AAPP | Atti della Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche e Naturali ISSN 1825-1242

Vol. LXXXVIII, No. 2, C1A1002003 (2010)

CONSTRUCTIONS FOR LARGE SETS OF DISJOINT COMPATIBLE PACKINGS ON 6k + 5 POINTS

JIANGUO LEI ^{*ab*}, YANXUN CHANG ^{*b*}, GIOVANNI LO FARO ^{*c**}, AND ANTOINETTE TRIPODI ^{*c*}

(Communication presented by Prof. Filippo Cammaroto)

ABSTRACT. In this paper, we give two methods to construct large sets of disjoint compatible packings $(LMP(1^vC_4))$ on 6k + 5 points. As a result, we prove that there exists an $LMP(1^vC_4)$ for $v = 7^i u^j$ where $i \ge 0, j \ge 1$ and $u \in \{13, 19, 25, 31, 43, 67, 139, 163, 211, 283, 307, 331, 379\}$.

1. Introduction

Let X be a set of v points. A (2,3)-packing on X is a pair (X, \mathcal{A}) , where \mathcal{A} is a set of 3-subsets (called *triples*) of X, such that every 2-subset of X appears in at most one triple. The *edge-leave* of a (2,3)-packing (X, \mathcal{A}) is a graph (X, E), where E consists of all the pairs which do not appear in any triple of \mathcal{A} .

A (2,3)-packing (X, \mathcal{A}) is said to be *degenerate* if there exist points that occur in no triple of \mathcal{A} . A degenerate (2,3)-packing on v points is actually a (2,3)-packing on v' points for some v' < v. Throughout this paper we restrict our attention to non-degenerate (2,3)-packings.

Two (2,3)-packings (X, \mathcal{A}) and (X, \mathcal{B}) are called *disjoint* if $\mathcal{A} \cap \mathcal{B} = \phi$. Two (2,3)-packings are called *compatible* if they have the same edge-leave. A set of more than two (2,3)-packings is called *disjoint* (*compatible*, respectively) if each pair of them is disjoint (compatible, respectively).

A (2,3)-packing (X, \mathcal{A}) is called *maximum* if there does not exist any (2,3)-packing (X, \mathcal{B}) with $|\mathcal{A}| < |\mathcal{B}|$. A maximum (2,3)-packing with edge-leave (X, E) is denoted by (2,3)-MP(E) in this paper. We usually denote (2,3)-MP(E) briefly by MP(E). When the edge-leave (X, E) is a graph without any edge, i.e. v isolated vertices, MP(E) is denoted by $MP(1^v)$. Similarly, an $MP(1^{v-4}C_4)$ denotes an maximum (2,3)-packing with edge-leave of v-4 isolated vertices and a cycle of length four. An $MP(1^v)$ is actually a Steiner triple system of order v. It is well known that an $MP(1^v)$ exists if and only if $v \equiv 1,3 \pmod{6}$. When $v \equiv 5 \pmod{6}$, an $MP(1^{v-4}C_4)$ exists in [16, 17].

Denote by M(v) the maximum number of disjoint compatible packings on v points. Determination of the number M(v) is related to the construction of perfect threshold schemes (see, for example, [7, 15]). The upper bound on M(v) is proved in [15].

Theorem 1.1. ([15]) $M(v) \le v - 2$ for $v \equiv 1, 3 \pmod{6}$; $M(v) \le v - 4$ for $v \equiv 0, 2, 5 \pmod{6}$; and $M(v) \le v - 6$ for $v \equiv 4 \pmod{6}$. Further, except when $v \equiv 4 \pmod{6}$, the upper bound is attained only if the packings are maximum.

Values of v for which M(v) meets the upper bound are summarized as follows.

Lemma 1.2. (1) For $v \equiv 1, 3 \pmod{6}$ and $v \neq 7$, M(v) = v - 2. Also M(7) = 3 ([13, 14, 18]).

(2) For $v \equiv 0, 2 \pmod{6}$, M(v) = v - 4 ([8, 5, 12]).

(3) For $(v-4)/2 \notin \{12, 36, 48, 144\} \cup \{n > 0 : n = 6m, m \equiv 1, 5 \pmod{6}\}$, M(v) = v - 6 ([2, 3, 4]).

(4) For $v \in \{7^k t + 4 : k \ge 0, t = 1, 7, 13, 19, 25, 31, 43, 67\} \cup \{11, 17, 23\}, M(v) = v - 4$ ([6, 7, 15]).

In the literature, there are several methods in constructing sets of disjoint packings which are not required to be compatible in [9, 10]. Such structures have applications to the construction of constant-weight codes [1].

For $v \equiv 5 \pmod{6}$, there exists an $MP(1^{v-4}C_4)$. If there exists a set of v - 4 disjoint compatible $MP(1^{v-4}C_4)$, then M(v) = v - 4. A set of v - 4 disjoint compatible $MP(1^{v-4}C_4)$ is thus called a *large set* and denoted by $LMP(1^{v-4}C_4)$.

Suppose that $v \equiv 1 \pmod{6}$. Let $I_v = \{1, 2, \dots, v\}$ and $X = I_v \cup \{\infty_1, \infty_2, \infty_3, \infty_4\}$. An $*LMP(1^vC_4)$ is an $LMP(1^vC_4) = \{(X, \mathcal{B}_i) : i \in I_v\}$ which satisfies the following conditions:

(1) Each $(X, \mathcal{B}_i), i \in I_v$, has the edge-leave $(\infty_1 \infty_2 \infty_3 \infty_4)$.

