
119

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

JIOS, VOL. 35, NO. 1 (2011) SUBMITTED 04/11; ACCEPTED 05/11

Service-Oriented Architectural Framework for Support and
Automation of Collaboration Tasks

Ana Šaša ana.sasa@fri.uni-lj.si
Information Systems Laboratory,
Faculty of Computer and Information Science,
University of Ljubljana, Ljubljana, Slovenia

Marjan Krisper marjan.krisper@fri.uni-lj.si
Information Systems Laboratory,
Faculty of Computer and Information Science,
University of Ljubljana, Ljubljana, Slovenia

Abstract
Due to more and more demanding requirements for business flexibility and agility, automation
of end-to-end industrial processes has become an important topic. Systems supporting
business process execution need to enable automated tasks execution as well as integrate
human performed tasks (human tasks) into a business process. In this paper, we focus on
collaboration tasks, which are an important type of composite human tasks. We propose a
service-oriented architectural framework describing a service responsible for human task
execution (Human task service), which not only implements collaboration tasks but also
improves their execution by automated and semi-automated decision making and
collaboration based on ontologies and agent technology. The approach is very generic and can
be used for any type of business processes. A case study was performed for a human task
intensive business process from an electric power transmission domain.
Keywords: business process automation, collaboration task, service-oriented architecture,
ontology, multi-agent system

1. Introduction
Due to more and more demanding requirements for business flexibility and agility,
automation of end-to-end industrial processes has become an important topic. Nowadays the
prevailing approach for business process automation is based on the principles of service-
oriented architecture (SOA). In SOA a business process is composed of services, which
represent different tasks that have to be performed in a business system [11]. However, when
striving towards complete business process automation it has to be taken into account that not
all tasks can be automated. These are tasks which require human interaction (human tasks).
They have to be performed by human participants and can represent very different forms of
work, from installing a new device to making a decision about hiring a new employee for
example. In order to integrate human tasks into a business process, SOA information systems
supporting business process execution need to indicate a human participant responsible for
task execution (task owner) when to perform a task, what is required to be done and after its
completion task result needs to be passed back to the process. In this paper, we focus on
collaboration tasks. A collaboration task is a human task which requires involvement of two
or more human participants who have to collaborate in order to complete the task.

SOA systems can provide different levels of support for human participants performing
human tasks. We have identified four levels of support for human tasks by such systems [20]:
� Level 1 - Human tasks: For every human task, its input is provided to the task owner. The

task owner performs the task and enters the task result, which is passed back to the
process.

UDC 004.414.2:005.4
��������	
�������	�����

120

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

ŠAŠA AND KRISPER SERVICE-ORIENTED ARCHITECTURAL FRAMEWORK FOR…

� Level 2 - Human tasks with user support: When possible, the system is capable of
providing the task owner response suggestions, propose decision models, agenda etc.
together with the task input. Based on this support the task owner performs the task and
enters the task result, which is passed back to the process.

� Level 3 - Semi-automated human tasks: The difference between this level and level two is
that the system is capable of performing certain tasks on behalf of task owners, such as
coming to certain conclusions, decision making tasks etc. These tasks become automated
human tasks. Even if the system performs a task on behalf of its task owner, their
confirmation still may be required (a semi-automated task with confirmation).

� Level 4 – Fully automated human tasks: The level of automation of the system is so high,
that it is capable of performing human tasks on behalf of task owners. The overall
business process execution is automated. This is only a long-term future vision, which
may not even be always desirable.
Current software solutions for SOA and business process execution implementation

usually provide support for human tasks on the first level of automation. This paper
demonstrates how a level three support can be achieved for collaboration tasks. The presented
framework is an extension of our Service-oriented framework for human task support and
automation that was discussed in [20], which discussed automation of elementary human
tasks. In this paper, we extend the service-oriented architectural framework for human task
execution (human task service) with a higher level of support and automation of collaboration
tasks. We have performed a case study of our approach on a human task intensive business
process from the domain of electric power transmission. The approach for development of
this system was very generic and can be used for any type of industrial and industrial support
business processes. In this paper we present this simple, but efficient and holistic approach to
dealing with collaboration tasks in SOA systems and extending possibilities of their
automation. Techniques to accomplish this are presented, among which one of the main
mechanisms is ontology-based automation of protocol-based collaboration.

The rest of the paper is organised as follows. In the next section related work is presented.
In Section three, human tasks and their main characteristics are introduced. Collaboration
tasks are discussed as a special type of composite human tasks. In Section four, the
architectural framework is discussed in detail. In the fifth Section, an example scenario from
our case study is presented. Finally the last section contains the concluding remarks.

2. Related work
The approach presented in this paper is closely related several research and technical areas.
However, the analysis of existing literature has shown that extending possibilities of
automation of collaboration tasks as part of business process automation has not yet been
discussed from our perspective.

