CONSTRUCTIONS FOR LARGE SETS OF DISJOINT COMPATIBLE PACKINGS ON $6 k+5$ POINTS

Jianguo Lei ${ }^{a b}$, YanXun Chang ${ }^{b}$, Giovanni Lo Faro ${ }^{c *}$, And Antoinette Tripodi ${ }^{c}$
(Communication presented by Prof. Filippo Cammaroto)

Abstract

In this paper, we give two methods to construct large sets of disjoint compatible packings $\left(L M P\left(1^{v} C_{4}\right)\right)$ on $6 k+5$ points. As a result, we prove that there exists an $L M P\left(1^{v} C_{4}\right)$ for $v=7^{i} u^{j}$ where $i \geq 0, j \geq 1$ and $u \in\{13,19,25,31,43,67,139$, $163,211,283,307,331,379\}$.

1. Introduction

Let X be a set of v points. A $(2,3)$-packing on X is a pair (X, \mathcal{A}), where \mathcal{A} is a set of 3 -subsets (called triples) of X, such that every 2 -subset of X appears in at most one triple. The edge-leave of a $(2,3)$-packing (X, \mathcal{A}) is a graph (X, E), where E consists of all the pairs which do not appear in any triple of \mathcal{A}.

A $(2,3)$-packing (X, \mathcal{A}) is said to be degenerate if there exist points that occur in no triple of \mathcal{A}. A degenerate $(2,3)$-packing on v points is actually a $(2,3)$-packing on v^{\prime} points for some $v^{\prime}<v$. Throughout this paper we restrict our attention to non-degenerate (2,3)-packings.

Two (2,3)-packings (X, \mathcal{A}) and (X, \mathcal{B}) are called disjoint if $\mathcal{A} \bigcap \mathcal{B}=\phi$. Two (2,3)packings are called compatible if they have the same edge-leave. A set of more than two (2,3)-packings is called disjoint (compatible, respectively) if each pair of them is disjoint (compatible, respectively).

A $(2,3)$-packing (X, \mathcal{A}) is called maximum if there does not exist any $(2,3)$-packing (X, \mathcal{B}) with $|\mathcal{A}|<|\mathcal{B}|$. A maximum (2,3)-packing with edge-leave (X, E) is denoted by $(2,3)-M P(E)$ in this paper. We usually denote $(2,3)-M P(E)$ briefly by $M P(E)$. When the edge-leave (X, E) is a graph without any edge, i.e. v isolated vertices, $M P(E)$ is denoted by $M P\left(1^{v}\right)$. Similarly, an $M P\left(1^{v-4} C_{4}\right)$ denotes an maximum $(2,3)$-packing with edge-leave of $v-4$ isolated vertices and a cycle of length four. An $M P\left(1^{v}\right)$ is actually a Steiner triple system of order v. It is well known that an $M P\left(1^{v}\right)$ exists if and only if $v \equiv 1,3(\bmod 6)$. When $v \equiv 5(\bmod 6)$, an $M P\left(1^{v-4} C_{4}\right)$ exists in $[16,17]$.

Denote by $M(v)$ the maximum number of disjoint compatible packings on v points. Determination of the number $M(v)$ is related to the construction of perfect threshold schemes (see, for example, [7, 15]). The upper bound on $M(v)$ is proved in [15].

Theorem 1.1. ([15]) $M(v) \leq v-2$ for $v \equiv 1,3(\bmod 6) ; M(v) \leq v-4$ for $v \equiv 0,2,5$ $(\bmod 6)$; and $M(v) \leq v-6$ for $v \equiv 4(\bmod 6)$. Further, except when $v \equiv 4(\bmod 6)$, the upper bound is attained only if the packings are maximum.

Values of v for which $M(v)$ meets the upper bound are summarized as follows.
Lemma 1.2. (1) For $v \equiv 1,3(\bmod 6)$ and $v \neq 7, M(v)=v-2$. Also $M(7)=3$ ([13, 14, 18]).
(2) For $v \equiv 0,2(\bmod 6), M(v)=v-4([8,5,12])$.
(3) For $(v-4) / 2 \notin\{12,36,48,144\} \cup\{n>0: n=6 m, m \equiv 1,5(\bmod 6)\}$, $M(v)=v-6([2,3,4])$.
(4) For $v \in\left\{7^{k} t+4: k \geq 0, t=1,7,13,19,25,31,43,67\right\} \cup\{11,17,23\}, M(v)=$ $v-4([6,7,15])$.

In the literature, there are several methods in constructing sets of disjoint packings which are not required to be compatible in $[9,10]$. Such structures have applications to the construction of constant-weight codes [1].

For $v \equiv 5(\bmod 6)$, there exists an $M P\left(1^{v-4} C_{4}\right)$. If there exists a set of $v-4$ disjoint compatible $M P\left(1^{v-4} C_{4}\right)$, then $M(v)=v-4$. A set of $v-4$ disjoint compatible $M P\left(1^{v-4} C_{4}\right)$ is thus called a large set and denoted by $\operatorname{LMP}\left(1^{v-4} C_{4}\right)$.

Suppose that $v \equiv 1(\bmod 6)$. Let $I_{v}=\{1,2, \cdots, v\}$ and $X=I_{v} \cup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$. An ${ }^{*} \operatorname{LMP}\left(1^{v} C_{4}\right)$ is an $\operatorname{LMP}\left(1^{v} C_{4}\right)=\left\{\left(X, \mathcal{B}_{i}\right): i \in I_{v}\right\}$ which satisfies the following conditions:
(1) Each $\left(X, \mathcal{B}_{i}\right), i \in I_{v}$, has the edge-leave $\left(\infty_{1} \infty_{2} \infty_{3} \infty_{4}\right)$.
(2) $\left\{\infty_{1}, \infty_{3}, i\right\},\left\{\infty_{2}, \infty_{4}, i\right\} \in \mathcal{B}_{i}$ for any $i \in I_{v}$.

We summarize the known results on ${ }^{*} L M P\left(1^{v} C_{4}\right)$ as follows.
Lemma 1.3. There exists an ${ }^{*} L M P\left(1^{v} C_{4}\right)$ for $v \in\{7,13,19,25,31,43,67\}$.