(2) $\{\infty_1, \infty_3, i\}, \{\infty_2, \infty_4, i\} \in \mathcal{B}_i \text{ for any } i \in I_v.$

We summarize the known results on ${}^*LMP(1^vC_4)$ as follows.

Lemma 1.3. There exists an $*LMP(1^{v}C_{4})$ for $v \in \{7, 13, 19, 25, 31, 43, 67\}$.

2. A direct way to construct ${}^{*}LMP(1^{q}C_{4})$ with prime power $q \equiv 1 \pmod{6}$

Let GF(q) be a finite field with q elements where $q \equiv 1 \pmod{6}$. Let $GF(q)^* = GF(q) \setminus \{0\}$. Let α be an element in GF(q). An α -partition of GF(q) is a partition $GF(q)^* = Y \cup Z$ such that

(a) x is never in the same class as αx , and

(b) x is never in the same class as -x.

Lemma 2.1. Let GF(q) be a finite field and t be the multiplicative order of α in $GF(q)^*$. Then GF(q) has an α -partition if and only if $t \equiv 2 \pmod{4}$.

Proof Suppose that GF(q) has an α -partition $GF(q)^* = Y \cup Z$. Without loss of generality, let $1 \in Y$. By condition (a) of α -partition, we have $\alpha^1 \in Z$, $\alpha^2 \in Y$, \cdots , $\alpha^{2i-1} \in Z$, $\alpha^{2i} \in Y$, \cdots .

Since $\alpha^t = 1 \in Y$, it implies that t is even. Let t = 2s. Note that $\alpha^s = -1$. By condition (b) of α -partition, $\alpha^s \in Z$, which implies that s is odd. Thus, $t \equiv 2 \pmod{4}$.

If $t \equiv 2 \pmod{4}$, let $\langle \alpha \rangle$ be the multiplicative sub-group of $GF(q)^*$ generated by α , and let $h_0, h_1, \dots, h_{\frac{q-1}{2}-1}$ be all the representative elements of coset classes. Define

 $Y = \{h_j \alpha^{2i} : i = 0, 1, \cdots, t/2 - 1; j = 0, 1, \cdots, (q-1)/t - 1\};\$

$$Z = \{h_j \alpha^{2i+1} : i = 0, 1, \cdots, t/2 - 1; j = 0, 1, \cdots, (q-1)/t - 1\}.$$

It is readily checked that $GF(q)^* = Y \cup Z$ is an α -partition of GF(q).

Let g be a primitive root of GF(q). Define $\log_g \beta = a$ if $g^a = \beta$. We usually write $\log_g \beta = a$ as $\log \beta = a$. In this section, we always denote n = q - 1. For any unordered pair $\{\lambda, \mu\} \subseteq Z_n \setminus \{0, n/2\}$ and $\lambda \neq \mu$, define a set $\Delta\{\lambda, \mu\}$ as follows:

$$\Delta\{\lambda,\mu\} = \left\{\pm \log \frac{g^{\lambda} - 1}{g^{\mu} - 1}, \ \pm \log \frac{g^{\lambda} - 1}{g^{\lambda} - g^{\mu}}, \ \pm \log \frac{g^{\mu} - 1}{g^{\mu} - g^{\lambda}}\right\}.$$

It is easy to see that $\Delta{\lambda, \mu} = \Delta{\mu, \lambda}$ and $0 \notin \Delta{\lambda, \mu}$. Let ${\lambda_j, \mu_j} \subseteq Z_n \setminus {0, n/2}$, $j = 1, 2, \dots, \frac{n}{6} - 1$, denote the $\frac{n}{6} - 1$ unordered pairs which satisfy the following conditions:

Con 1. All elements $\pm \lambda_j, \pm \mu_j, \pm (\lambda_j - \mu_j), j = 1, 2, \dots, \frac{n}{6} - 1$, are distinct. Let x and y be in Z_n such that

$$\left\{\pm\lambda_j, \pm\mu_j, \pm(\lambda_j-\mu_j): \ j=1,2,\cdots, \frac{n}{6}-1\right\} = Z_n \setminus \{0,\frac{n}{2}, \pm x, \pm y\}.$$

Con 2. $n / \operatorname{gcd}(n, x) \equiv n / \operatorname{gcd}(n, y) \equiv 2 \pmod{4}$.

Con 3. The six element in each $\Delta{\{\lambda_j, \mu_j\}}$ are distinct and different from 0, n/2 for any $j = 1, 2, \dots, n/6-1$; Any two $\Delta{\{\lambda_j, \mu_j\}}, \Delta{\{\lambda_k, \mu_k\}}$ are disjoint for $j \neq k \in [1, \frac{n}{6}-1]$.

Theorem 2.2. Let q be a prime power and $q \equiv 1 \pmod{6}$. If $\{\lambda_j, \mu_j\} \subseteq Z_n \setminus \{0, n/2\}$, $j = 1, 2, \dots, \frac{n}{6} - 1$ satisfy Con 1-3, then there is an $*LMP(1^qC_4)$.