In order to enable execution of business processes several workflow languages have
emerged in the past decade among which the best known include XLANG [9], WSFL [10],
YAWL [30] and BPEL (BPEL4WS 1.0, BPEL4WS1.1 and the latest version WS-BPEL 2.0)
[15]. BPEL combines principles of XLANG and WSFL and is nowadays the most accepted
and supported by a significant number of tools. It is an XML-based language designed
primarily to support automated business processes based on Web services, which have been
recognised as an important integration technology in industrial automation [2], [4]. BPEL
covers many aspects of business processes, even though it does not cover human interactions.
In order to provide standardized support for human tasks in BPEL, a pair of specifications has
been developed and accepted by OASIS: BPEL4People [11] and WS-HumanTask
specifications [12]. They cover various aspects of human interactions with a process, such as
roles describing how people can interact with a process, interaction patterns, different ways of
integrating human tasks into the process and operations for client applications. In our research
all these aspects have been thoroughly considered and the proposed framework allows
implementation of a system compliant with these specifications.

121

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Interest in agent technologies has been rising over the past two decades, due to the wide
range of their applicability. While there are many definitions of agents and multi-agent
systems, the following are the most commonly referred to. An agent is a computer system that
is situated in some environment, and is capable of autonomous actions in this environment in
order to meet its design objectives [25]. Among other properties, often attributed to agents,
there are also reactivity, proactiveness and social ability. A multi-agent system (MAS) is a
system composed of cooperative or competitive agents that interact with one another in order
to achieve individual or common goals [26]. In our framework, different human task owners
are represented by agents. The objective is to enable support for human tasks with appropriate
coordination characteristics and to automate collaboration tasks.

A wide range of proposals for business process automation improvement based on agent
technologies have been discussed, however, they approach it in a different way than we do.
Most authors in this field are concerned with different proposals to administer or improve
process composition with agents or multi-agent systems, for example [3], [7], [27], [28].
Taveter and Wagner [29] have proposed the Radical Agent-Oriented Process (RAP) based on
Agent-Object-Relationship (AOR) modelling, and the RAP/AOR methodology geared
towards business process modelling, simulation and automation. Their approach is agent-
oriented and not service-oriented. Other authors propose to implement Web services with
agent technology in order to realize complex interaction and coordination of services, for
example [22] and [23].

In the proposed framework, ontologies are used as a means of enabling collaboration task
support and automation. Lai defines the ontology as a means of enabling communication and
knowledge sharing by capturing a shared understanding of terms that can be used both by
humans and by programs [5]. There are several languages available for ontology
representation, such as DAML, CGs, OIL, DAML+OIL, and OWL [5], [13], [24]. Our
approach is based on the OWL (Web Ontology Language) due to its ability to represent a
useful group of ontology features, a high level of support, and its XML foundations, which
make it appropriate to be used in conjunction with other Web technologies [13].

3. Human tasks in SOA systems

All business activity within a business system can be regarded as a set of different tasks,
which can be either automated or performed by human participants. A task can be defined as
all the work which needs to be accomplished in order to transform its input into the required
output [18]. In order for a task to be accomplished, different resources may be required and
input of a task has to contain everything that is necessary for its execution. Therefore a task
can be represented as a function which transforms its inputs into an output or result; if � is a
task, ������its input variable and ���it's result variable then:

�	����
 �� � ���
(1)

Based on their composition tasks can be either elementary or composite. An elementary
task is a task which cannot be decomposed into subtasks, while a composite task is a task
which is composed of one or more subtasks which are required to be performed in order to
come to a result. A subtask can be an elementary task or a composite task. Every composite
task � can be defined by a following composition tuple:

	����� ���
 � 		������ ����� � �����
� ������ ���� � �	���
��
��
(2)

where � � � is the number of �’s subtasks, �����a vector of �’s subtasks and ��� a vector
of �’s composition functions. Composition functions are responsible for result to input
translations between subtasks and for obtaining the final composite task’s result. Let say that
����� �� � ���� and ��� � ���	���
��. If ������ and ���� are task �����’s input and output
variables respectively: �����	������
 � ����, then for �� � �� � 	� � �
:

122

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

ŠAŠA AND KRISPER SERVICE-ORIENTED ARCHITECTURAL FRAMEWORK FOR…

������ � ������ !��� � "�� � � #��� � ���� $���%&'(� ���%&'(� � 	#)"
�%&'(* � �������%&'(���
�
+ � ,� � 	� - �
� �. � �� � +/��01 � ,� � 	� - �
 �2 �� 3�� � � �	1��
�%&'(��
�

4 01" 5 016�
1�71�

�.�� .� � �� � +��

�8 � ,� � �/��9��/�:;� � � �� � 8/����%<'(� � �9�� �
(3)

The last condition in (3) is necessary because without it a subtask could result in an

output which is never used in order to obtain the composite task's result and thus based on the
composite task definition it should not be part of the task.
In this manner a BPEL business process instance is an example of a composite task where
every service it invokes represents a subtask and the BPEL code implements the composition
functions.

Based on (1-3), a composition tuple of an elementary task =� is: 	��>�� �>�
 �	?� 	=�

. Let define a level .@.	�
 of a task � as follows:

.@.	�
 � A ,� �����B��=.=0=��B�C��B�+
0BD��E.@.	����
F � ��� G�H=�I��= J

(4)

Therefore, every subtask of a composite task is at least one level lower of the original task
and the lower level limit is 0. This implies that every composite task can be decomposed into
elementary tasks, and consequently if composition functions can be automated then the
problem of task automation translates into a problem of elementary task automation - or
within our context the problem of business process automation translates into a problem of
elementary human task automation.