2. A direct way to construct ${ }^{*} \operatorname{LMP}\left(1^{q} \mathbf{C}_{4}\right)$ with prime power $\mathrm{q} \equiv 1(\bmod 6)$

Let $G F(q)$ be a finite field with q elements where $q \equiv 1(\bmod 6)$. Let $G F(q)^{*}=$ $G F(q) \backslash\{0\}$. Let α be an element in $G F(q)$. An α-partition of $G F(q)$ is a partition $G F(q)^{*}=Y \cup Z$ such that
(a) x is never in the same class as αx, and
(b) x is never in the same class as $-x$.

Lemma 2.1. Let $G F(q)$ be a finite field and t be the multiplicative order of α in $G F(q)^{*}$. Then $G F(q)$ has an α-partition if and only if $t \equiv 2(\bmod 4)$.
Proof Suppose that $G F(q)$ has an α-partition $G F(q)^{*}=Y \cup Z$. Without loss of generality, let $1 \in Y$. By condition (a) of α-partition, we have $\alpha^{1} \in Z, \alpha^{2} \in Y, \cdots, \alpha^{2 i-1} \in Z$, $\alpha^{2 i} \in Y, \cdots$.

Since $\alpha^{t}=1 \in Y$, it implies that t is even. Let $t=2 s$. Note that $\alpha^{s}=-1$. By condition (b) of α-partition, $\alpha^{s} \in Z$, which implies that s is odd. Thus, $t \equiv 2(\bmod 4)$.

If $t \equiv 2(\bmod 4)$, let $\langle\alpha\rangle$ be the multiplicative sub-group of $G F(q)^{*}$ generated by α, and let $h_{0}, h_{1}, \cdots, h_{\frac{q-1}{t}-1}$ be all the representative elements of coset classes. Define

$$
Y=\left\{h_{j} \alpha^{2 i}: i=0,1, \cdots, t / 2-1 ; j=0,1, \cdots,(q-1) / t-1\right\} ;
$$

$$
Z=\left\{h_{j} \alpha^{2 i+1}: i=0,1, \cdots, t / 2-1 ; j=0,1, \cdots,(q-1) / t-1\right\} .
$$

It is readily checked that $G F(q)^{*}=Y \cup Z$ is an α-partition of $G F(q)$.
Let g be a primitive root of $G F(q)$. Define $\log _{g} \beta=a$ if $g^{a}=\beta$. We usually write $\log _{g} \beta=a$ as $\log \beta=a$. In this section, we always denote $n=q-1$. For any unordered pair $\{\lambda, \mu\} \subseteq Z_{n} \backslash\{0, n / 2\}$ and $\lambda \neq \mu$, define a set $\Delta\{\lambda, \mu\}$ as follows:

$$
\Delta\{\lambda, \mu\}=\left\{ \pm \log \frac{g^{\lambda}-1}{g^{\mu}-1}, \pm \log \frac{g^{\lambda}-1}{g^{\lambda}-g^{\mu}}, \pm \log \frac{g^{\mu}-1}{g^{\mu}-g^{\lambda}}\right\} .
$$

It is easy to see that $\Delta\{\lambda, \mu\}=\Delta\{\mu, \lambda\}$ and $0 \notin \Delta\{\lambda, \mu\}$. Let $\left\{\lambda_{j}, \mu_{j}\right\} \subseteq Z_{n} \backslash\{0, n / 2\}$, $j=1,2, \cdots, \frac{n}{6}-1$, denote the $\frac{n}{6}-1$ unordered pairs which satisfy the following conditions:

Con 1. All elements $\pm \lambda_{j}, \pm \mu_{j}, \pm\left(\lambda_{j}-\mu_{j}\right), j=1,2, \cdots, \frac{n}{6}-1$, are distinct. Let x and y be in Z_{n} such that

$$
\left\{ \pm \lambda_{j}, \pm \mu_{j}, \pm\left(\lambda_{j}-\mu_{j}\right): j=1,2, \cdots, \frac{n}{6}-1\right\}=Z_{n} \backslash\left\{0, \frac{n}{2}, \pm x, \pm y\right\}
$$

Con 2. $n / \operatorname{gcd}(n, x) \equiv n / \operatorname{gcd}(n, y) \equiv 2(\bmod 4)$.
Con 3. The six element in each $\Delta\left\{\lambda_{j}, \mu_{j}\right\}$ are distinct and different from $0, n / 2$ for any $j=1,2, \cdots, n / 6-1$; Any two $\Delta\left\{\lambda_{j}, \mu_{j}\right\}, \Delta\left\{\lambda_{k}, \mu_{k}\right\}$ are disjoint for $j \neq k \in\left[1, \frac{n}{6}-1\right]$.
Theorem 2.2. Let q be a prime power and $q \equiv 1(\bmod 6)$. If $\left\{\lambda_{j}, \mu_{j}\right\} \subseteq Z_{n} \backslash\{0, n / 2\}$, $j=1,2, \cdots, \frac{n}{6}-1$ satisfy Con 1-3, then there is an ${ }^{*} \operatorname{LMP}\left(1^{q} C_{4}\right)$.
Construction: Let $X=G F(q) \cup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$. By the assumption of Con 2, the order of g^{x} and g^{y} in $G F(q)^{*}$ is $n / \operatorname{gcd}(n, x) \equiv 2(\bmod 4)$ and $n / \operatorname{gcd}(n, y) \equiv 2$ $(\bmod 4)$, respectively. By Lemma 2.1, there exist a g^{x}-partition $G F(q)^{*}=Y_{1} \cup Z_{1}$ and a g^{y}-partition $G F(q)^{*}=Y_{2} \cup Z_{2}$. We will construct $q M P\left(1^{q} C_{4}\right)\left(X, \mathcal{B}_{i}\right)(i \in G F(q))$ with the same edge-leave of 4 -cycle $\left(\infty_{1} \infty_{2} \infty_{3} \infty_{4}\right)$ where $\mathcal{B}_{i}=\mathcal{B}_{0}+i$ and \mathcal{B}_{0} consists of the following triples:

Part 1. $\left\{\infty_{1}, \infty_{3}, 0\right\},\left\{\infty_{2}, \infty_{4}, 0\right\}$;
Part 2. $\left\{\infty_{1}, z, g^{x} z\right\}$ where $z \in Y_{1},\left\{\infty_{2}, z, g^{x} z\right\}$ where $z \in Z_{1},\left\{\infty_{3}, z, g^{y} z\right\}$ where $z \in Y_{2},\left\{\infty_{4}, z, g^{y} z\right\}$ where $z \in Z_{2}$;

