global minimum of an objective 
function that may possess several local minima 
[7]. 

SA is motivated by an analogy to annealing 
in solids. The idea of SA comes from a paper 
published in 1953 by Metropolis et a1. [9], and 
motivated by an analogy to the behavior of 
physical systems in the presence of a heat bath. 
The algorithm in that paper simulated the 
cooling of material in a heat bath. This is a 
process known as annealing. 

If we heat a solid past melting point and then 
cool it, the structural properties of the solid 
depend on the rate of cooling. If the liquid is 
cooled slowly enough, large crystals will be 
formed. However, if the liquid is cooled quickly 
(quenched) the crystals will contain 
imperfections. Metropolis’s algorithm simulates 
the material as a system of particles. The 

algorithm simulates the cooling process by 
gradually lowering the temperature of the 
system until it converges to a steady, frozen 
state. 

At each iteration of a simulated annealing 
algorithm applied to a discrete optimization 
problem, the objective function generates 
values for two solutions (the current solution 
and a newly selected solution) are compared. 
Improving solutions are always accepted; while 
a fraction of non-improving (inferior) solutions 
are accepted in the hope of escaping local 
optima in search of global optima. The 
probability of accepting non-improving 
solutions depends on a temperature parameter, 
which is typically non-increasing with each 
iteration of the algorithm. 

The key algorithmic feature of simulated 
annealing is that it provides a means to escape 
local optima by allowing hill-climbing moves 
(i.e., moves which worsen the objective 
function value). As the temperature parameter is 
decreased to zero, hill climbing moves occur 
less frequently, and the solution distribution 
associated with the inhomogeneous Markov 
chain that models the behavior of the algorithm 
converges to a form in which all the probability 
is concentrated on the set of globally optimal 
solutions (provided that the algorithm is 
convergent; otherwise the algorithm will 
converge to a local optimum, which may or not 
be globally optimal). 
 
3. Numerical Results 

Example 1: Consider the following system 
of two linear equations in two unknowns. 

1

2

400 201 200

800 401 200

x

x

     
         

 

The solution is 1 100x    and 2 200x   . 

Now, let us make a slight change in one of the 
elements of the coefficient matrix. Change 11A  

from 400 to 401 and this small change affects 
the solution. This time the solution is 

1x  40000  and x 2 79800 . 

With a modest change in one of the 
coefficients one would expect only a small 
change in the solution. However, in this case 
the change in solution is quite significant. It is 
obvious that in this case the solution is very 
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sensitive to the values of the coefficient matrix 
A, and this system is ill-conditioned.  
 

Now, we try to obtain tow diagonal matrices 

1D  and 2D  by Simulated Annealing method, 

such that the condition number of  1 2D AD  have 

the minimum value. The results are 

1

-143.2083 0

0 71.6182
D

 
  
 

 and 

2

181.3483 0

0 361.2922
D

 
  
 

 . 

In this example, we have cond(A)= 2503 and 

1 2( ) 1606cond D AD  . 

Example 2: Hilbert matrix is a square matrix 
with entries being the unit fractions 

1

1i jH
i j


 

 

The Hilbert matrices are canonical examples of 
ill-conditioned matrices, making them 
notoriously difficult to use in numerical 
computation. For example The condition 
number of the n-by-n Hilbert matrix grows as 

4((1 2) )nO n . For 50n   , the condition 
number is equal to 1.3070e+19 . 

We applied the Simulated Annealing to 
obtain better condition number and we find 

1 2( ) 4.4289e+17cond D AD  . The diagonal 

elements of the coefficient matrix 1D  and 2D  

are arranged in the following tables. 

 

Table1: diagonal elements of the coefficient matrix 1D 

Diagonal 
elements 

from 1 to 10 

Diagonal 
elements 

from 11 to 20 

Diagonal 
elements 

from 21 to 30 

Diagonal 
elements 

from 31 to 40 

Diagonal 
elements 

from 41 to 50 
0.0744 0.168 2.2609 3.0791 -1.4584 

0.065 0.7633 1.2473 1.355 2.116 

0.0901 1.3563 -2.2467 1.9006 -2.251 

0.2151 0.9845 -2.0986 1.4262 2.5664 

-0.5945 -0.0082 1.8209 -1.8275 2.4349 

-0.7718 0.0149 1.5567 1.3727 2.1465 

-1.4754 -1.8157 2.3818 1.4433 2.1073 

0.8923 -2.1838 1.7051 2.3483 -2.5665 

0.7916 2.4525 1.5333 2.7381 1.3035 

-0.8221 0.9635 -1.709 1.9328 -2.6583 

 

Table2: diagonal elements of the coefficient matrix 2D  

Diagonal 
elements from 

1 to 10 

Diagonal 
elements from 

11 to 20 

Diagonal 
elements from 

21 to 30 

Diagonal 
elements from 

31 to 40 

Diagonal 
elements from 

41 to 50 
0.9534 -0.5799 1.7436 1.5195 1.1977 

-0.3542 -2.1745 0.8322 -2.5789 1.0842 

-0.6122 0.6776 -2.2245 3.1977 -1.7965 

1.1814 0.5723 3.1721 -1.3412 2.0111 

0.0947 -1.2941 2.5523 1.6147 2.3489 

-0.3552 1.7056 2.2819 1.0562 1.487 

-1.0628 0.2142 1.6846 3.6905 1.1119 

0.2022 2.9537 -2.0816 2.2463 2.0515 

0.5813 -1.719 1.8723 1.173 3.3483 

1.1553 0.8532 -0.7156 2.1264 -1.2599 
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