An elementary human task instance is performed by exactly one task owner. If a task
instance is performed by two or more task owners, the task can be decomposed into such
subtasks that their instances are performed by individual task owners.

(a)

(b)

Figure 1. Restructuring of a composite task

123

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

A composite task can be restructured in a way that the composition does not require
human participation. If human participation is involved in a composition of certain subtask
results, the human participation can be implemented as a subtask itself, while the composition
is what connects these subtasks together. For example, let us say that 1) A and B are subtasks
of a composite task C, 2) the result of task C is chosen among the results of the subtasks A
and B, 3) this choice has to be made by a human participant (Figure 1a, in which cf3ct is the
composition function that involves the choice). In this case, we can introduce another subtask
D, in which the human participant makes the decision. Thus, A, B and D are subtasks of task
C (Figure 1b). Depending on the composition required it can be automated with one of the
business process execution languages (invoking a subtask as a service), e.g. BPEL, or using
some other technology if more applicable and available.

However, due to the principles of service orientation, such as reusability, statelessness
and loose coupling, an appropriate level of provided composition automation by the Human
task service needs to be determined. On the one hand, if the Human task service implements
only elementary human tasks, their composition would not differ from any other service
composition and could be implemented with any of the workflow composition languages for
example. On the other hand, this would not be appropriate for the following types of
composite tasks:
i) Several very common and highly reusable task compositions typical for human tasks can be
identified and should therefore be a part of the Human task service and not be the
responsibility of a business process designer. They require passing a human task to different
actors based on a certain pattern, such as sequential or parallel composition, for example. In
the remainder of the paper they are referred to as basic workflow patterns. Based on (1-3) the
following conditions describe composition tuples of basic workflow pattern tasks:

���� ��� � �� � �/��KL�"MN � � KL�6MN �2 ���O � �� � �/����P��	D
 � �D
(5)

For example, composition functions of a sequential workflow pattern task (Figure 2) have the
following form:

�� � �� � 	� � �
/������� � �����	�	�Q�
��
 �� �	�Q�
�� � ����%&'(� ���%&'(
(6)

Figure 2: Sequential workflow pattern

One can observe that all the composition functions in this pattern are identity functions, for
example in case of n = 2:

�	�����
 � � ���O�� � ��O��	����
 � ���� � ������	������
 � � �����	������
 � �����	����
 ������	������	����

 � ������	������	�����

 � ������ R ������

(7)

The basic workflow patterns are a concept that is already supported by many different

commercial SOA systems. Therefore, in this paper we place them into the overall scope of
composite human task types, but in the remainder of the paper we do not discuss them in
detail.
ii) A collaboration task is composed of communication tasks (performative tasks) and
message formation tasks during which collaboration participants perform everything
necessary to compose the next message they will send. If �����, as defined in (2), is a message
formation task which needs to be performed by a task owner �G and �����’s input is defined as
in (3), then for a collaboration task:

124

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

ŠAŠA AND KRISPER SERVICE-ORIENTED ARCHITECTURAL FRAMEWORK FOR…

�S � �� � 	T � �
/������� � ������ !��� � "�� � � #��� � �� !��� � "�� � � #��� ���%&'(,
(8)

where ��%&'(is a vector containing all the previous results of the collaboration subtasks
needed for ����� accomplishment, including results of subtasks previously performed by �G;
for example when negotiating about a price, the price a participant proposes depends on all
the prices they have already proposed and the responses they have received. If we would like
to provide a loosely coupled service, it should be stateless [6]. This would require that a
record of the collaboration history (or state) is not kept within the Human task service. When
a human task is performed by a human collaboration participant this is not a problem because
they would of course normally be able to remember the collaboration history. However as we
strive to automate human tasks and our system acts on behalf of task owners this input has to
be passed as a whole to the task from a business process execution instance. This implies that
�G would have to trust another party about their own preceding actions. Due to trust issues
and better performance, collaboration tasks are implemented by autonomous agents
representing different collaboration participants. Therefore collaboration tasks are part of the
functionality of the proposed Human task service.

To sum up, there are two types of composite tasks that belong to the overall Human task
service: basic workflow pattern human tasks and collaboration tasks. In the following section,
we discuss our architectural framework and how its support and automation of collaboration
tasks.

4. Architectural framework

Based on the principles of SOA [8] one of the goals of our research was to define a
generic architectural framework for the Human task service, which can deal with any type of
human tasks, while providing user support and automation for certain types of human tasks.
As established in the previous section human task automation is relevant for elementary
human tasks, basic workflow pattern tasks and collaboration tasks. For more information
about automation of elementary human tasks please refer to our previous work presented in
[18].

 Figure 3 illustrates the general structure of the proposed Human task service. Different
components of the system can be classified into three main layers. The business process layer
indicates how the Human task service can be used as a part of a business process, the human
task execution layer is responsible for human task execution, and the ontology layer
comprises all relevant organisational information needed for enabling this execution and
possible automation.

Human task service is composed of the Human task workflow pattern manager and the
Human task execution service. The Human task workflow pattern manager is responsible for
basic workflow pattern composition of tasks. The Task recognition component takes care of
initiating the correct pattern and the Pattern based processes component realises composition
functions (2-3) for the patterns, for example as BPEL processes; for every non-pattern based
task the Human task execution service is invoked and for any basic pattern subtask the
Human task service is reinvoked.