Part 3. $\left\{0, g^{k},-g^{k}\right\}$ for $k=0,1, \cdots, n / 2-1$;
Part 4. $\left\{g^{k}, g^{k+\lambda_{j}}, g^{k+\mu_{j}}\right\}$ for $k \in Z_{n}$ and $j=1,2, \cdots, n / 6-1$.
Proof By Con 1 and Con 2, it is easy to check that each $\left(X, \mathcal{B}_{i}\right)$ is an $M P\left(1^{q} C_{4}\right)$ with edge leave $C_{4}=\left(\infty_{1} \infty_{2} \infty_{3} \infty_{4}\right)$ for $i \in G F(q)$. Next we should prove that \mathcal{B}_{i} and \mathcal{B}_{j} are disjoint for $i \neq j$. It is enough to show that if $T \in \mathcal{B}_{0} \cap \mathcal{B}_{i}$ then $i=0$. We consider four cases below.

Case 1. $T=\left\{\infty_{1}, \infty_{3}, 0\right\}$, or $\left\{\infty_{2}, \infty_{4}, 0\right\}$. It is easy to see that $i=0$.
Case 2. $T=\left\{\infty_{1}, z, g^{x} z\right\}$ where $z \in Y_{1}$. Then there exists $z^{\prime} \in Y_{1}$ such that $T=$ $\left\{\infty_{1}, z^{\prime}+i, g^{x} z^{\prime}+i\right\} \in \mathcal{B}_{i}$, which implies that $\left\{z, g^{x} z\right\}=\left\{z^{\prime}+i, g^{x} z^{\prime}+i\right\}$. So, $\pm\left(g^{x} z-z\right)=\left(g^{x} z^{\prime}+i\right)-\left(z^{\prime}+i\right)$ and hence $z= \pm z^{\prime}$ since $g^{x} \neq 1$. By $z, z^{\prime} \in Y_{1}$ and $Y_{1} \cup Z_{1}$ is a g^{x}-partition of $G F(q)$, then $z \neq-z^{\prime}$. Hence $z=z^{\prime}$ which is actually $i=0$. The proof is similar for the cases $T=\left\{\infty_{2}, z, g^{x} z\right\}$ where $z \in Z_{1}$, or $T=\left\{\infty_{3}, z, g^{y} z\right\}$ where $z \in Y_{2}$, or $T=\left\{\infty_{4}, z, g^{y} z\right\}$ where $z \in Z_{2}$.

Case 3. $T=\left\{0, g^{k},-g^{k}\right\}$ where $k=0,1, \cdots, n / 2-1$. Then there exists $k^{\prime} \in$ $\{0,1, \cdots, n / 2-1\}$ such that $T=\left\{i, g^{k^{\prime}}+i,-g^{k^{\prime}}+i\right\}$, or $T=\left\{g^{k^{\prime}}+i, g^{k^{\prime}+\lambda_{j}}+\right.$ $\left.i, g^{k^{\prime}+\mu_{j}}+i\right\}$ where $j \in\left\{1,2, \cdots, \frac{n}{6}-1\right\}$. If $T=\left\{g^{k^{\prime}}+i, g^{k^{\prime}+\lambda_{j}}+i, g^{k^{\prime}+\mu_{j}}+i\right\}$ where $j \in\left\{1,2, \cdots, \frac{n}{6}-1\right\}$. Without loss of generality we can assume that $g^{k^{\prime}}+i=0$, then $i=-g^{k^{\prime}}$. So, we have $\left(g^{k^{\prime}+\lambda_{j}}+i\right) /\left(g^{k^{\prime}+\mu_{j}}+i\right)=g^{k} /\left(-g^{k}\right)=-1$, which implies that $\log \left[\left(g^{\lambda_{j}}-1\right) /\left(g^{\mu_{j}}-1\right)\right]=n / 2$. Hence, $n / 2 \in \Delta\left\{\lambda_{j}, \mu_{j}\right\}$ which is impossible by Con 3 .

Hence we must have $T=\left\{i, g^{k^{\prime}}+i,-g^{k^{\prime}}+i\right\}$, summing the elements in both sides gives $3 i=0$ and so $i=0$.

Case 4. $T=\left\{g^{k}, g^{k+\lambda}, g^{k+\mu}\right\}$ where $k \in Z_{n}$ and $\{\lambda, \mu\}$ is a pair among $\left\{\left\{\lambda_{j}, \mu_{j}\right\}\right.$: $\left.j=1,2, \cdots, \frac{n}{6}-1\right\}$. Then there exist $k^{\prime} \in Z_{n}$ and a pair $\{a, b\}$ belonging to $\left\{\left\{\lambda_{j}, \mu_{j}\right\}\right.$: $\left.j=1,2, \cdots, \frac{n}{6}-1\right\}$ which satisfy that

$$
\begin{equation*}
\left\{g^{k}, g^{k+\lambda}, g^{k+\mu}\right\}=\left\{g^{k^{\prime}}+i, g^{k^{\prime}+a}+i, g^{k^{\prime}+b}+i\right\} \tag{2.1}
\end{equation*}
$$

Without loss of generality we can assume that $g^{k}=g^{k^{\prime}}+i$. Then the second and third elements minus the first one in both-sides of (2.1) gives $\left\{g^{k}\left(g^{\lambda}-1\right), g^{k}\left(g^{\mu}-1\right)\right\}=$ $\left\{g^{k^{\prime}}\left(g^{a}-1\right), g^{k^{\prime}}\left(g^{b}-1\right)\right\}$. So, $\log \left[\left(g^{\lambda}-1\right) /\left(g^{\mu}-1\right)\right]= \pm \log \left[\left(g^{a}-1\right) /\left(g^{b}-1\right)\right]$. By the hypothesis of Con. 3 we have $\{\lambda, \mu\}=\{a, b\}$ and then (2.1) becomes

$$
\begin{equation*}
\left\{g^{k}, g^{k+\lambda}, g^{k+\mu}\right\}=\left\{g^{k^{\prime}}+i, g^{k^{\prime}+\lambda}+i, g^{k^{\prime}+\mu}+i\right\} \tag{2.2}
\end{equation*}
$$

Note that the sum of the 2 nd and 3rd-elements minus 2 times of the first one should be equal in both-sides of (2.2). Simplification gives $g^{k}\left(g^{\lambda}+g^{\mu}-2\right)=g^{k^{\prime}}\left(g^{\lambda}+g^{\mu}-2\right)$. Since $\log \left[\left(g^{\lambda}-1\right) /\left(g^{\mu}-1\right)\right] \neq n / 2$, we can deduce that $g^{\lambda}+g^{\mu}-2 \neq 0$. So, $g^{k}=g^{k^{\prime}}$. Summing the 3 elements in both-sides of (2.2) gives $3 i=0$ and hence $i=0$.

