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ALGORITHMS FOR NON-HAMILTONIAN DYNAMICS

ALESSANDRO SERGI a∗ AND GREGORY S. EZRA b

ABSTRACT. Statistical averages in a variety of many-body problems can be efficiently
calculated through deterministic dynamics. When thermodynamical constraints (such as
constant-temperature and/or constant-pressure) must be enforced, energy-conserving non-
Hamiltonian dynamics becomes the method of choice. Integration of the resulting as-
sociated equations of motion requires advanced algorithms. For a number of cases, we
show in detail how to derive both time-reversible algorithms and time-reversible measure-
preserving integration methods.

1. Introduction

In this contribution we review techniques for formulating non-Hamiltonian equations of
motion in Molecular Dynamics (MD) computer simulation. Recently, it has been proven
that the same mathematical structure that is used to write down energy-conserving non-
Hamiltonian equations [1] leads to elegant numerical integration algorithms [2] which pre-
serve the measure in phase space while at the same time being time-reversal invariant.

Non-Hamiltonian equations of motion that conserve a generalized energy were intro-
duced into the practice of MD by Nosé [3, 4]. Time-reversible algorithms suited to a
multiple time-step integration were given by Tuckerman et al. [5]. A general mathemati-
cal structure to formulate energy-conserving equations in non-Hamiltonian mechanics was
given in [1]. Such a structure naturally led to a correct formulation of the equilibrium statis-
tical mechanics of non-Hamiltonian systems [6, 7]. Non-Hamiltonian statistical theory has
also been formulated through the mathematical language of differential forms [8, 9]. Ex-
ploiting the mathematical framework given in [1], it is possible to augment time-reversible
integration algorithms with the property of conservation of phase space measure [2].

The organization of the paper is the following. In Sec. 2 a quite general conceptual
introduction to MD simulation is presented. The intrinsic arbitrariness involved in the def-
inition of dynamical mechanisms or laws, underlying computation of statistical averages, is
discussed in Sec. 3. The relative freedom in formulating evolution laws is exploited in the
introduction of non-Hamiltonian dynamics. A brief sketch of Hamiltonian dynamics and
statistical theory is given in Sec. 4, then in Sec. 5 a formulation of energy-conserving non-
Hamiltonian dynamics by means of almost-Poisson brackets is introduced. The concept of
approximate theoretical complexity is used to justify/discuss the use of non-Hamiltonian
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evolution laws in silico, i.e., on the computer. Exploiting the symmetric Trotter break-
up of the propagator, time-reversible algorithms for the numerical integration of almost-
Poissonian phase space flows are introduced in Sec. 6. A generalization of this approach,
which also enforces the conservation of the integration measure in phase space, is ex-
pounded in Sec. 7. Finally, conclusions and perspectives are given in Sec. 9.

2. Molecular Dynamics

Molecular Dynamics is a computer simulation method which can be applied to a wide
variety of problems in condensed matter, high energy physics and astrophysics [10, 11,
12, 13, 14] From a technical point of view, these applications of MD are based on three
main ingredients. One needs to have a problem where averages are to be calculated over
some set of initial conditions (chosen randomly according to a desired thermodynamical
ensemble or probability distribution). Some form of potential function must be defined on
the system’s configuration space so that forces can be calculated. As a consequence, the
configuration space of the system can be explored by means of a deterministic dynamical
evolution in time, using such forces.

This brief discussion should make clear that MD time evolution defines a process which
has an inherently stochastic aspect, associated with the random selection of initial condi-
tions. However, since the dynamical evolution law is deterministic, one can classify MD
as a deterministic stochastic (Markov) process [15]. (The Markovian character arises from
the fact that time evolution in phase space only requires knowledge of one time-slice of the
entire process.)

MD is a very general simulation method, which is not at all limited to particle sys-
tems, or systems with a countable number of degrees of freedom. On the contrary, MD
is routinely used to perform calculations with fields. In condensed matter physics, the
Car-Parrinello method introduces the MD associated with the expansion coefficients of
electronic orbitals [16]. In high energy and nuclear physics, Lattice Gauge Theories allow
one to calculate hadronic masses from first principles by means of the MD of the gauge
field coefficients at lattice points [17].