Task properties required to be passed as input of the Human task service are: people link,
task output query, process data input (optional), protocol (optional), timeframe, expected
duration (optional), task description, priority, basic workflow pattern and business process
administrator. Some properties require special explanations, which are given in Table 1. The
protocol and people link property schema types are illustrated in Figure 4. In the remainder of
the section, the Human task execution service and organizational ontology are discussed in
more detail.

125

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 3. General structure of the proposed system

Property Description
Process data
input

Task execution may require data gathered during process execution. In this case process data
contained in some process variable needs to be provided.

People link It cannot be expected that a specific person or people for human task execution can be always
known at design time. Therefore we use an approach based on a people link as defined in [19]. If a
protocol is defined people link has to be provided for every role in the protocol. People links are
bound to people queries which are in our case represented as queries upon the organisational
structure ontology, which is discussed in more detail in section 4.2.

Protocol If the human task is a collaboration task a protocol has to be provided. Protocol determines legal
interactions between collaboration participants. A people link has to be provided for every role in
the protocol together with a number of required individuals for a role. A process designer can
choose among available protocols from the protocol library based on its unique name and
description as discussed in section 4.2.1.

Task output
query

Description of what is expected as a result of the task. It is used as a query upon the organisational
ontology

Business
process
administrator

If the Human task execution service returns a fault task properties together with the fault message
are used to invoke another human task assigned to the business administrator who should take an
appropriate action, for example terminate the process or tackle the problem and retry the task. An
actual person or a people query can be specified.

Table 1: Description of some human task properties

126

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

ŠAŠA AND KRISPER SERVICE-ORIENTED ARCHITECTURAL FRAMEWORK FOR…

Figure 4: Protocol and people link input types

4.1. Human task execution service

Human task execution service is implemented by a multi-agent system comprising a broker
agent and human task execution agents. When the Human task execution service is invoked,
the broker agent receives the task, determines its task owners and assigns it to human task
agents, who act on behalf of the task owners. By introducing only one agent type for human
task execution every agent is able to represent anyone of the human participants. Every
human task agent has its task queue. Agents are assigned new tasks based on deadlines and
priorities of the tasks in their task queues. If there is no agent available, a new human task
agent is instantiated and assigned the task.

Human task agents are thus responsible for enabling elementary human task and
collaboration task execution. In both cases, before the execution process data input
information is added to the ontology. An agent tries to find an elementary human task result
in the ontology, using a reasoner. Result is determined by the task’s output query property. If
the result cannot be reached in this way, i.e. there is not enough information in the ontology
for an agent to be able to come to a result, the task cannot be automated and the available
relevant information is gathered and passed together with the task description, deadline and
priority to the task owner who needs to provide it.

When performing a collaboration task, the broker agent translates it into sequences of
subtasks performed by each of its task owners during which participants, represented by
human task agents, maintain the result history. These sequences are composed of message
formation tasks (which do not differ from any other elementary human tasks or collaboration
tasks) and performative tasks. When a performative task makes part of a collaboration task, its
goal is not only to deliver a piece of information to another collaboration participant but to
provide an input for the next task they have to perform. If this next task is automated by an
agent there is no need for delivering the message to the actual person the agent is representing
(even though it can be if desired). If it cannot be automated, it should be delegated to the
human participant with the input for the task. Therefore in both cases, the human recipient of
the performative task does not have to receive the message explicitly. For these reasons and
strong support for collaboration provided with agent technologies , when performative tasks
make part of a collaboration task, they are automated in the proposed system.

127

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Determining a task owner is not different than any human task that human task execution
agents need to perform: required output is determined by the people link, it may have a
protocol, its timeframe and deadline are determined by the overall human task timeframe and
priority is determined by its human task priority; the only difference is that there is no task
owner. Therefore, to determine task owners the broker agents assigns a human task agent with
the corresponding task, which is in this case called a people resolution task. If a result cannot
be determined, the task cannot be delegated to the task owner and a fault is returned.

In case a message formation task of a collaboration task is a collaboration task itself the
people resolution task will not return specific individuals but rather a group of individuals; in
this case the human task execution agent acts on behalf of a group. Collaboration subtasks are
performed as invocations of the Human task execution service. In this way task hierarchy is
executed until a collaboration task �U of level 1 is reached:

.@.	�U
 �� �.
(9)

4.2. Organisational ontology

In order to be able to deal with different human tasks, the human task execution layer is
generic and does not depend on a specific organisation. On the contrary, the organisational
ontology is the organisation specific part of the system and has to be developed for every
organisation separately. It provides all the necessary organisation dependent information for
the human task execution layer to be able to enable execution and possibly automation of
required tasks. In this section the organisational ontology framework is represented.