Therefore, $\left\{\left(X, \mathcal{B}_{i}: i \in G F(q)\right\}\right.$ forms an ${ }^{*} L M P\left(1^{q} C_{4}\right)$. This completes the proof.

Lemma 2.3. There exists an ${ }^{*} L M P\left(1^{q} C_{4}\right)$ for $q=139,163,211,283,307,331,379$.
Proof Let g be a primitive root in $G F(q)$. For each value of q, with the aid of computer, we found $n / 6-1$ pairs $\left\{\lambda_{j}, \mu_{j}\right\}, j=1,2, \cdots, n / 6-1$, and x, y for which Con 1-3 hold. By Theorem 2.2, there exists an ${ }^{*} L M P\left(1^{q} C_{4}\right)$.
$q=139: g=2, x=1, y=67,\left\{\lambda_{j}, \mu_{j}\right\}$ for $j=1,2, \cdots, 22$ are

$\{2,5\}$	$\{4,10\}$	$\{7,16\}$	$\{8,19\}$	$\{12,25\}$
$\{14,29\}$	$\{17,35\}$	$\{20,41\}$	$\{22,62\}$	$\{23,72\}$
$\{24,83\}$	$\{26,90\}$	$\{27,87\}$	$\{28,73\}$	$\{30,91\}$
$\{31,84\}$	$\{32,88\}$	$\{33,101\}$	$\{34,80\}$	$\{36,75\}$
$\{38,81\}$	$\{42,86\}$			
$q=163: g=2, x=1, y=3,\left\{\lambda_{j}, \mu_{j}\right\}$ for $j=1,2, \cdots, 26$ are				
$\{19,40\}$	$\{22,46\}$	$\{23,49\}$	$\{27,55\}$	$\{29,59\}$
$\{32,65\}$	$\{35,71\}$	$\{37,75\}$	$\{39,80\}$	$\{42,89\}$
$\{43,88\}$	$\{44,100\}$	$\{48,11\}$	$\{14,25\}$	$\{15,76\}$
$\{16,34\}$	$\{17,85\}$	$\{20,92\}$	$\{31,95\}$	$\{50,104\}$
$\{52,57\}$	$\{53,155\}$	$\{66,150\}$	$\{69,79\}$	$\{149,158\}$
$\{154,156\}$				

$q=211: g=2, x=1, y=9,\left\{\lambda_{j}, \mu_{j}\right\}$ for $j=1,2, \cdots, 34$ are

$\{22,45\}$	$\{24,50\}$	$\{27,55\}$	$\{29,61\}$	$\{31,64\}$
$\{34,69\}$	$\{37,77\}$	$\{38,79\}$	$\{42,86\}$	$\{43,89\}$
$\{47,96\}$	$\{48,110\}$	$\{51,122\}$	$\{52,126\}$	$\{53,111\}$
$\{54,129\}$	$\{56,132\}$	$\{57,127\}$	$\{59,144\}$	$\{60,203\}$
$\{21,115\}$	$\{25,36\}$	$\{30,147\}$	$\{39,119\}$	$\{65,73\}$
$\{68,206\}$	$\{82,190\}$	$\{87,97\}$	$\{90,104\}$	$\{92,193\}$
$\{98,205\}$	$\{191,204\}$	$\{192,208\}$	$\{195,198\}$	

$q=283: g=3, x=1, y=11,\left\{\lambda_{j}, \mu_{j}\right\}$ for $j=1,2, \cdots, 46$ are

$\{24,50\}$	$\{27,56\}$	$\{28,59\}$	$\{32,65\}$	$\{34,70\}$
$\{37,75\}$	$\{39,80\}$	$\{42,85\}$	$\{44,90\}$	$\{47,96\}$
$\{48,99\}$	$\{52,105\}$	$\{54,109\}$	$\{57,115\}$	$\{60,123\}$
$\{61,125\}$	$\{62,129\}$	$\{66,134\}$	$\{69,143\}$	$\{71,171\}$
$\{72,179\}$	$\{73,164\}$	$\{76,174\}$	$\{77,198\}$	$\{78,172\}$
$\{79,180\}$	$\{81,169\}$	$\{82,196\}$	$\{83,178\}$	$\{87,193\}$
$\{92,252\}$	$\{35,277\}$	$\{45,189\}$	$\{97,267\}$	$\{116,261\}$
$\{117,280\}$	$\{120,132\}$	$\{124,131\}$	$\{126,142\}$	$\{127,136\}$
$\{128,147\}$	$\{130,133\}$	$\{257,274\}$	$\{259,269\}$	$\{260,278\}$
$\{262,268\}$				

$q=307: g=5, x=1, y=5,\left\{\lambda_{j}, \mu_{j}\right\}$ for $j=1,2, \cdots, 50$ are

$\{24,50\}$	$\{27,56\}$	$\{28,60\}$	$\{31,67\}$	$\{33,70\}$
$\{34,72\}$	$\{39,81\}$	$\{41,84\}$	$\{44,92\}$	$\{46,99\}$
$\{47,98\}$	$\{49,101\}$	$\{54,112\}$	$\{55,118\}$	$\{57,116\}$
$\{61,125\}$	$\{62,127\}$	$\{66,143\}$	$\{68,137\}$	$\{71,145\}$
$\{73,148\}$	$\{76,154\}$	$\{79,172\}$	$\{80,186\}$	$\{82,176\}$
$\{83,197\}$	$\{85,206\}$	$\{86,201\}$	$\{87,204\}$	$\{88,196\}$
$\{89,184\}$	$\{90,187\}$	$\{91,261\}$	$\{35,138\}$	$\{40,195\}$
$\{96,276\}$	$\{104,113\}$	$\{107,128\}$	$\{123,141\}$	$\{124,283\}$
$\{129,146\}$	$\{131,302\}$	$\{132,296\}$	$\{133,300\}$	$\{140,284\}$
$\{149,299\}$	$\{281,295\}$	$\{286,298\}$	$\{287,290\}$	$\{291,293\}$