Construction: Let $X = GF(q) \cup \{\infty_1, \infty_2, \infty_3, \infty_4\}$. By the assumption of Con 2, the order of g^x and g^y in $GF(q)^*$ is $n/\gcd(n, x) \equiv 2 \pmod{4}$ and $n/\gcd(n, y) \equiv 2 \pmod{4}$, respectively. By Lemma 2.1, there exist a g^x -partition $GF(q)^* = Y_1 \cup Z_1$ and a g^y -partition $GF(q)^* = Y_2 \cup Z_2$. We will construct $q \ MP(1^qC_4) \ (X, \mathcal{B}_i) \ (i \in GF(q))$ with the same edge-leave of 4-cycle $(\infty_1 \infty_2 \infty_3 \infty_4)$ where $\mathcal{B}_i = \mathcal{B}_0 + i$ and \mathcal{B}_0 consists of the following triples:

Part 1. $\{\infty_1, \infty_3, 0\}, \{\infty_2, \infty_4, 0\};$

Part 2. $\{\infty_1, z, g^x z\}$ where $z \in Y_1$, $\{\infty_2, z, g^x z\}$ where $z \in Z_1$, $\{\infty_3, z, g^y z\}$ where $z \in Y_2$, $\{\infty_4, z, g^y z\}$ where $z \in Z_2$;

Part 3. $\{0, g^k, -g^k\}$ for $k = 0, 1, \dots, n/2 - 1$;

Part 4. $\{g^k, g^{k+\lambda_j}, g^{k+\mu_j}\}$ for $k \in \mathbb{Z}_n$ and $j = 1, 2, \dots, n/6 - 1$.

Proof By Con 1 and Con 2, it is easy to check that each (X, \mathcal{B}_i) is an $MP(1^qC_4)$ with edge leave $C_4 = (\infty_1 \infty_2 \infty_3 \infty_4)$ for $i \in GF(q)$. Next we should prove that \mathcal{B}_i and \mathcal{B}_j are disjoint for $i \neq j$. It is enough to show that if $T \in \mathcal{B}_0 \cap \mathcal{B}_i$ then i = 0. We consider four cases below.

Case 1. $T = \{\infty_1, \infty_3, 0\}$, or $\{\infty_2, \infty_4, 0\}$. It is easy to see that i = 0.

Case 2. $T = \{\infty_1, z, g^x z\}$ where $z \in Y_1$. Then there exists $z' \in Y_1$ such that $T = \{\infty_1, z' + i, g^x z' + i\} \in \mathcal{B}_i$, which implies that $\{z, g^x z\} = \{z' + i, g^x z' + i\}$. So, $\pm (g^x z - z) = (g^x z' + i) - (z' + i)$ and hence $z = \pm z'$ since $g^x \neq 1$. By $z, z' \in Y_1$ and $Y_1 \cup Z_1$ is a g^x -partition of GF(q), then $z \neq -z'$. Hence z = z' which is actually i = 0. The proof is similar for the cases $T = \{\infty_2, z, g^x z\}$ where $z \in Z_1$, or $T = \{\infty_3, z, g^y z\}$ where $z \in Y_2$, or $T = \{\infty_4, z, g^y z\}$ where $z \in Z_2$.

Case 3. $T = \{0, g^k, -g^k\}$ where $k = 0, 1, \dots, n/2 - 1$. Then there exists $k' \in \{0, 1, \dots, n/2 - 1\}$ such that $T = \{i, g^{k'} + i, -g^{k'} + i\}$, or $T = \{g^{k'} + i, g^{k'+\lambda_j} + i, g^{k'+\mu_j} + i\}$ where $j \in \{1, 2, \dots, \frac{n}{6} - 1\}$. If $T = \{g^{k'} + i, g^{k'+\lambda_j} + i, g^{k'+\mu_j} + i\}$ where $j \in \{1, 2, \dots, \frac{n}{6} - 1\}$. Without loss of generality we can assume that $g^{k'} + i = 0$, then $i = -g^{k'}$. So, we have $(g^{k'+\lambda_j} + i)/(g^{k'+\mu_j} + i) = g^k/(-g^k) = -1$, which implies that $\log[(g^{\lambda_j} - 1)/(g^{\mu_j} - 1)] = n/2$. Hence, $n/2 \in \Delta\{\lambda_j, \mu_j\}$ which is impossible by Con 3. Hence we must have $T = \{i, g^{k'} + i, -g^{k'} + i\}$, summing the elements in both sides gives 3i = 0 and so i = 0.

Case 4. $T = \{g^k, g^{k+\lambda}, g^{k+\mu}\}$ where $k \in Z_n$ and $\{\lambda, \mu\}$ is a pair among $\{\{\lambda_j, \mu_j\} : j = 1, 2, \dots, \frac{n}{6} - 1\}$. Then there exist $k' \in Z_n$ and a pair $\{a, b\}$ belonging to $\{\{\lambda_j, \mu_j\} : j = 1, 2, \dots, \frac{n}{6} - 1\}$ which satisfy that

$$\{g^k, g^{k+\lambda}, g^{k+\mu}\} = \{g^{k'} + i, g^{k'+a} + i, g^{k'+b} + i\}.$$
(2.1)