Ontology level illustrated in Figure 3 demonstrates the basic structure of an organisational
ontology. Hierarchical structure is proposed due to some important advantages, such as
reducing search complexity and promoting reuse of stored knowledge [14]. Different levels
within the organisational ontology are used to represent this hierarchy. Let us say that
organisational structure element (OSE) is a generic term for any kind of organisational
structure element. It may be an organisation itself, a department, a role, a group or any other
possible structural element used in an organisation. An organisational ontology comprises
ontologies belonging to different OSEs. Every ontology of the overall organisational ontology
belongs to exactly one OSE. If OSE1 is a part of OSE2, OSE1 can use the OSE2’s ontology.
The common ontology layer represents the organisation’s common knowledge, such as its
organisational structure and common business policies for example. The personal ontology
layer comprises personal ontologies. They contain knowledge concerning people in the
business system. An OSE’s ontology is composed of two layers: the base ontology layer and
the decision model layer. The base ontology layer contains information about the concepts of
the corresponding OSE’s domain and uses ontologies belonging to the OSEs, of which it is
part. In order to develop the ontology, any of the existing ontology development
methodologies can be used. We do not try to propose a new methodology, but rather allow the
designer to choose the methodology that is most appropriate for a given environment. The
decision model layer contains decision models, which are built upon the base ontology layer
concepts and support decision processes required for executing human tasks. A detailed
discussion of these processes can be found in [20].

The protocol library is the main mechanism that enables support and automation of
collaboration tasks. In the remainder of the section, first ontology language and notation used
are explained, and afterwards the protocol library is presented.

4.2.1. Language and notation

Due to the advances in the Semantic Web community, high level of support and its XML
foundations, which make it appropriate to be used in conjunction with other Web
technologies, our approach is based on OWL (Web Ontology Language) 2.0 [25], more
specifically its description logics (DL) based sublanguage OWL DL enhanced with SWRL

128

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

ŠAŠA AND KRISPER SERVICE-ORIENTED ARCHITECTURAL FRAMEWORK FOR…

(Semantic Web Rule Language) [26]. OWL ontology consists of Individuals, Properties and
Classes. Individuals (also known as instances) represent objects in the domain that we are
interested in. Properties are binary relations between individuals – i.e. properties link two
individuals together. OWL classes are interpreted as sets that contain individuals. They are
defined using formal descriptions that state precisely the requirements for membership of the
class.

SWRL is based on a combination of OWL DL and OWL Lite with the Unary/Binary
Datalog RuleML sublanguages of the Rule Markup Language. It enables usage of Horn-like
rules in an OWL ontology. These rules are of the form of an implication between an
antecedent and consequent, where the consequent holds if the antecedent holds [26]. In the
proposed ontology SWRL rules are used for a specific kind of decision rules and for the
protocol specification.

In order to represent SWRL rules, variables are used with classes as unary relations,
properties as binary relations and swrl built-ins as n-ary relations, depending on the number of
attributes used. All the variables used in a SWRL rule are tied to the quantificator �. For
every n-ary relation, for which n>2, at most (n-1) arguments in a relation can be fixed with a
specific individual or datatype. An antecedent of a SWRL rule is a conjunction of such
relations and a consequent is a conjunction of class and property relations.

For task output queries and people queries the same notation as for antecedents of SWRL
rules is used.

4.2.2. Protocol library

Different protocols may be needed to accomplish different collaboration tasks. If protocols
were implemented in human task execution agents then adding a new protocol or changing an
existing protocol would require substantial changes to the multi-agent system of the Human
task execution service. As business systems need to be as agile as possible and adapt to
changes quickly this would not be acceptable. For this, it is important that for a human task
agent it is transparent what protocol they have to conform to and whether it changes or not. In
order to solve this issue we introduce a protocol library, which is an important part of the
organisational ontology.

Different approaches for protocol modelling exist; some are based on constraining the
possible sequences of communication acts using transition diagrams [8], [5], while other
approaches are based on logical representation of states, which can be derived from actions
performed at the previous states [29], [21]. In the context of this paper communication act
sequences constraints and state representations are used in order to propose modelling of
protocols based on their role in a collaboration task as a subcategory of composite tasks. For
this purpose some new terms need to be introduced. A protocol p determines: 1) a vector of
constraint functions � 	�� � � V
� ��/ W X Y�& , where W represents the domain
containing tasks and Y�& is the range of the constraint function �, and 2) a set:

WZ[\ � E	����� ���� ����V
� 	����� ���� ����V
� 	��]�� ��]� ���]V
F� �� �
�� � �� �^ � �� � �/ ���_ ` Y�a .

(10)
A collaboration subtask type can be one of the performative task types or of a message

formation task type. A protocol only concerns performative collaboration subtasks. Every
communication act involves two parties; therefore there are two performative task types for
every communication act type. Let [W � E��� �� � ��bcF be the set of all performative task
types, let ���� � 	������ ����� � �����
 be a collaboration subtask vector defined as in (1-3)
and (2) and� �� a mapping from ����� to its type. Then every ���� has a corresponding
performative task vector ����� � 	������� ������ � ��� ��
�0 d � defined as follows:

129

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

(11)

If mapping of vector’s @ � 	@�� @� �@�e
 arguments by a function � is characterised by
�fVg	@
 �� � 	�	@�
� �	@�
��	@�e

, then ���� conforms to the protocol p if the following
condition is satisfied for its corresponding vector �����: 	�fVg	�����
� �fVg	�����
� VfVg	�����

 � WZ[\.
Different protocols may constrain different subtask properties. However, in our case, the
minimal constraints are collaboration participant roles representing task owners and second
party collaboration participants (for example from a send performative task point of view task
owner is the sender and the second party is the receiver), and the corresponding legal
performative task types. Let presume they are characterised as �, � and O respectively.
Then Y�" � �Y�6 � Z[Y\ is the set of all collaboration participant roles and Y�P ` [W.