$q=331: g=3, x=1, y=7,\left\{\lambda_{j}, \mu_{j}\right\}$ for $j=1,2, \cdots, 54$ are

$\{23,49\}$	$\{27,55\}$	$\{29,62\}$	$\{31,63\}$	$\{34,70\}$
$\{37,75\}$	$\{39,79\}$	$\{42,86\}$	$\{43,90\}$	$\{46,94\}$
$\{50,101\}$	$\{52,106\}$	$\{53,111\}$	$\{56,113\}$	$\{59,123\}$
$\{60,121\}$	$\{65,131\}$	$\{67,139\}$	$\{68,137\}$	$\{71,145\}$
$\{73,150\}$	$\{76,154\}$	$\{80,162\}$	$\{81,164\}$	$\{84,171\}$
$\{85,183\}$	$\{88,184\}$	$\{89,194\}$	$\{91,206\}$	$\{92,218\}$
$\{93,212\}$	$\{95,223\}$	$\{97,201\}$	$\{99,221\}$	$\{100,216\}$
$\{102,210\}$	$\{103,285\}$	$\{41,158\}$	$\{110,130\}$	$\{125,140\}$
$\{127,314\}$	$\{132,135\}$	$\{133,306\}$	$\{134,138\}$	$\{141,316\}$
$\{142,320\}$	$\{144,149\}$	$\{151,160\}$	$\{153,309\}$	$\{161,163\}$
$\{295,308\}$	$\{300,311\}$	$\{305,322\}$	$\{312,318\}$	

$q=379: g=2, x=1, y=9,\left\{\lambda_{j}, \mu_{j}\right\}$ for $j=1,2, \cdots, 62$ are
Atti Accad. Pelorit. Pericol. CI. Sci. Fis. Mat. Nat., Vol. LXXXVIII, No. 2, C1A1002003 (2010) [10 pages]

$\{24,50\}$	$\{27,55\}$	$\{29,60\}$	$\{32,66\}$	$\{33,68\}$
$\{37,75\}$	$\{40,81\}$	$\{42,86\}$	$\{43,89\}$	$\{47,95\}$
$\{49,100\}$	$\{52,105\}$	$\{54,110\}$	$\{57,116\}$	$\{58,119\}$
$\{62,127\}$	$\{63,130\}$	$\{64,136\}$	$\{69,139\}$	$\{71,147\}$
$\{73,151\}$	$\{74,154\}$	$\{77,160\}$	$\{79,161\}$	$\{84,169\}$
$\{87,175\}$	$\{90,181\}$	$\{92,188\}$	$\{93,191\}$	$\{94,208\}$
$\{97,199\}$	$\{99,207\}$	$\{101,223\}$	$\{103,234\}$	$\{104,238\}$
$\{106,241\}$	$\{107,253\}$	$\{109,237\}$	$\{111,240\}$	$\{112,255\}$
$\{113,230\}$	$\{115,260\}$	$\{120,252\}$	$\{121,245\}$	$\{45,201\}$
$\{142,159\}$	$\{149,172\}$	$\{150,371\}$	$\{152,366\}$	$\{153,192\}$
$\{158,374\}$	$\{163,173\}$	$\{165,195\}$	$\{166,360\}$	$\{167,365\}$
$\{168,204\}$	$\{176,196\}$	$\{178,193\}$	$\{353,375\}$	$\{357,376\}$
$\{362,367\}$	$\{364,372\}$			

Combining Lemma $\mathbf{1 . 3}$ and Lemma $\mathbf{2 . 3}$ we have the the following results.
Theorem 2.4. There exists an ${ }^{*} L M P\left(1^{v} C_{4}\right)$ for $v \in\{7,13,19,25,31,43,67,139,163$, $211,283,307,331,379\}$.

3. A Construction of ${ }^{*} \operatorname{LMP}\left(1^{\mathrm{v}} \mathrm{C}_{4}\right)$ via 3-designs

A 3-wise balanced design is a pair (X, \mathcal{B}), where X is a finite set and \mathcal{B} is a set of subsets of X, called blocks with the property that every 3 -subset of X is contained in a unique block. If $|X|=v$ and K is the set of block sizes, we denote it by $S(3, K, v)$. Let $(X \cup\{\infty\}, \mathcal{B})$ be an $S\left(3, K_{0} \cup K_{1}, v+1\right)$ where $|X|=v .(X \cup\{\infty\}, \mathcal{B})$ is denoted by $S\left(3, K_{0}, K_{1}, v+1\right)$ if $|B| \in K_{0}$ for any $\infty \notin B \in \mathcal{B}$; and $|B| \in K_{1}$ for any $\infty \in B \in \mathcal{B}$.

An $S(3,\{k\}, v)$ is denoted by $S(3, k, v)$. An $S(3,4, v)$ is usually called a Steiner quadruple system of order v. The following results can be found in [11].

Lemma 3.1. (1) There exists an $S\left(3, q+1, q^{n}+1\right)$ for any prime power q and any integer $n \geq 2$.
(2) There exists an $S(3,4, v)$ if and only if $v \equiv 2,4(\bmod 6)$.

Theorem 3.2. If there exists an $S\left(3, K_{0}, K_{1}, v+1\right)$ and there exists an ${ }^{*} \operatorname{LMP}\left(1^{k-1} C_{4}\right)$ for any $k \in K_{1}$, and $k \equiv 2,4(\bmod 6)$ for any $k \in K_{0}$, then there exists an ${ }^{*} L M P\left(1^{v} C_{4}\right)$.
Construction: Let $\left(X \bigcup\left\{\infty_{1}\right\}, \mathcal{B}\right)$ be an $S\left(3, K_{0}, K_{1}, v+1\right)$. We will construct an ${ }^{*} \operatorname{LMP}\left(1^{v} C_{4}\right)$ on $X \cup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$ by the following two steps.