The previous discussion and examples make clear that the only preconditions for being
able to use MD as a computational tool are that one must have both a function (Hamilton-
ian) specifying the energy of the system in terms of generalized coordinates and a prob-
abilistic theory to make connection with observables. MD can be employed when these
rather loose preconditions are met, and this flexibility explains the wide-spread use of the
method.

Nevertheless, it cannot be denied that condensed matter physics is the main area of
physics exploiting MD calculations. (We exclude from present consideration the many
applications to problems of chemical and biological interest [10, 12, 14].) It is within con-
densed matter physics, and the ever-green problem of finding a bridge between the macro-
scopical, statistical properties of a many-body system and its microscopic dynamics, that
MD was born. From such a perspective, MD simulation implements in silico Boltzmann’s
dream of directly deriving statistical properties from microscopical dynamical laws. As a
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matter of fact, macroscopic observables are given as time averages by

A = lim
t→∞

1

t

 t

0

dt′A(t′) , (1)

and the connection to Gibbsian phase space (or ensemble) averages is made under the
assumption of ergodicity

A = ⟨A⟩ . (2)

But which dynamical law is obeyed by A(t) in Eq. (1)? Fundamental microscopic the-
ories solemnly state that it is Hamiltonian dynamics. However, in the next section we will
argue that things are a little more complicated than that and that there is some freedom in
the dynamical mechanism underlying the time average (1). Such freedom can be exploited
to devise generalized simulation schemes such as those employing non-Hamiltonian (or,
more precisely, almost-Poissonian) dynamics.

3. The arbitrariness of dynamical laws

In this section we show that, despite the fundamental character of microscopic Hamil-
tonian dynamics, as far as statistical properties are concerned, there is a certain freedom in
choosing the microscopical dynamical laws.

The goal of many-body theory is to describe the time evolution of average values and
statistical correlations between events or sets of events. The necessity to compute averages
follows from the fact that, until the advent of the era of single-molecule experiments [18,
19], bulk experiments could only register (or measure) average properties and correlations.
Naturally, in the course of providing an explanation of statistical properties, theory usually
also provides a conceptual picture of the phenomena treated. The other important aim
of theory is to provide some predictive power to scientists. To this end, some dynamical
mechanism on the microscopical level must be formulated. Hence, the theory provides
equations of motion or dynamical laws. But are these uniquely determined by the measured
statistics? The answer to this question is, perhaps surprisingly, no.

We illustrate this conclusion by treating, as a paradigmatic example, the connection
between deterministic and stochastic laws of motion.

Under a set of specific conditions, the Feynman-Kac formula [20, 21] provides a very
powerful and general connection between deterministic and stochastic processes. It is
known that there is a general mathematical connection between ordinary differential equa-
tions (ODE) and partial differential equations (PDE). For example, such a connection lies
behind the relation between Hamilton’s equations of motion and the Hamilton-Jacobi the-
ory [22]. Now, given a PDE with positive Green’s function, the Feynman-Kac formula
states that the solution of the PDE can be found in terms of averages over suitable de-
fined stochastic trajectories. In this way a mapping from the ODE to random motion is
established: an ODE can be represented in terms of a PDE for the evolution of a surface
transverse to an ensemble of trajectories; if such a PDE has a positive Green function
(which can be interpreted as a correlation function), then the Feynman-Kac formula allows
one to solve the problem in terms of stochastic process.

The situation can also be described as follows: suppose that deterministic motion pro-
vides a certain correlation function which is positive definite or can be made so by means
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of a suitable change of variables. This correlation function may then be interpreted as the
Green function of a PDE, and this latter can be mapped, via the Feynman-kac formula,
onto stochastic laws of motion. Hence, unless one has experimental access to the trajecto-
ries, as far the correlation is concerned one mechanism of motion is equivalent to the other:
this is an example of the arbitrariness or freedom in choosing the dynamical mechanism
behind the statistical properties. Loosely speaking, such freedom in choosing the dynamics
is one of the ideas leading to the change from Hamiltonian to non-Hamiltonian dynamics
in silico.

This point is elucidated further in the next section.