A collaboration subtask vector can be mapped into vectors ���\&�� comprising only tasks
performed by individual collaboration participants, i.e.:
�� � �� � hY�"h/����\&�� � ����"��� ���6�� � ���ij���� �^ � �� � �k/ � $���a��* � �� 2 l+ m
E��� �� � � jF/ �	��n��
 � ��� �� � Y�6� .� d .o X � �1� d �1��

(12)
Similarly WZ[\ can be translated into:
WZ[\	���
 � p�����\&�� �����\&�V�� �����\&�� � ����\&�V�� �����\&]� � ����\&]V�q� �+ ��� � �� �^ � �� � �/ ����\&n_ ` Y�a k,

(13)
where vectors ����\&�_ comprise only constraints for performative tasks performed by���.
Therefore from���’s point of view a collaboration task conforms to the protocol p if:
	�fVg�����\&���� �fVg�����\&���� VfVg	����\&��

 � WZ[\	��
.

(14)
Now a function .�	��
 � .�%�, can be determined as follows:
�^ � �� � h.�%�h/�:; � �� � �/��+ � �� � r��r/ �. � �� � �/�1	��n
 � ��n�\&s1 2 .�_%� �
���	n��
�\&s�� ��	n��
�\&s� ���	n��
�\&sV�� B 5 t X � .�f%� 5 .�u%��

(15)
where ��n �� W, .�_%� � W and ��n�\&s1 � Y�3 k are the k-th arguments of vectors ��, .�%� and
���\&s1 respectively. Thus for every individual participant a protocol determines a function .�
which returns a vector of legal performative tasks they can perform based on a vector ��
comprising performative tasks they have already finished during the collaboration.

The protocol library implements the minimal constraints and supports their extensions. In
the protocol library the set [W containing performative task types is represented with the
performative task type ontology. As it is used by all protocols this ontology is a common
protocol base. Each protocol p has a corresponding ontology which determines protocol sets
Z[Y\ and functions .�	��
 � .�%� for every collaboration participant. Z[Y\ is
represented by a class for every collaboration participant role, while functions .� are
implemented by SWRL rules (legal task rules). Besides the collaboration roles ontology and
legal task rules every protocol has a name and a description. The description serves for the
business process designer to understand protocols which are available allowing them to
choose the appropriate one. Protocol name is used for specifying the protocol property of a
Human task service’s input.

This approach does not require a specific agent communication language (ACL) or a
protocol specification to be used and can thus be implemented for any ACL, such as FIPA
ACL [8] or KQML [7], and an arbitrary interaction protocol built upon them.

130

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

ŠAŠA AND KRISPER SERVICE-ORIENTED ARCHITECTURAL FRAMEWORK FOR…

5. An example scenario

In this section, an example scenario from our case study is presented. In the scenario, the most
appropriate transmission system engineer for a given elementary human task needs to be
determined through collaboration based on the contract net protocol [8]1. The protocol is
required due to the nonworking hours specified in the timeframe when the task must be
performed. It is performed between the transmission system operator and engineers.

Figure 5: Contract Net Protocol roles ontology

Figure 5 illustrates contract net protocol roles ontology. The initial individual roles that
the protocol translates to are the agent class child nodes, i.e. Initiator and ProtocolParticipant.
Their subclasses are defined because their roles specialise during the collaboration task.
Example of contract net protocol SWRL rules for the initiator role is:

Initiator(?x) 2 InitiationAction(?y) 2 isInState(?y,NotStarted) 2
������������	�	
������� �� �����������������	��� ���� 2 startAction(?x,?y) 2
hasReceiver(?y,?z)
finishedAction(?x,?y) 2 hasReceiver(?y,?z) 2 SendCFPMessageAction(?y) 2
ReceiveProposeMessageAction(?a) 2 	������������������������ ��������	�������� 2
hasSender(?a,?z) 2�hasDeadline(?a,"2007-05-15T09:00:00")
finishedAction(?x,?y) 2 hasReceiver(?y,?z) 2 SendCFPMessageAction(?y) 2
ReceiveRefuseMessageAction(?a) 2 	����������������������� �� ��������	�������� 2
hasSender(?a,?z)�2 hasDeadline(?a,"2007-05-15T09:00:00")
AcceptedProposer(?a) 2 SendAcceptProposalMessageAction(?y) 2 isInState(?y,NotStarted)
2 hasReceiver(?y,?a) 2 ��	�	������������������	�������
RejectedProposer(?x) 2 SendRejectProposalMessageAction(?y) 2 isInState(?y,NotStarted)
2 hasReceiver(?y,?x) 2 ��	�	������������������	�������
finishedAction(?x,?y) 2 ReceiveProposeMessageAction(?y) 2 hasSender(?y,?z) 2
ReceiveRefuseMessageAction(?a) 2 !������������ ��� �� ���������	�������� 2
Proposer(?z)
finishedAction(?x,?y) 2 ReceiveRefuseMessageAction(?y) 2 hasSender(?y,?z) 2
ReceiveProposeMessageAction(?a) 2 !�������������������������	�������

It can be observed that the minimal constraints are extended with task deadline
constraints. Properties specifying this task are given in Table 2.