Without loss of generality we can assume that $g^k = g^{k'} + i$. Then the second and third elements minus the first one in both-sides of (2.1) gives $\{g^k(g^{\lambda}-1), g^k(g^{\mu}-1)\} = \{g^{k'}(g^a-1), g^{k'}(g^b-1)\}$. So, $\log[(g^{\lambda}-1)/(g^{\mu}-1)] = \pm \log[(g^a-1)/(g^b-1)]$. By the hypothesis of Con. 3 we have $\{\lambda, \mu\} = \{a, b\}$ and then (2.1) becomes

$$\{g^k, g^{k+\lambda}, g^{k+\mu}\} = \{g^{k'} + i, g^{k'+\lambda} + i, g^{k'+\mu} + i\}.$$
(2.2)

Note that the sum of the 2nd and 3rd-elements minus 2 times of the first one should be equal in both-sides of (2.2). Simplification gives $g^k(g^{\lambda} + g^{\mu} - 2) = g^{k'}(g^{\lambda} + g^{\mu} - 2)$. Since $\log[(g^{\lambda} - 1)/(g^{\mu} - 1)] \neq n/2$, we can deduce that $g^{\lambda} + g^{\mu} - 2 \neq 0$. So, $g^k = g^{k'}$. Summing the 3 elements in both-sides of (2.2) gives 3i = 0 and hence i = 0.

Therefore, $\{(X, \mathcal{B}_i : i \in GF(q)\}$ forms an $*LMP(1^qC_4)$. This completes the proof. \Box

Lemma 2.3. There exists an ${}^{*}LMP(1{}^{q}C_{4})$ for q = 139, 163, 211, 283, 307, 331, 379.

Proof Let g be a primitive root in GF(q). For each value of q, with the aid of computer, we found n/6 - 1 pairs $\{\lambda_j, \mu_j\}, j = 1, 2, \dots, n/6 - 1$, and x, y for which Con 1-3 hold. By Theorem 2.2, there exists an $*LMP(1^qC_4)$.

q = 139: $g = 2, x = 1$,	$y = 67, \{\lambda_j$	$\{, \mu_j\}$ for $j =$	$= 1, 2, \cdots,$	22 are		
$\{2,5\}$	$\{4, 10\}$	$\{7, 16\}$	$\{8, 19\}$	$\{12, 25\}$		
$\{14, 29\}$	$\{17, 35\}$	$\{20, 41\}$	$\{22, 62\}$	$\{23, 72\}$		
$\{24, 83\}$	$\{26, 90\}$	$\{27, 87\}$	$\{28, 73\}$	$\{30, 91\}$		
$\{31, 84\}$	$\{32, 88\}$	$\{33, 101\}$	$\{34, 80\}$	$\{36, 75\}$		
$\{38, 81\}$	$\{42, 86\}$					
$q = 163: g = 2, x = 1, y = 3, \{\lambda_j, \mu_j\}$ for $j = 1, 2, \dots, 26$ are						
$\{19, 40\}$	$\{22, 46\}$	$\{23, 49\}$	$\{27, 55\}$	$\{29, 59\}$		
$\{32, 65\}$	$\{35,71\}$	$\{37, 75\}$	$\{39, 80\}$	$\{42, 89\}$		
$\{43, 88\}$	$\{44, 100\}$	$\{48, 111\}$	$\{14, 25\}$	$\{15, 76\}$		
$\{16, 34\}$	$\{17, 85\}$	$\{20, 92\}$	$\{31, 95\}$	$\{50, 104\}$		
$\{52, 57\}$	$\{53, 155\}$	$\{66, 150\}$	$\{69, 79\}$	$\{149, 158$		
$\{154, 156\}$						

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. LXXXVIII, No. 2, C1A1002003 (2010) [10 pages]