4. Statistics and Hamiltonian dynamics

Hamiltonian dynamics is widely believed to provide a fundamental description (in the
classical limit) of the microscopic dynamics of many-body systems. In order to make
connection with macroscopic observable, a statistical theory over phase space must also be
defined. Within such a theory, macroscopic fields are given by averages such as

A(r, t) =


dxf(x)a(x, t; r) , (3)

where x = (q, p) is the multimensional point in phase space, comprising both the macro-
scopic configurational coordinates q and momenta p, while r is a point in ordinary space.
The quantity f(x), called the distribution function, weights each microscopic phase space
point and it is interpreted as a probability density. The variable a(x, t; r) is a microscopic
property of the system while A(r, t) is the observable macroscopic field. Equation (3)
realizes the fundamental bridge between micro and macro scales in physics and it the core
of statistical mechanics. Hamiltonian dynamics provides a prescription for calculating the
time evolution of the microscopic variable a(x, t; r) via the equation of motion:

ȧ(x, t; r) = Bs
ij (∇jH)∇ia(x, t; r) (4)

where ∇i = ∂/∂xi and

Bs =


0 1
−1 0


(5)

is the standard symplectic matrix.
The right hand side of Eq. (4) introduces the Poisson bracket [23] in matrix form:

{a, b} = (∇ia)Bij(∇jb) . (6)

The Poisson bracket obeys the properties [23]

{a, b} = −{b, a} , (7a)

{a+ b, c} = {a, c}+ {b, c} , (7b)

{const× a, b} = const× {a, b} , (7c)

{ab, c} = a {b, c}+ {a, c} . (7d)

The Jacobi relation also holds [23]:

{{a, b}, c}+ {{c, a}, b}+ {{b, c}, a} = 0 , (8)
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where a, b, c are arbitrary phase space functions. The validity of Eqs. (7a-7d) together with
the Jacobi relation (8) means that the algebra of Poisson brackets is a Lie algebra [24, 23].
An important consequence of the Lie algebra property is that algebraic relations defined
by Poisson brackets are left invariant under evolution in time. To express this result we
introduce the Liouville operator L,

L = Bij(∇jH)∇i . (9)

Hence, the time-translation invariance of the algebra of Poisson brackets can be expressed
mathematically by

exp[tL]{a, b} = {a(t), b(t)} . (10)

The original formulation of MD was based on Hamiltonian dynamics. Assuming er-
godicity, phase space averages are calculated as time averages over Hamiltonian trajecto-
ries. However, within a Hamiltonian theory, thermodynamical constraints, such as con-
stant temperature and/or constant pressure, can be implemented only through the simu-
lation of the system of interest coupled to a many-particle bath, and all the degrees of
freedom, system plus bath, must be evolved in time. For such a reason, the Hamiltonian
implementation of thermodynamical baths on the computer is highly inefficient, if indeed
possible at all. One solution to this problem is provide by non-Hamiltonian dynamics
[11, 25, 26, 27, 1, 6, 7, 8, 9, 2, 28].

5. Energy-conserving Non-Hamiltonian dynamics

Exploiting the unobservability of trajectories for bulk measurements, one can imagine
changing the dynamical laws in order to obtain the statistics of the desired thermodynam-
ical ensemble without the infinite bath. In practice, this can be achieved by means of a
particular form of non-Hamiltonian dynamics, formulated in terms of an almost-Poisson
bracket [29].

In place of the symplectic matrix Bs, let us introduce a general antisymmetric tensor
field

B(ξ) = −BT (ξ) . (11)

where ξ = (x, ζ) is a point in an enlarged phase space. Equipped with such an antisym-
metric tensor field, we can also define a generalized bracket

{a, b}B = (∇ξ
ia)Bij(∇ξ

jb) . (12)

The generalized bracket defined in Eq. (12) can be classified as an “almost-Poisson” bracket
since it satisfies all the properties (7a-7d) satisfied by the Poisson bracket with the excep-
tion of the Jacobi relation (8), which is no longer valid in general [30, 29]. In the cases in
which the generalized bracket also satisfies the Jacobi relation, phase space is classified as
a Poissonian manifold [23]. In such cases, the dynamics must be regarded as Hamiltonian
since, because of the Darboux theorem, a non-canonical transformation of coordinates can
(at least locally) put the tensor field B in symplectic form Bs [31]. An almost-Poisson
bracket defines a form of energy-conserving non-Hamiltonian dynamics since, because of
its antisymmetry, the generalized Hamiltonian, H̃ , is exactly conserved