Process Data Input / Number 1
Protocol / Protocol People

Link

 Protocol Name / Role Participant
 Protocol People Link Query TransmissionSystemEngineer
 Protocol Role / Protocol /
 Role People Link Number All

1 Within the context of this paper the finishing messages (inform/failure) of the contract net protocol as defined in
[8] are not a part of this collaboration task based on composite task definition in Section3. This would be
implemented in another way, such as through a separate human task service call from a business process.

131

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

 People Query SystemX12Check
TransmissionSystemEngineer(?
x)

Task description Perform system X12 unit
check and report states during
nonworking hours.

 People Link Protocol Task output query X12SystemUnitState(?x)
��onDate(?x, “2011-05-
26”)

 Protocol Name Contract Net Protocol Time Frame From 2011-05-26T15:00:00
to 2011-05-27T00:00:00

 Protocol People Link Expected duration 1 to 3 hours
 Role Initiator Priority 3

 Query TransmissionSystemOperator(?
x)

Workflow Pattern /

 Protocol / Business Administr. TransmissionSystemProcesse
sAdministrator(?x)

Table 2: Example input of a human task

When invoked with these properties the Human task service passes the task, without the
business administrator property, to the Human task execution service. As the people
resolution task is a collaboration task it itself comprises resolution subtasks needed to be
performed for both protocol people links, i.e. finding a TransmissionSystemOperator
employee for the Initiator role and TransmissionSystemEngineer employees for the
ProtocolParticipant roles. After determining who should the perform contract net protocol
roles the SystemCheckTransmissionSystemEngineer people query is transformed into a query
looking for transmission system engineers available for 3 hours in the specified time frame.
This query represents the output query property of the contract net protocol based people
resolution task and is fairly simple for the purpose of this example. The human task agent
representing the Initiator performs the first action as specified with the contract net protocol
and sends calls for proposals to participant human task agents. Content of the message is the
output query with an additional condition, stating that the
SystemCheckTransmissionSystemEngineer is the individual to which this proposal is sent to.
After receiving the call for proposal message every participant agent tries satisfy the query
conditions. The query is satisfiable in their personal ontology if they are willing to perform
the task and if they are available at the specified time. In that case the response contains an
ontology satisfying the query, in which they state the time when they propose to perform the
task. If it is not satisfiable a refusal is sent.

After receiving the proposals and refusals the Initiator must send acceptance and rejection
messages and thus performs a message formation task, in which they add proposals to the
ontology and reason upon it in order to determine whether the output query is now satisfiable,
i.e. if the most appropriate transmission system engineer for the task is found. After obtaining
the collaboration resolution task result the broker agent assigns a human task agent to perform
the human task that they have been chosen for through the collaboration protocol.

In this way, the protocol-based collaboration is automated by the human task service. Due
to different nature of the required work for message formation tasks, they can be either
automated or not, however the part of actual composition of the collaboration part and
performative acts are always automated by the system. If a protocol changes or if a new
protocol is added, the protocol library can be updated, whereas the multi-agent system that
implements the actual collaboration does not require any changes. The proposed solution
provides a simple, but flexible and powerful mechanism for implementation of collaboration
tasks in SOA systems.

6. Conclusion

In this paper a service-oriented architectural framework for automation and support of
collaboration tasks in business processes was proposed. The main components of the
framework that enable this are (1) - an organisational ontology comprising ontology-based
decision models belonging to different organisational structure elements and a protocol

132

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

ŠAŠA AND KRISPER SERVICE-ORIENTED ARCHITECTURAL FRAMEWORK FOR…

library, and (2) - a multi-agent system using the ontology. There are several important
novelties and strengths of the approach. As collaboration is one of the essential activities in
organizations, the framework provides support and automation for a large part of human
tasks. However, due to responsibility issues, sometimes semi-automation with confirmation is
preferred over complete automation of human tasks. The main advantage are semi-automated
or completely automated collaboration tasks, which strive towards to the vision of end-to-end
business process automation. Another important advantage is loose coupling between a
collaboration protocol and its implementation. This allows for a greater flexibility, because it
requires only to change the ontology based protocol definition and does not require any
changes in the implementation of the system, which is an especially important advantage in
the rapidly changing business environments.

References
[1] Aalst, W.M.P. van der; Hofstede, A.H.M. ter. YAWL: Yet Another Workflow

Language. Information Systems, 30(4):245-275, 2005.

[2] Ali, S; Soh, B; Torabi T. A Novel Approach Toward Integration of Rules Into
Business Process Using An Agent-Oriented Framework. IEEE Transactions on
Industrial Informatics, 2(3):145-154, 2006.

[3] Bermudez, J; Goni, A; Illarramendi, A; Bagues, M.I. Interoperation among agent-
based information systems through a communication acts ontology. Information
Systems, 32(8):1121-1144, 2007.

[4] Blake, M.B; Gomaa H. Agent-oriented compositional approaches to services-based
cross-organizational workflow. Decision Support Systems, 40(1): 31-50, 2005.