}

 $q = 211: g = 2, x = 1, y = 9, \{\lambda_i, \mu_i\}$ for $j = 1, 2, \dots, 34$ are $\{22, 45\}$ $\{24, 50\}$ $\{27, 55\}$ $\{29, 61\}$ $\{31, 64\}$ $\{34, 69\}$ $\{37, 77\}$ $\{38, 79\}$ $\{42, 86\}$ $\{43, 89\}$ $\{47, 96\}$ $\{48, 110\}$ $\{51, 122\}$ $\{52, 126\}$ $\{53, 111\}$ $\{54, 129\}$ $\{56, 132\}$ $\{57, 127\}$ $\{59, 144\}$ $\{60, 203\}$ $\{21, 115\}$ $\{25, 36\}$ $\{30, 147\}$ $\{39, 119\}$ $\{65, 73\}$ $\{68, 206\}$ $\{82, 190\}$ $\{87, 97\}$ $\{90, 104\}$ $\{92, 193\}$ $\{98, 205\}$ $\{191, 204\}$ $\{192, 208\}$ $\{195, 198\}$ q = 283: $g = 3, x = 1, y = 11, \{\lambda_i, \mu_i\}$ for $j = 1, 2, \dots, 46$ are $\{24, 50\}$ $\{27, 56\}$ $\{28, 59\}$ $\{32, 65\}$ $\{34, 70\}$ $\{42, 85\}$ $\{47, 96\}$ $\{37, 75\}$ $\{39, 80\}$ $\{44, 90\}$ $\{48, 99\}$ $\{52, 105\}$ $\{54, 109\}$ $\{57, 115\}$ $\{60, 123\}$ $\{61, 125\}$ $\{62, 129\}$ $\{66, 134\}$ $\{69, 143\}$ $\{71, 171\}$ $\{72, 179\}$ $\{73, 164\}$ $\{76, 174\}$ $\{77, 198\}$ $\{78, 172\}$ $\{79, 180\}$ $\{81, 169\}$ $\{82, 196\}$ $\{83, 178\}$ $\{87, 193\}$ $\{92, 252\}$ $\{35, 277\}$ $\{45, 189\}$ $\{97, 267\}$ $\{116, 261\}$ $\{117, 280\}$ $\{120, 132\}$ $\{124, 131\}$ $\{126, 142\}$ $\{127, 136\}$ $\{128, 147\}$ $\{130, 133\}$ $\{257, 274\}$ $\{259, 269\}$ $\{260, 278\}$ $\{262, 268\}$ q = 307: $g = 5, x = 1, y = 5, \{\lambda_i, \mu_i\}$ for $j = 1, 2, \dots, 50$ are $\{28, 60\}$ $\{33, 70\}$ $\{24, 50\}$ $\{27, 56\}$ $\{31, 67\}$ $\{34, 72\}$ $\{39, 81\}$ $\{41, 84\}$ $\{44, 92\}$ $\{46, 99\}$ $\{47, 98\}$ $\{54, 112\}$ $\{55, 118\}$ $\{57, 116\}$ $\{49, 101\}$ $\{61, 125\}$ $\{62, 127\}$ $\{66, 143\}$ $\{68, 137\}$ $\{71, 145\}$ $\{73, 148\}$ $\{76, 154\}$ $\{79, 172\}$ $\{80, 186\}$ $\{82, 176\}$ $\{83, 197\}$ $\{85, 206\}$ $\{86, 201\}$ $\{87, 204\}$ $\{88, 196\}$ $\{90, 187\}$ $\{91, 261\}$ $\{35, 138\}$ $\{40, 195\}$ $\{89, 184\}$ $\{96, 276\}$ $\{104, 113\}$ $\{107, 128\}$ $\{123, 141\}$ $\{124, 283\}$ $\{129, 146\}$ $\{131, 302\}$ $\{132, 296\}$ $\{133, 300\}$ $\{140, 284\}$ $\{281, 295\}$ $\{286, 298\}$ $\{287, 290\}$ $\{149, 299\}$ $\{291, 293\}$ q = 331: $g = 3, x = 1, y = 7, \{\lambda_j, \mu_j\}$ for $j = 1, 2, \dots, 54$ are $\{29, 62\}$ $\{23, 49\}$ $\{27, 55\}$ $\{31, 63\}$ $\{34, 70\}$ $\{37, 75\}$ $\{39, 79\}$ $\{42, 86\}$ $\{43, 90\}$ $\{46, 94\}$ $\{50, 101\}$ $\{52, 106\}$ $\{53, 111\}$ $\{56, 113\}$ $\{59, 123\}$ $\{65, 131\}$ $\{67, 139\}$ $\{71, 145\}$ $\{60, 121\}$ $\{68, 137\}$ $\{73, 150\}$ $\{76, 154\}$ $\{80, 162\}$ $\{81, 164\}$ $\{84, 171\}$ $\{85, 183\}$ $\{88, 184\}$ $\{91, 206\}$ $\{92, 218\}$ $\{89, 194\}$ $\{93, 212\}$ $\{95, 223\}$ $\{97, 201\}$ $\{99, 221\}$ $\{100, 216\}$ $\{102, 210\}$ $\{125, 140\}$ $\{103, 285\}$ $\{41, 158\}$ $\{110, 130\}$ $\{127, 314\}$ $\{132, 135\}$ $\{133, 306\}$ $\{134, 138\}$ $\{141, 316\}$ $\{142, 320\}$ $\{144, 149\}$ $\{151, 160\}$ $\{153, 309\}$ $\{161, 163\}$ $\{300, 311\}$ $\{305, 322\}$ $\{312, 318\}$ $\{295, 308\}$ q = 379: $q = 2, x = 1, y = 9, \{\lambda_i, \mu_i\}$ for $j = 1, 2, \dots, 62$ are

$\{24, 50\}$	$\{27, 55\}$	$\{29, 60\}$	$\{32, 66\}$	$\{33, 68\}$
$\{37, 75\}$	$\{40, 81\}$	$\{42, 86\}$	$\{43, 89\}$	$\{47, 95\}$
$\{49, 100\}$	$\{52, 105\}$	$\{54, 110\}$	$\{57, 116\}$	$\{58, 119\}$
$\{62, 127\}$	$\{63, 130\}$	$\{64, 136\}$	$\{69, 139\}$	$\{71, 147\}$
$\{73, 151\}$	$\{74, 154\}$	$\{77, 160\}$	$\{79, 161\}$	$\{84, 169\}$
$\{87, 175\}$	$\{90, 181\}$	$\{92, 188\}$	$\{93, 191\}$	$\{94, 208\}$
$\{97, 199\}$	$\{99, 207\}$	$\{101, 223\}$	$\{103, 234\}$	$\{104, 238\}$
$\{106, 241\}$	$\{107, 253\}$	$\{109, 237\}$	$\{111, 240\}$	$\{112, 255\}$
$\{113, 230\}$	$\{115, 260\}$	$\{120, 252\}$	$\{121, 245\}$	$\{45, 201\}$
$\{142, 159\}$	$\{149, 172\}$	$\{150, 371\}$	$\{152, 366\}$	$\{153, 192\}$
$\{158, 374\}$	$\{163, 173\}$	$\{165, 195\}$	$\{166, 360\}$	$\{167, 365\}$
$\{168, 204\}$	$\{176, 196\}$	$\{178, 193\}$	$\{353, 375\}$	$\{357, 376\}$
$\{362, 367\}$	$\{364, 372\}$			

Combining Lemma 1.3 and Lemma 2.3 we have the following results.