{H̃, H̃}B = 0 . (13)
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A non-Hamiltonian energy-conserving (or almost-Poisson) Liouville operator can be
defined as [1, 6]

L̃ = Bij(∇ξ
jH̃(ξ))∇ξ

i . (14)

The failure of the Jacobi relation implies the absence of time-translation invariance in the
algebra of almost-Poisson brackets

exp[(t− t0)L̃]{{a(t0), b(t0)}B ̸= {{a(t), b(t)}B . (15)

Statistical mechanics on an almost-Poisson manifold can be formulated exactly as for
the Hamiltonian or Poisson manifold case [1, 6]. Now, however, there are cases (which are
those of interest in MD) in which the phase space compressibility

κ = (∇ξ
i )Bij(∇ξ

jH̃) (16)

is non-vanishing. At equilibrium, L̃f(ξ) = 0, and the invariant phase space measure is

dµ = exp[−w]dξ , (17)

where dw/dt = κ [11, 26, 27, 1, 6].
The utility of almost-Poisson dynamics arises because it has been found that the tensor

field B(ξ) can be engineered so that integration over the additional variables ζ produces
the desired thermodynamical ensemble for the physical system of interest. In this way, the
use of few additional degrees of freedom, ζ, together with non-Hamiltonian dynamics is
able to produce the desired average behaviour in a computable fashion [11, 12, 13, 14].

5.1. Approximate theoretical complexity. From a certain point of view, the substitution
of non-Hamiltonian or almost-Poisson evolution for Hamiltonian dynamics transcends the
mere idea of the arbitrariness of microscopic dynamical laws. There is something more.
As discussed previously, by means of this substitution one renounces the time-invariance
of the dynamical algebra. In statistical terms, such invariance breaking is mirrored in
the properties of the correlation functions of an almost-Poissonian theory: some useful
relations which are invoked in the Hamiltonian case, and are involved in the definitions of
transport coefficients through Green-Kubo formulas, are no longer necessarily valid. How,
then, can almost-Poissonian dynamics can be justified? In our view, a practical justification
can be found by exploiting an analogy with approximate computational complexity, an
approach used in numerical algebra (see [32] and references therein).

Within approximate computational complexity, a non-computable problem P , charac-
terized by a certain mathematical structure described by constraints σ1 = 0, σ2 = 0, ...,
is mapped onto another problem P ′ with a modified structure. The structure of P ′ is char-
acterized by the relaxation of at least one constraint of P , for example σ1 ̸= 0. The
augmented freedom in the structure of P ′ is accompanied by the appearance of some new
numerical parameters, k1, k2, ..., effectively controlling the new degrees of freedom. For
example, one can treat σ1 as a dynamical variable, with a fictitious inertial parameter mf

and initial conditions σ1(t = t0) = 0. The mapping P → P ′ can be performed so that
P ′ becomes computable. Moreover, for some specific choice of the ks (which effectively
restrain the possible values taken by the relaxed constraints) the solution of problem P ′

approximates that of P . This is so because one assumes (or proves) that the solution of P
exists, although it is not readily calculable, and the calculations of P ′ are performed for
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values of the ks chosen such that all the constraints of the original problem P are close to
being satisfied.

By analogy, one can see that non-Hamiltonian theory implements the same idea as ap-
proximate computational complexity. However, in the case of non-Hamiltonian simulation
schemes it is not simply the mathematical structure of the calculation which is changed:
the relaxation of the Jacobi relation modifies the theory itself. It is as if, in this case, we
have an instance of what might be called approximate theoretical complexity. The key
point is that, while the dynamics of phase space points (x, ζ) in extended phase space has
no immediate physical significance, the statistical average over the ζ degrees of freedom
can provide an effective evolution of the physical degrees of freedom, x, with the desired
statistical properties, without the need to simulate an infinite number of auxillary variables
ζ. In this way, an original Hamiltonian problem which is not calculable is mapped to a
non-Hamiltonian problem with a finite number of degrees of freedom. For suitable choices
of the inertial parameter associated with the ζs, the calculated averaged dynamics of the x
is physically meaningful.