Step 1. For any $B \in \mathcal{B}, \infty_{1} \in B$ (i.e., $|B| \in K_{1}$), by the hypothesis, there exists an

$$
{ }^{*} L M P\left(1^{|B|-1} C_{4}\right)=\left\{\left(B \cup\left\{\infty_{2}, \infty_{3}, \infty_{4}\right\}, \mathcal{A}_{B}(x)\right): x \in B \backslash\left\{\infty_{1}\right\}\right\}
$$

such that each $\mathcal{A}_{B}(x)$ have edge-leave $\left(\infty_{1} \infty_{2} \infty_{3} \infty_{4}\right)$ and $\left\{\infty_{1}, \infty_{3}, x\right\}$, $\left\{\infty_{2}, \infty_{4}\right.$, $x\} \in \mathcal{A}_{B}(x)$ for $x \in B \backslash\left\{\infty_{1}\right\}$.

Step 2. For any $B \in \mathcal{B}, \infty_{1} \notin B$ (i.e., $\left.|B| \in K_{0}\right)$, there exists an $S(3,4,|B|)\left(B, \mathcal{A}_{B}\right)$ by (2) of Lemma 3.1. Let $\mathcal{A}_{B}(x)=\left\{C \backslash\{x\}: x \in C \in \mathcal{A}_{B}\right\}$.

For any $x \in X$, define

$$
\mathcal{B}_{x}=\bigcup_{x \in B \in \mathcal{B}} \mathcal{A}_{B}(x) .
$$

Then it is readily checked that the collection $\left\{\left(X \bigcup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}, \mathcal{B}_{x}\right): x \in X\right\}$ is an ${ }^{*} L M P\left(1^{v} C_{4}\right)$.

Corollary 3.3. There exists an ${ }^{*} L M P\left(1^{v} C_{4}\right)$ for $v=u^{j}$ where $j \geq 1$ and $u \in\{7,13,19$, $25,31,43,67,139,163,211,283,307,331,379\}$.

Proof It follows immediately from Lemma 3.1 and Theorem 3.2.

4. A direct product construction

In this section, we will give a direct product construction, which is actually a generalization of Theorem 3.1 of [6]. Firstly, we introduce some definitions.

Assume that $v \equiv 1(\bmod 6)$. Let $I_{v}=\{1,2, \cdots, v\}$ and $X=I_{v} \bigcup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$. Let $\left\{\left(X, \mathcal{B}_{i}\right): i \in I_{v}\right\}$ be an $\operatorname{LMP}\left(1^{v} C_{4}\right)$. The triple-leave of the $\operatorname{LMP}\left(1^{v} C_{4}\right)$ is the set of $\binom{I_{v}}{3} \backslash\left(\bigcup_{i \in I_{v}} \mathcal{B}_{i}\right)$ and denoted by $L_{T}(v)$. A simple counting shows that $\left|L_{T}(v)\right|=$ $v(v-1) / 3$.

Let ${ }^{*} \operatorname{LMP}\left(1^{v} C_{4}\right)=\left\{\left(I_{v} \bigcup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}, \mathcal{B}_{i}\right): i \in I_{v}\right\}$ with $\left\{\infty_{1}, \infty_{3}, i\right\}$, $\left\{\infty_{2}, \infty_{4}, i\right\} \in \mathcal{B}_{i}$ and each \mathcal{B}_{i} have the edge-leave $C_{4}=\left(\infty_{1} \infty_{2} \infty_{3} \infty_{4}\right)$ and tripleleave $L_{T}(v)$. Let $E_{i}=\left\{\{a, b\}: a, b \in I_{v},\left\{\infty_{l}, a, b\right\} \in \mathcal{B}_{i}, l=1,2,3,4\right\}$. A partitioned ${ }^{*} \operatorname{LMP}\left(1^{v} C_{4}\right)$ is an ${ }^{*} \operatorname{LMP}\left(1^{v} C_{4}\right)$ if the following conditions hold:
(1) E_{i} can be partitioned into E_{i}^{1}, E_{i}^{2}, such that $\left(I_{v} \backslash\{i\}, E_{i}^{1}\right)$ and $\left(I_{v} \backslash\{i\}, E_{i}^{2}\right)$ are all 2-regular graphs for $i \in I_{v}$.
(2) Given a direction for each cycle of E_{i}^{1}, we obtain a directed graph \bar{E}_{i}^{1}, such that $\bigcup_{i \in I_{v}} \bar{E}_{i}^{1}=D K_{v}\left(D K_{v}\right.$ is the complete digraph of order v) (i.e., for any ordered pair (a, b) $i \in I_{v}$
$a \neq b \in I_{v}$, there is a unique i such that $\left.(a, b) \in \bar{E}_{i}^{1}\right)$.
(3) There exists a partition $\left\{P_{1}, P_{2}, \cdots, P_{v}\right\}$ of the triple-leave $L_{T}(v)$, such that $\left|P_{i}\right|=$ $\left|P_{j}\right|, i \neq j \in I_{v}$, and P_{i} cover E_{i}^{2} (i.e., for any $\{a, b\} \in E_{i}^{2}$, there exists one block $B \in P_{i}$ such that $\{a, b\} \subset B$. Note: $\left|P_{i}\right|=\frac{v-1}{3}$ and $\left|E_{i}^{2}\right|=v-1$).
Lemma 4.1. [6] There exists a partitioned ${ }^{*} L M P\left(1^{7} C_{4}\right)$.
Theorem 4.2. If there exist both a partitioned ${ }^{*} L M P\left(1^{v} C_{4}\right)$ and an $L M P\left(1^{u} C_{4}\right)$ (or a $\left.{ }^{*} \operatorname{LMP}\left(1^{u} C_{4}\right)\right)$, then there exists an $\operatorname{LMP}\left(1^{u v} C_{4}\right)\left(\right.$ or $\left.a^{*} \operatorname{LMP}\left(1^{u v} C_{4}\right)\right)$.
Construction: Let $\left\{\left(I_{v} \bigcup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}, \mathcal{B}_{i}\right): i \in I_{v}\right\}$ be a partitioned ${ }^{*} L M P$ $\left(1^{v} C_{4}\right)$. The symbols $E_{i}^{1}, E_{i}^{2}, P_{i}, i \in I_{v}$, are the same as in the definition. And let $\operatorname{LMP}\left(1^{u} C_{4}\right)=\left\{\left(Z_{u} \bigcup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}, \mathcal{A}_{j}\right): j \in Z_{u}\right\}$. We will construct $u v$ $M P\left(1^{u v} C_{4}\right) \mathrm{s}\left(X, \mathcal{C}_{i j}\right), i \in I_{v}, j \in Z_{u}$ on $X=\left(Z_{u} \times I_{v}\right) \bigcup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}$ where $\mathcal{C}_{i j}$ consists of the following triples:

Part 1. $\{(x, i),(y, i),(z, i)\}$, where $\{x, y, z\} \in \mathcal{A}_{j}$ and $\left(\infty_{l}, i\right)=\infty_{l}, l=1,2,3,4$.
Part 2. $\left\{\left(x, k_{1}\right),\left(y, k_{2}\right),\left(z, k_{3}\right)\right\}$, where $\left\{k_{1}, k_{2}, k_{3}\right\} \in \mathcal{B}_{i}, k_{1}<k_{2}<k_{3}, k_{1}, k_{2}, k_{3} \in$ $I_{v}, x+y+z=j(\bmod u)$.

Part 3. $\left\{\left(x, k_{1}\right),\left(y, k_{1}\right),\left(\frac{x+y}{2}+j, k_{2}\right)\right\}$, where $\left(k_{1}, k_{2}\right) \in \bar{E}_{i}^{1}, x \neq y \in Z_{u}, x<y$.
Part 4. $\left\{\left(x, k_{1}\right),\left(x-y, k_{2}\right),\left(x+y+j, k_{3}\right)\right\}$, where $\left\{k_{1}, k_{2}, k_{3}\right\} \in P_{i}, k_{1}<k_{2}<k_{3}$, $x \in Z_{u}, y \in Z_{u} \backslash\{j\}$.

Part 5. $\left\{\left(x, k_{1}\right),\left(x+j, k_{2}\right), \infty_{l}\right\}$, where $\left(k_{1}, k_{2}\right) \in \bar{E}_{i}^{1}$ and $\left\{k_{1}, k_{2}, \infty_{l}\right\} \in \mathcal{B}_{i}, x \in Z_{u}$.

Part 6. $\left\{\left(x_{1}, k_{1}\right),\left(x_{2}, k_{2}\right), \infty_{l}\right\}$, where $\left\{k_{1}, k_{2}\right\} \in E_{i}^{2}, k_{1}<k_{2}$ and $\left\{k_{1}, k_{2}, \infty_{l}\right\} \in \mathcal{B}_{i}$. Let $\left\{k_{1}, k_{2}, k_{3}\right\} \in P_{i}$, then
$x_{1}=x, x_{2}=x-j$ if $k_{1}<k_{2}<k_{3}, x \in Z_{u}$;
$x_{1}=x, x_{2}=x+2 j$ if $k_{1}<k_{3}<k_{2}, x \in Z_{u}$;
$x_{1}=x-j, x_{2}=x+2 j$ if $k_{3}<k_{1}<k_{2}, x \in Z_{u}$.
Proof (1) Each $\left(X, \mathcal{C}_{i j}\right), i \in I_{v}, j \in Z_{u}$, is an $M P\left(1^{u v} C_{4}\right)$.
In fact, there are exactly

$$
\begin{aligned}
\frac{u^{2}+7 u+4}{6}+\frac{u^{2}(v-1)(v-4)}{6} & +\frac{u(u-1)(v-1)}{2^{2}}+\frac{u(u-1)(v-1)}{3}+2 u(v-1) \\
& =\frac{u^{2} v^{2}+7 u v+4}{6}
\end{aligned}
$$

blocks in each $\mathcal{C}_{i j}\left(i \in I_{v}, j \in Z_{u}\right)$. Thus, we only need to show that any 2 -subset $P \in(X \times X) \backslash C_{4}$ is contained in a block of $\mathcal{C}_{i j}$. All the possibilities of P are exhausted as follows:
(a). $P=\left\{\infty_{1}, \infty_{3}\right\}$ or $\left\{\infty_{2}, \infty_{4}\right\}$, then P is contained in one block of Part 1 of $\mathcal{C}_{i j}$.
(b). $P=\left\{(x, h), \infty_{l}\right\}, x \in Z_{u}, h \in I_{v}$. If $h=i$, since pair $\left\{x, \infty_{l}\right\}$ is contained in exactly one block B of \mathcal{A}_{j}, P is contained in one block of Part 1 of $\mathcal{C}_{i j}$. If $h \neq i$, there is an $s \in I_{v}$ such that $\left\{h, s, \infty_{l}\right\} \in \mathcal{B}_{i}$. When $\{h, s\} \in E_{i}^{1}, P$ is contained in one block of Part 5 of $\mathcal{C}_{i j}$. When $\{h, s\} \in E_{i}^{2}, P$ is contained in one block of Part 6 of $\mathcal{C}_{i j}$.
(c). $P=\{(x, h),(y, h)\}, x \neq y \in Z_{u}, h \in I_{v}$. If $h=i$, then P is contained in one block of Part 1 of $\mathcal{C}_{i j}$. If $h \neq i$, then P is contained in one block of Part 3 of $\mathcal{C}_{i j}$.
(d). $P=\{(x, h),(y, s)\}, x, y \in Z_{u}, h \neq s \in I_{v}$. There is a $t \in I_{v} \cup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty\right\}$ such that $\{h, s, t\} \in \mathcal{B}_{i}$. If $t \in I_{v}$, then P is contained in one block of Part 2 of $\mathcal{C}_{i j}$. If $t=\infty_{l}$, then when $\{h, s\} \in E_{i}^{1}, P$ is contained in one block of Part 3 or Part 5; when $\{h, s\} \in E_{i}^{2}, P$ is contained in one block of Part 4 or Part 6 of $\mathcal{C}_{i j}$.