Theorem 2.4. There exists an $*LMP(1^{v}C_{4})$ for $v \in \{7, 13, 19, 25, 31, 43, 67, 139, 163, 211, 283, 307, 331, 379\}.$

3. A Construction of *LMP(1^vC₄) via 3-designs

A 3-wise balanced design is a pair (X, \mathcal{B}) , where X is a finite set and \mathcal{B} is a set of subsets of X, called *blocks* with the property that every 3-subset of X is contained in a unique block. If |X| = v and K is the set of block sizes, we denote it by S(3, K, v). Let $(X \cup \{\infty\}, \mathcal{B})$ be an $S(3, K_0 \cup K_1, v + 1)$ where |X| = v. $(X \cup \{\infty\}, \mathcal{B})$ is denoted by $S(3, K_0, K_1, v + 1)$ if $|B| \in K_0$ for any $\infty \notin B \in \mathcal{B}$; and $|B| \in K_1$ for any $\infty \in B \in \mathcal{B}$.

An $S(3, \{k\}, v)$ is denoted by S(3, k, v). An S(3, 4, v) is usually called a Steiner quadruple system of order v. The following results can be found in [11].

Lemma 3.1. (1) There exists an $S(3, q+1, q^n+1)$ for any prime power q and any integer $n \ge 2$.

(2) There exists an S(3, 4, v) if and only if $v \equiv 2, 4 \pmod{6}$.

Theorem 3.2. If there exists an $S(3, K_0, K_1, v + 1)$ and there exists an $*LMP(1^{k-1}C_4)$ for any $k \in K_1$, and $k \equiv 2, 4 \pmod{6}$ for any $k \in K_0$, then there exists an $*LMP(1^vC_4)$.

Construction: Let $(X \bigcup \{\infty_1\}, \mathcal{B})$ be an $S(3, K_0, K_1, v + 1)$. We will construct an ${}^*LMP(1^vC_4)$ on $X \cup \{\infty_1, \infty_2, \infty_3, \infty_4\}$ by the following two steps.

Step 1. For any $B \in \mathcal{B}, \infty_1 \in B$ (i.e., $|B| \in K_1$), by the hypothesis, there exists an

$$^{*}LMP(1^{|B|-1}C_{4}) = \{ (B \cup \{\infty_{2}, \infty_{3}, \infty_{4}\}, \mathcal{A}_{B}(x)) : x \in B \setminus \{\infty_{1}\} \}$$

such that each $\mathcal{A}_B(x)$ have edge-leave $(\infty_1 \ \infty_2 \ \infty_3 \ \infty_4)$ and $\{\infty_1, \infty_3, x\}$, $\{\infty_2, \infty_4, x\} \in \mathcal{A}_B(x)$ for $x \in B \setminus \{\infty_1\}$.

Step 2. For any $B \in \mathcal{B}$, $\infty_1 \notin B$ (i.e., $|B| \in K_0$), there exists an S(3, 4, |B|) (B, \mathcal{A}_B) by (2) of Lemma 3.1. Let $\mathcal{A}_B(x) = \{C \setminus \{x\} : x \in C \in \mathcal{A}_B\}.$

For any $x \in X$, define

$$\mathcal{B}_x = \bigcup_{x \in B \in \mathcal{B}} \mathcal{A}_B(x).$$

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. LXXXVIII, No. 2, C1A1002003 (2010) [10 pages]

J. LEI ET AL.

C1A1002003-7

Then it is readily checked that the collection $\{(X \bigcup \{\infty_1, \infty_2, \infty_3, \infty_4\}, \mathcal{B}_x) : x \in X\}$ is an $*LMP(1^vC_4)$.

Corollary 3.3. There exists an $*LMP(1^vC_4)$ for $v = u^j$ where $j \ge 1$ and $u \in \{7, 13, 19, 25, 31, 43, 67, 139, 163, 211, 283, 307, 331, 379\}.$

Proof It follows immediately from Lemma **3.1** and Theorem **3.2**.

4. A direct product construction

In this section, we will give a direct product construction, which is actually a generalization of Theorem 3.1 of [6]. Firstly, we introduce some definitions.

Assume that $v \equiv 1 \pmod{6}$. Let $I_v = \{1, 2, \dots, v\}$ and $X = I_v \bigcup \{\infty_1, \infty_2, \infty_3, \infty_4\}$. Let $\{(X, \mathcal{B}_i) : i \in I_v\}$ be an $LMP(1^vC_4)$. The triple-leave of the $LMP(1^vC_4)$ is the set of $\binom{I_v}{3} \setminus (\bigcup_{i \in I_v} \mathcal{B}_i)$ and denoted by $L_T(v)$. A simple counting shows that $|L_T(v)| = v(v-1)/2$

v(v-1)/3.