6. Time-reversible algorithms

Having defined and justified non-Hamiltonian dynamics, one is then confronted with the
practical issue of finding suitable integration algorithms for non-Hamiltonian equations of
motion, which are usually more complicated than Hamiltonian ones. Since one is already
renouncing some basic theoretical properties (such as time-invariance of the bracket al-
gebra) it becomes even more desirable that the numerical algorithm does not break other
symmetries of the problem. The main one is the time-reversal invariance of the phase space
trajectory.

Actually, it turns out to be very easy to devise time-reversible algorithms: one simply
has to use a symmetric Trotter decomposition of the propagator and the rest follows easily
[13]. As a matter of fact, the Liouville operator can usually be split into a sum of terms

L̃ = Bij
∂H̃

∂ξj

∂

∂ξi
=

n
k=1

L̃k . (18)

Hence, for a small time step, τ , one can introduce a time-reversible Trotter decomposition
of the propagator:

etL̃ =


n

k=2

e(τ/2)L2n−k−1


eτL1


n

k=2

e(τ/2)Lk


+O(τ3) . (19)

The numerical algorithm is then found by unfolding the single time step action of the
factorized propagator

x(t+ τ) ≈


n

k=2

e(τ/2)L2n−k−1


eτL1


n

k=2

e(τ/2)Lk


x(t) . (20)
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To this end, the following fundamental operator identities can be used

exp


c
∂

∂x


f(x) = f(x+ c) , (21a)

exp


cx

∂

∂x


f(x) = f(x exp(c)) (21b)

exp


τ

− pη

mη
p+ F (x)

 ∂

∂p


p = p exp


−τ

pη
mη


+ τF (x) exp


−τ

2

pη
mη


sinh


−τ

2

pη
mη


. (21c)

In order to illustrate how a time-reversible algorithm is built in practice, we tackle as
an example the formulation of deterministic thermostats by means of non-Hamiltonian
dynamics. In general, deterministic thermostats sample the canonical distribution func-
tion of a system S coupled to a deterministic bath B, represented by a few additional
degrees of freedom. The use of such thermostats is really the culmination of a journey
from Boltzmann to Gibbs and then back to Boltzmann. There are many such thermostats:
Nosé-Hoover, Bulgac-Kusnezov, Nosé-Hoover Chains, and so on [12, 13, 14]. In the next
section, we consider the dynamics of the Nosé-Hoover chain (NHC) [33] and illustrate the
derivation of a time-reversible integration algorithm.

6.1. Time-reversible integration of NHC dynamics. In the interests of simplicity, we
consider here a NHC with just one additional thermostat variable. In this case the phase
space point is ξ = (q, η1, η2, p, pη1 , pη2 )i, where q and p are the phase space coordinates
of the physical system, η1 and pη1

the phase space coordinates of the first Nosé-Hoover
thermostat, and η2 and pη2

those of the second Nosé-Hoover thermostat. The total NHC
Hamiltonian is

HNHC =
p2

2m
+

p2η1

2mη1

+
p2η2

2mη2

+Φ(q) +NkBT (η1 + η2) , (22)

where N is the number of q coordinates, mη1
and mη2

are the inertial parameters of the
thermostat coordinates, T the desired thermodynamical temperature, kB is Boltzmann’s
constant, and Φ(q) is the physical potential energy. The NHC antisymmetric tensor is

BNHC =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 −p 0
0 −1 0 p 0 −pη1

0 0 −1 0 pη1
0

 . (23)

Using the tensor (23) we can write the NHC equations of motion in matrix form

ξ̇i = BNHC
ij

∂HNHC

∂ξj
. (24)
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Written explicitly they read

q̇ =
p

m
, (25a)

ṗ = −∂Φ

∂q
− p

pη1

mη1

, (25b)

η̇1 =
pη1

mη1

, (25c)

ṗη1
=

p2

m
−NkBT − pη1

pη2

mη2

, (25d)

η̇2 =
pη2

mη2

, (25e)

ṗη2
=

p2η1

mη1

−NkBT , (25f)

where we have used the forces

F (q) = −∂Φ

∂q
, (26a)

F (p) =
p2

m
−NkBT , (26b)