Thus, each $\left(X, \mathcal{C}_{i j}\right), i \in I_{v}, j \in Z_{u}$, is an $M P\left(1^{u v} C_{4}\right)$.
(2). For any $(i, j) \neq(s, t), i, s \in I_{v}, j, t \in Z_{u}, \mathcal{C}_{i j}$ and $\mathcal{C}_{s t}$ are disjoint.
(a). $i \neq s$. Since $\mathcal{B}_{i} \cap \mathcal{B}_{s}=\phi, E_{i}^{n} \cap E_{s}^{n}=\phi,(n=1,2), P_{i} \cap P_{s}=\phi$, and $\left(P_{i} \cup P_{s}\right) \cap$ $\left(\mathcal{B}_{i} \cup \mathcal{B}_{s}\right)=\phi$, we have $\mathcal{C}_{i j} \cap \mathcal{C}_{s t}=\phi$.
(b). If $i=s$, then $j \neq t$. Note that $\mathcal{A}_{j} \bigcap \mathcal{A}_{t}=\phi, P_{i} \cap \mathcal{B}_{i}=\phi$,
$\left\{\{x, y, z\}: x+y+z=j, x, y, z \in Z_{u}\right\} \cap\left\{\{x, y, z\}: x+y+z=t, x, y, z \in Z_{u}\right\}=\phi$, and
$\left\{(x, x-y, x+y+j): x \in Z_{u}, y \in Z_{u} \backslash\{j\}\right\} \cap\left\{(x, x-y, x+y+t): x \in Z_{u}, y \in Z_{u} \backslash\{t\}\right\}=\phi$.
It is not difficult to check that $\mathcal{C}_{i j} \cap \mathcal{C}_{s t}=\phi$.
Remark: If $\operatorname{LMP}\left(1^{u} C_{4}\right)=\left\{\left(Z_{u} \bigcup\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\right\}, \mathcal{A}_{j}\right): j \in Z_{u}\right\}$ is an ${ }^{*} L M P$ $\left(1^{u} C_{4}\right)$, i.e. the blocks $\left\{\infty_{1}, \infty_{3}, j\right\},\left\{\infty_{2}, \infty_{4}, j\right\} \in \mathcal{A}_{j}$. Then by the construction of Theorem 4.2, we have the blocks $\left\{\infty_{1}, \infty_{3},(i, j)\right\},\left\{\infty_{2}, \infty_{4},(i, j)\right\} \in \mathcal{C}_{i j}$. Thus we get an ${ }^{*} \operatorname{LMP}\left(1^{u v} C_{4}\right)$.

5. Conclusion

Combining Corollary 2.4, Corollary 3.3, Lemma 4.1 and Theorem 4.2, we obtain the following results:

Theorem 5.1. There exists an $\operatorname{LMP}\left(1^{v} C_{4}\right)$ for $v=7^{i} u^{j}$ where $i \geq 0, j \geq 0$ and $u \in$ $\{13,19,25,31,43,67,139,163,211,283,307,331,379\}$.

Acknowledgments

The results described in this paper were presented at the Fourth Shanghai Conference on Combinatorics. This work was supported by P.R.A., P.R.I.N., and I.N.D.A.M. (G.N.S.A.G.A.).

References

[1] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, "A new table of constant weight codes", IEEE Trans. Inform. Theory 36, 1334-1380 (1990).
[2] H. Cao, J. Lei and L. Zhu, "Large sets of disjoint group-divisible designs with block size three and type $2^{n} 4^{1}$ ", J. Combin. Designs 9, 285-296 (2001).
[3] H. Cao, J. Lei and L. Zhu, "Further results on large sets of disjoint group-divisible designs with block size three and type $2^{n} 4^{1} "$, J. Combin. Designs 11, 24-35 (2003).
[4] H. Cao, J. Lei and L. Zhu, "Constructions of large sets of disjoint group-divisible designs LS $\left(2^{n} 4^{1}\right)$ using a generalization of $* \operatorname{LS}\left(2^{n}\right)$ ", to appear.
[5] D. hen, C. C. Lindner and D. R. Stinson, "Further results on large sets of disjoint group-divisible designs", Discrete Math. 110, 35-42 (1992).
[6] D. Chen, R. G. Stanton and D. R. Stinson, "Disjoint packings on $6 k+5$ points", Utilitas Mathematica 40, 129-138 (1991).
[7] D. Chen and D. R. Stinson, "Recent results on combinatorial constructions for threshold schemes", Australasian J. Combin. 1, 29-48 (1990).
[8] D. Chen and D. R. Stinson, "On the construction of large sets of disjoint group divisible designs", Ars Combinatoria 35, 103-115 (1993).
[9] T. Etzion, "Optimal partitions for triples", J. Combin. Theory (A) 59, 161-176 (1992).
[10] T. Etzion, "Partitions of triples into optimal packings", J. Combin. Theory (A) 59, 269-284 (1992).
[11] Hartman, "The fundamental constructions for 3-designs", Discrete Math. 124, 107-132 (1994).
[12] J. Lei, "Completing the spectrm for $L G D D\left(m^{v}\right)$ ", J. Combin. Designs 5, 1-11 (1997).
[13] J. X. Lu, "On large sets of disjoint Steiner triple systems I, II, and III", J. Combin. Theory (A) 34, 140-146, 147-155, and 156-182 (1983).
[14] J. X. Lu, "On large sets of disjoint Steiner triple systems IV, V, and VI", J. Combin. Theory (A) 37, 136-163, 164-188, and 189-192 (1984).
[15] P. J. Schellenberg and D. R. Stinson, "Threshold schemes from combinatorial designs", JCMCC 5, 143-160 (1989).
[16] J. Schonheim, "On maximal systems of k-tuples", Studia Sci. Math. Hung. 1, 363-368 (1966).
[17] J. Spencer, "Maximal consistent families of triples", J. Combin. Theory (A) 5, 1-8 (1968).
[18] L. Teirlinck, "A completion of Lu's determination of the spectrum of large sets of disjoint Steiner triple systems", J. Combin. Theory (A) 57, 302-305 (1991).
a Hebei Teacher's University
Institute of Mathematics
Shijiazhuang, 050016, P.R. China
$b \quad$ Beijing Jiaotong University
Department of Mathematics
Beijing, 100044, P.R. China
c Università degli Studi di Messina
Dipartimento di Matematica
Viale Ferdinando Stagno d'Alcontres, 31
Contrada Papardo
98166 Messina, Italy

* To whom correspondence should be addressed | e-mail: lofaro@unime.it