Let ${}^{*}LMP(1^{v}C_{4}) = \{(I_{v} \bigcup \{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\}, \mathcal{B}_{i}) : i \in I_{v}\}$ with $\{\infty_{1}, \infty_{3}, i\}, \{\infty_{2}, \infty_{4}, i\} \in \mathcal{B}_{i}$ and each \mathcal{B}_{i} have the edge-leave $C_{4} = (\infty_{1} \infty_{2} \infty_{3} \infty_{4})$ and triple-leave $L_{T}(v)$. Let $E_{i} = \{\{a, b\} : a, b \in I_{v}, \{\infty_{l}, a, b\} \in \mathcal{B}_{i}, l = 1, 2, 3, 4\}$. A partitioned ${}^{*}LMP(1^{v}C_{4})$ is an ${}^{*}LMP(1^{v}C_{4})$ if the following conditions hold:

(1) E_i can be partitioned into E_i^1 , E_i^2 , such that $(I_v \setminus \{i\}, E_i^1)$ and $(I_v \setminus \{i\}, E_i^2)$ are all 2-regular graphs for $i \in I_v$.

(2) Given a direction for each cycle of E_i^1 , we obtain a directed graph \bar{E}_i^1 , such that $\bigcup_{i \in I_v} \bar{E}_i^1 = DK_v (DK_v \text{ is the complete digraph of order } v)$ (i.e., for any ordered pair (a, b)

 $a \neq b \in I_v$, there is a unique *i* such that $(a, b) \in E_i^1$).

(3) There exists a partition $\{P_1, P_2, \dots, P_v\}$ of the triple-leave $L_T(v)$, such that $|P_i| = |P_j|, i \neq j \in I_v$, and P_i cover E_i^2 (i.e., for any $\{a, b\} \in E_i^2$, there exists one block $B \in P_i$ such that $\{a, b\} \subset B$. Note: $|P_i| = \frac{v-1}{3}$ and $|E_i^2| = v - 1$).

Lemma 4.1. [6] There exists a partitioned $*LMP(1^7C_4)$.

Theorem 4.2. If there exist both a partitioned $*LMP(1^vC_4)$ and an $LMP(1^uC_4)$ (or a $*LMP(1^uC_4)$), then there exists an $LMP(1^{uv}C_4)$ (or a $*LMP(1^{uv}C_4)$).

Construction: Let $\{(I_v \bigcup \{\infty_1, \infty_2, \infty_3, \infty_4\}, \mathcal{B}_i) : i \in I_v\}$ be a partitioned **LMP* (1^vC_4) . The symbols $E_i^1, E_i^2, P_i, i \in I_v$, are the same as in the definition. And let $LMP(1^uC_4) = \{(Z_u \bigcup \{\infty_1, \infty_2, \infty_3, \infty_4\}, \mathcal{A}_j) : j \in Z_u\}$. We will construct $uv MP(1^{uv}C_4)$ s $(X, \mathcal{C}_{ij}), i \in I_v, j \in Z_u$ on $X = (Z_u \times I_v) \bigcup \{\infty_1, \infty_2, \infty_3, \infty_4\}$ where \mathcal{C}_{ij} consists of the following triples:

Part 1. $\{(x, i), (y, i), (z, i)\}$, where $\{x, y, z\} \in A_j$ and $(\infty_l, i) = \infty_l, l = 1, 2, 3, 4$. Part 2. $\{(x, k_1), (y, k_2), (z, k_3)\}$, where $\{k_1, k_2, k_3\} \in B_i, k_1 < k_2 < k_3, k_1, k_2, k_3 \in I_v, x + y + z = j \pmod{u}$.

Part 3. $\{(x, k_1), (y, k_1), (\frac{x+y}{2} + j, k_2)\}$, where $(k_1, k_2) \in \overline{E}_i^1, x \neq y \in Z_u, x < y$. Part 4. $\{(x, k_1), (x - y, k_2), (x + y + j, k_3)\}$, where $\{k_1, k_2, k_3\} \in P_i, k_1 < k_2 < k_3, x \in Z_u, y \in Z_u \setminus \{j\}$.

Part 5. $\{(x, k_1), (x+j, k_2), \infty_l\}$, where $(k_1, k_2) \in \bar{E}_i^1$ and $\{k_1, k_2, \infty_l\} \in \mathcal{B}_i, x \in Z_u$.

Part 6. $\{(x_1, k_1), (x_2, k_2), \infty_l\}$, where $\{k_1, k_2\} \in E_i^2$, $k_1 < k_2$ and $\{k_1, k_2, \infty_l\} \in \mathcal{B}_i$. Let $\{k_1, k_2, k_3\} \in P_i$, then

 $\begin{array}{l} x_1 = x, x_2 = x - j \text{ if } k_1 < k_2 < k_3, x \in Z_u; \\ x_1 = x, x_2 = x + 2j \text{ if } k_1 < k_3 < k_2, x \in Z_u; \\ x_1 = x - j, x_2 = x + 2j \text{ if } k_3 < k_1 < k_2, x \in Z_u. \end{array}$ **Proof** (1) Each $(X, \mathcal{C}_{ij}), i \in I_v, j \in Z_u$, is an $MP(1^{uv}C_4)$.

In fact, there are exactly

$$\frac{\frac{u^2+7u+4}{6} + \frac{u^2(v-1)(v-4)}{6} + \frac{u(u-1)(v-1)}{2} + \frac{u(u-1)(v-1)}{3} + 2u(v-1)}{\frac{u^2v^2+7uv+4}{6}}$$

blocks in each C_{ij} $(i \in I_v, j \in Z_u)$. Thus, we only need to show that any 2-subset $P \in (X \times X) \setminus C_4$ is contained in a block of C_{ij} . All the possibilities of P are exhausted as follows:

(a). $P = \{\infty_1, \infty_3\}$ or $\{\infty_2, \infty_4\}$, then P is contained in one block of Part 1 of C_{ij} .