F (pη1
) =

p2η1

mη1

−NkBT . (26c)

We associate the Liouville operator LNHC with the evolution equations Eqs. (25a)–(25f),
and split it as LNHC =

5
k=1 L

NHC
k , where the single terms are

LNHC
1 = τ


p

m

∂

∂q
+

pη1

mη1

∂

∂η1
+

pη2

mη2

∂

∂η2


, (27a)

LNHC
2 =

τ

2
F (x)

∂

∂p
, (27b)

LNHC
3 = −τ

2

pη1

mη1

∂

∂p
, (27c)

LNHC
4 =

τ

2


− pη2

mη2

pη1
+ F (p)


∂

∂pη1

, (27d)

LNHC
5 =

τ

2
F (pη1

)
∂

∂pη2

. (27e)

A propagator

UNHC
i (τ) = exp[τLNHC

i ] i = 1, ..., 5 (28)

is associated with each LNHC
i . The NHC propagator

UNHC(τ)ξ = exp


5

i=1

τLNHC
i


ξ = ξ(τ) (29)
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can be decomposed using the symmetric Trotter formula as

UNHC(τ) ≈ UNHC
5

τ
2


UNHC
4

τ
2


UNHC
3

τ
2


UNHC
2

τ
2


× UNHC

1 (τ)UNHC
2

τ
2


UNHC
3

τ
2


UNHC
4

τ
2


UNHC
5

τ
2


+O(τ3) . (30)

Because of the factorization, one is able to evaluate analytically the action of each UNHC
i

on the phase space point. The resulting time-reverisible algorithm can be written in a
pseudo-code form:

U5

τ
2


:

pη2

→ pη2
+

τ

2
F (pη1

) (31a)

U4

τ
2


:

pη1
→ pη1

e
τ
4

pη2
mη2 +

τ

4

sinh


τ
4

pη2

mη2


τ
4

pη2

mη2

(31b)

U3

τ
2


:


p → pe

τ
2

pη1
mη1 (31c)

U2

τ
2


:

p → p+

τ

2
F (q) (31d)

U1 (τ) :


q → q + τ

p

m
η1 → η1 + τ

pη1

mη1

η2 → η2 + τ
pη2

mη2

(31e)

U2

τ
2


:

p → p+

τ

2
F (q) (31f)

U3

τ
2


:


p → pe

τ
2

pη1
mη1 (31g)

U4

τ
2


:

pη1
→ pη1

e
τ
4

pη2
mη2 +

τ

4

sinh


τ
4

pη2

mη2


τ
4

pη2

mη2

(31h)

U5

τ
2


:

pη2 → pη2 +

τ

2
F (pη1) (31i)

which is readily implementable on the computer.
The stability of the algorithm can be tested by studying a simple one dimensional

harmonic oscillator. We set m = mη1 = mη2 = 1 and use an integration time step
τ = 0.0025 in suitable units (kB = 1). Figure 1 shows a comparison of the numer-
ical fluctuations of the total NHC Hamiltonian (which should be rigorously conserved)
with that of a simple Nosè-Hoover (NH) dynamics (obtained from the NHC by setting
η1 = η2 = pη1

= pη2
= 0.

The NHC dynamics is more complicated than that of the simple Nosé-Hoover thermo-
stat, mainly because of the coupling of pη2 to the fast pη1 . However, Fig. 1 proves that the
integration is satisfactorily stable. To achieve the same level of accuracy as obtained for
the Nosé-Hoover integration one should use higher order or multiple time step methods.
Figure 2 shows the q − p space sampled by NHC dynamics: the sampling is evidently er-
godic. The ergodicity of NHC dynamics is main reason for using it in place of the simpler
NH dynamics. The latter in fact is notoriously unable to sample ergodically the q−p space
of stiff oscillators.
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Figure 1. Comparison of Nosé-Hoover vs Nosé-Hoover Chain 1D Harmonic
oscillator; τ = 0.0025. Numerical stability of time-reversible integration.