[5] Bradshaw, J.M; Dutfield, S; Benoit, P; Woolley, J.D. KAoS: toward an industrial-
strength open agent architecture. In: Bradshaw, J.M., editor. Software Agents.
AAAI Press/The MIT Press, Cambridge, MA, 1997.

[6] Erl, T. Service-Oriented Architecture: Concepts, Technology and Design, Prentice
Hall PTR, Upper Saddle River, NJ, 2005.

[7] Finin, T; Labrou, Y; Mayfield, J. KQML as an agent communication language,
Proc. of the 3rd International Conference on Information and Knowledge
Management (CIKM'94), pages. 456-463, Gaithersburg, MD, USA, 1994.

[8] Foundation for Intelligent Physical Agents. Interaction Protocol Library
Specification, 2003. Available on: http://www.fipa.org/repository/ips.php3.

[9] Giorgini P; Henderson-Sellers, B. Agent-Oriented Methodologies: An Introduction.
In: Henderson-Sellers, B; Giorgini P., editors. Agent-oriented Methodologies, Idea
Group Inc., Hershey, PA, 2005.

[10] Horrocks, I; McGuiness, D.L; Welty, C. Digital Libraries and Web-Based
Information Systems. In: Baader, F; McGuiness, D.L; Nardi D., editors. Description
Logic Handbook: Theory, Implementation and Applications, Cambridge University
Press, Cambridge, UK, 2003.

[11] Jammes, F; Smit, H. Service-Oriented Paradigms in Industrial Automation. IEEE
Transactions on Industrial Informatics, 1(1):62-70, 2005.

[12] Jennings, N.R; Norman, T.J; Faratin, P. Autonomous Agents for Business Process
Management. International Journal of Applied Artificial Intelligence, 14(2):145-
189, 2000.

[13] Kalogeras, A.P; Gialelis, J.V; Alexakos, C.E; Georgoudakis, M.J; Koubias, S.A.
Vertical Integration of Enterprise Industrial Systems Utilizing Web Services. IEEE
Transactions on Industrial Informatics, 2(2):120-128, 2006.

133

JIOS, VOL. 35, NO. 1 (2011), PP. 119-133

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[14] Lai, L. F. A knowledge engineering approach to knowledge management.
Information Sciences, 177(19): 4072-4094, 2007.

[15] Leymann, F. Web Service Flow Language (WSFL 1.0), IBM, 2001.

[16] Li, Y; Chao, K-M; Younas, M; Huang, Y; Lu, X. Modeling e-marketplaces with
multi-agents Web services. Proc. 11th Int. Conf. on Parallel and Distributed
Systems, pages 175-181, Fukuoka, Japan, 2005.

[17] OASIS. Web Services – Human Task (WS-HumanTask) Specification Version 1.1,
Committee Specification 01, 2010. Available on: http://docs.oasis-
open.org/bpel4people/ws-humantask-1.1.html.

[18] OASIS. Web Services Business Process Execution Language Version 2.0, OASIS
Standard, 2007. Available on: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html.

[19] OASIS. WS-BPEL Extension for People (BPEL4People) Specification Version 1.1,
Committee Specification, 2010. Available on: http://docs.oasis-
open.org/bpel4people/bpel4people-1.1.html.

[20] Š����� ��� �	
���� ���� �
����
�� �� ��
����-oriented framework for human task
support and automation. IEEE transactions on industrial informatics, 4(4):292-302,
2008.

[21] Singh, M.P. A social semantics for agent communication languages. Issues in Agent
Communication, Springer, Berlin, 2000.

[22] T.I. Zhang, H. Jiang, "A Framework of Incorporating Software Agents into SOA",
Proc. Artificial Intelligence and Soft Computing (ASC 2005), Benidorm, Spain,
2005.

[23] Taveter, K; Wagner, G. Towards Radical Agent-Oriented Software Engineering
Process Based on AOR Modelling. In: Henderson-Sellers, B; Giorgini, P., editors.
Agent-oriented Methodologies, Idea Group Inc., Hershey, PA, 2005.

[24] Thatte, S. XLANG: Web Services for Business Process Design, Microsoft
Corporation, 2001.

[25] W3C. OWL ������ �������!� "���	���#�� $��	%���� ���
���&�� �''*�� � ����������
on: http://www.w3.org/TR/owl2-overview/.

[26] W3C. SWRL: A Semantic Web Rule Language, Combining OWL and RuleML,
W3C Member Submission, 2004. Available
on:http://www.w3.org/Submission/SWRL/.

[27] Wooldridge M. An Introduction to MultiAgent Systems, John Wiley & Sons Ltd,
Chichester, UK, 2002.

[28] Xu, Q; Qiu, R; Xu, F. Agent-Based Workflow Coordination for Supply Chain
Management. Transactions of Nanjing University of Aeronautics & Astronautics,
20(1):112-117, 2003.

[29] Yolum, P; Singh, M.P. Commitment-based enhancement of e-commerce protocols.
Proc. IEEE 9th International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 278–283, Gaithersburg, MD, USA, 2000.

[30] Zurawski, R. Integration Technologies for Indstrial Automated Systems:
Challenges and Trends. In: R. Zurawski, editor. Integration Technologies for
Industrial Automated Systems (Industrial Information Technology), CRC Press,
Boca Raton, FL, Jul. 2006.