-4

-2

 0

 2

 4

-4 -2  0  2  4

p

q

Figure 2. NHC Phase Space. q − p Poincaré section

7. Measure-preserving algorithms

Time-reversible algorithms are easy to implement. They also usually conserve the total
energy with high accuracy. However, the non-Hamiltonian invariant phase space measure

dµ = e−w dx1 ∧ dx2 ∧ ... ∧ dx2N (32)

is not necessarily conserved by the single propagation step, Uiµ ̸= 0, and so it is not always
conserved by primitive time-reversible algorithms. Preservation of the phase space mea-
sure can be essential when using hybrid Monte Carlo/MD schemes or when reweighting
trajectories.
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A scheme for deriving integrators which are both time reversible and measure-preserving
has recently been proposed [2]. Instead of implementing an arbitrary splitting of the Liou-
ville operator, one starts with a splitting of the Hamiltonian

H =

ns
α=1

Hα . (33)

In turn, this determines a splitting of the Lioville operator according to

L =

ns
α=1

Lα , (34)

where
Lα ≡ Bij∇j (Hα)∇i . (35)

One can see from Eq. (35) that each Lα is built in terms of the antusymmetric matrix B. It
has been proven [2] that if

∇j


e−wBij


= 0 , (36)

for i = 1, ..., 2N , then
Lαdµ = 0 , (37)

for every α. This implies that upon defining propagators as

Uα(τ) = exp[τLα] , (38)

for α = 1, .../, ns α = 1, .../, ns, one obtains single propagation steps that also preserve
the phase space measure. Moreover, upon defining the complete propagator in terms of the
symmetric Trotter formula,

U(τ) =


ns
α=2

U2α−k−1(τ/2)


U1(τ)

 n
β=2

Uβ(τ/2)

+O(τ3) , (39)

one automatically obtains integration schemes that are both time-reversible and measure-
preseving.

8. Bulgac-Kusnezov-Nosé-Hoover dynamics

In order to illustrate measure-preserving algorithms, we apply the theory of the pre-
vious section to the dynamics of the Bulgac-Kusnezov thermostat [34, 35]. The Bulgac-
Kusnezov thermostat is more general than the standard Nosé-Hoover version; it can, for
example, be applied to classical spin systems. Time-reversible measure-preserving algo-
rithms for Bulgac-Kusnezov generalized thermostats have been recently proposed in [36].

Consider the following Hamiltonian [36]

H̃BKNH = H(q, p) +
p2ζ
2mζ

+
p2ξ
2mξ

+
p2η
2mη

+ kBT (ζ + ξ) + 2BTη , (40)

where the demon variables ξ and ζ appear together with the standard Nosé coordinate
η. Corresponding momenta and masses also enter into the definition of H̃BKNH. Upon
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defining the antisymmetric tensor field [36]

B̃BKNH
=



0 0 0 0 1 0 −q 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 −p 0 0
0 −1 0 0 p 0 0 −pζ
q 0 −1 0 0 0 0 −pξ
0 0 0 −1 0 pζ pξ 0


, (41)

one obtains the following Nos-́Hoover-Bulgac-Kusnezov equations of motion

q̇ =
p

m
− q

pξ
mξ

, (42a)

ζ̇ =
pζ
mζ

, (42b)

ξ̇ =
pξ
mξ

, (42c)

η̇ =
pη
mη

, (42d)

ṗ = F (q)− p
pζ
mζ

, (42e)

ṗζ =
p2

m
− kBT − pζ

pη
mη

, (42f)

ṗξ = −qF (q)− kBT − pξ
pη
mη

, (42g)

ṗη =
p2ζ
mζ

+
p2ξ
mξ

− 2kBT , (42h)

that display a coupling of the Nosé-Hoover variable to the Bulgac-Kusnezov demons in
order to enhance the chaoticity of the dynamics of q and p.

Exploiting a suitable splitting of the Hamiltonian, one obtains the following measure
preserving Liouville operators [36]:

LBKNH
A = F (q)

∂

∂p
+

pη
mη

∂

∂η
− pη

mη
pζ

∂

∂pζ
+


− pχ
mχ

pξ + Fpξ


∂

∂pξ
, (43a)

LBKNH
B =

p

m

∂

∂q
+ Fpζ

∂

∂pζ
, (43b)

LBKNH
C = − pζ

mζ
p
∂

∂p
− pξ

mξ
q
∂

∂q
+

pζ
mζ

∂

∂ζ
+

pξ
mξ

∂

∂ξ
+ Fpη

∂

pη
, (43c)
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where we define the forces

Fpξ
= −qF (q)− kBT , (44a)

Fpζ
=

p2

m
− kBT , (44b)

Fpη
=

p2ζ
mζ

+
p2ξ
mξ

− 2kBT. (44c)

The Trotter factorized propagator

U(τ)BKNH = UBKNH
B

τ
4


UBKNH
C

τ
2


UBKNH
B

τ
4


× UBKNH

A (τ)

× UBKNH
B

τ
4


UBKNH
C

τ
2


UBKNH
B

τ
4


(45)

leads to a time-reversible measure-preserving algorithms [36] that can be easily written in
pseudo-code form as

UBKNH
B

τ
4


:


q → q + τ

4
p
m

pζ → pζ +
τ
4Fpζ

(46a)

UBKNH
C

τ
2


:



p → p exp

− τ

2
pζ

mζ


q → q exp


− τ

2
pξ

mξ


ζ → ζ + τ

2
pζ

mζ

ξ → ξ + τ
2

pξ

mξ

pη → pη +
τ
2Fpζ

(46b)

UBKNH
B

τ
4


:


q → q + τ

4
p
m

pζ → pζ +
τ
4Fpζ

(46c)

UBKNH
A (τ) :


p → p+ τF (q)
pξ → pξ + τFpξ

η → η + τ
pη

mη

pζ → pζ exp

−τ

pη

mη

 (46d)

UBKNH
B

τ
4


:


q → q + τ

4
p
m

pζ → pζ +
τ
4Fpζ

(46e)

UBKNH
C

τ
2


:



p → p exp

− τ

2
pζ

mζ


q → q exp


− τ

2
pξ

mξ


ζ → ζ + τ

2
pζ

mζ

ξ → ξ + τ
2

pξ

mξ

pη → pη +
τ
2Fpη

(46f)

UBKNH
B

τ
4


:


q → q + τ

4
p
m

pζ → pζ +
τ
4Fpζ

(46g)
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Figure 3. Numerical stability of the measure-preserving time-reversible integra-
tion. Comparison between the Nosé-Hoover chain (NHC) and the Nosé-Hoover-
Bulgac-Kusnezov (BKNH) dynamics of a one-dimensional Harmonic oscillator;
τ = 0.0025.

-4

-2

 0

 2

 4

-4 -2  0  2  4

p

q

Figure 4. q − p Poincaré section obtained from the Nosé-Hoover-Bulgac-
Kusnezov dynamics of the one-dimensional harmonic oscillator.

Figure 3 shows a comparison between the numerical fluctuations of the total Hamilton-
ian between the measure-preserving time reversible integration of Nosé-Hoover chain and
Nosé-Hoover-Bulgac-Kusnezov dynamics. Figure 4 shows the chaotic q− p Poincaré sec-
tion of the harmonic oscillator phase space. Figure 5 shows a comparison between the ana-
lytical and the numerically sampled radial probability of the one-dimensional harmonic os-
cillator, evolving under the Nosé-Hoover-Bulgac-Kusnezov dynamics. The Nosé-Hoover-
Bulgac-Kusnezov dynamics displays a satisfactory numerical stability but is apparently
“stiffer” than the simpler Nosé-Hoover chain flow. The advantage of the Nosé-Hoover-
Bulgac-Kusnezov dynamics is that it can also be defined for classical spin systems, opening
the way for the development of measure-preserving integration algorithms for thermostat-
ted spin systems.
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Figure 5. Comparison between the analytical and the numerically sampled ra-
dial probability of the one-dimensional harmonic oscillator, evolving under the
Nosé-Hoover-Bulgac-Kusnezov dynamics.

9. Conclusions and perspectives

In this contribution, we have discussed some examples of non-Hamiltonian dynamics.
The latter provides an approximate computational theory for systems with thermodynamic
constraints. The formulation in terms of non-Hamiltonian (almost-Poisson) brackets leads
to the design of very efficient and easily implementable time-reversible measure-preserving
algorithms for integrating the equations of motion.

The theory and techniques presented here open up several interesting perspectives. Ex-
tensions to classical spin systems and phase space quantum dynamics of particles are cur-
rently under study.
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