(b). $P = \{(x, h), \infty_l\}, x \in Z_u, h \in I_v$. If h = i, since pair $\{x, \infty_l\}$ is contained in exactly one block B of \mathcal{A}_j , P is contained in one block of Part 1 of \mathcal{C}_{ij} . If $h \neq i$, there is an $s \in I_v$ such that $\{h, s, \infty_l\} \in \mathcal{B}_i$. When $\{h, s\} \in E_i^1$, P is contained in one block of Part 5 of \mathcal{C}_{ij} . When $\{h, s\} \in E_i^2$, P is contained in one block of Part 6 of \mathcal{C}_{ij} .

(c). $P = \{(x,h), (y,h)\}, x \neq y \in Z_u, h \in I_v$. If h = i, then P is contained in one block of Part 1 of C_{ij} . If $h \neq i$, then P is contained in one block of Part 3 of C_{ij} .

(d). $P = \{(x,h), (y,s)\}, x, y \in Z_u, h \neq s \in I_v$. There is a $t \in I_v \cup \{\infty_1, \infty_2, \infty_3, \infty\}$ such that $\{h, s, t\} \in \mathcal{B}_i$. If $t \in I_v$, then P is contained in one block of Part 2 of \mathcal{C}_{ij} . If $t = \infty_l$, then when $\{h, s\} \in E_i^1$, P is contained in one block of Part 3 or Part 5; when $\{h, s\} \in E_i^2$, P is contained in one block of Part 4 or Part 6 of \mathcal{C}_{ij} .

Thus, each $(X, \mathcal{C}_{ij}), i \in I_v, j \in Z_u$, is an $MP(1^{uv}C_4)$.

(2). For any $(i, j) \neq (s, t), i, s \in I_v, j, t \in Z_u, C_{ij}$ and C_{st} are disjoint.

(a). $i \neq s$. Since $\mathcal{B}_i \cap \mathcal{B}_s = \phi$, $E_i^n \cap E_s^n = \phi$, (n = 1, 2), $P_i \cap P_s = \phi$, and $(P_i \cup P_s) \cap (\mathcal{B}_i \cup \mathcal{B}_s) = \phi$, we have $\mathcal{C}_{ij} \cap \mathcal{C}_{st} = \phi$.

(b). If i = s, then $j \neq t$. Note that $\mathcal{A}_j \cap \mathcal{A}_t = \phi$, $P_i \cap \mathcal{B}_i = \phi$,

$$\{\{x, y, z\}: x + y + z = j, x, y, z \in Z_u\} \cap \{\{x, y, z\}: x + y + z = t, x, y, z \in Z_u\} = \phi,$$

and

$$\{(x, x-y, x+y+j) : x \in Z_u, y \in Z_u \setminus \{j\}\} \cap \{(x, x-y, x+y+t) : x \in Z_u, y \in Z_u \setminus \{t\}\} = \phi_{x, y} \in \{x, y, y \in Z_u \setminus \{t\}\} = \phi_{x, y} \in \{x, y, y \in Z_u \setminus \{t\}\}$$

It is not difficult to check that $C_{ij} \bigcap C_{st} = \phi$.

Remark: If $LMP(1^{u}C_{4}) = \{(Z_{u} \bigcup \{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}\}, \mathcal{A}_{j}) : j \in Z_{u}\}$ is an $*LMP(1^{u}C_{4})$, i.e. the blocks $\{\infty_{1}, \infty_{3}, j\}, \{\infty_{2}, \infty_{4}, j\} \in \mathcal{A}_{j}$. Then by the construction of Theorem 4.2, we have the blocks $\{\infty_{1}, \infty_{3}, (i, j)\}, \{\infty_{2}, \infty_{4}, (i, j)\} \in \mathcal{C}_{ij}$. Thus we get an $*LMP(1^{uv}C_{4})$.

5. Conclusion

Combining Corollary **2.4**, Corollary **3.3**, Lemma **4.1** and Theorem **4.2**, we obtain the following results:

Theorem 5.1. There exists an $LMP(1^vC_4)$ for $v = 7^i u^j$ where $i \ge 0, j \ge 0$ and $u \in \{13, 19, 25, 31, 43, 67, 139, 163, 211, 283, 307, 331, 379\}.$

Acknowledgments

The results described in this paper were presented at the Fourth Shanghai Conference on Combinatorics. This work was supported by P.R.A., P.R.I.N., and I.N.D.A.M. (G.N.S.A.G.A.).

References

- [1] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, "A new table of constant weight codes", *IEEE Trans. Inform. Theory* **36**, 1334-1380 (1990).
- [2] H. Cao, J. Lei and L. Zhu, "Large sets of disjoint group-divisible designs with block size three and type $2^n 4^{1n}$, J. Combin. Designs 9, 285-296 (2001).
- [3] H. Cao, J. Lei and L. Zhu, "Further results on large sets of disjoint group-divisible designs with block size three and type $2^n 4^{1n}$, J. Combin. Designs 11, 24-35 (2003).
- [4] H. Cao, J. Lei and L. Zhu, "Constructions of large sets of disjoint group-divisible designs $LS(2^n 4^1)$ using a generalization of $*LS(2^n)$ ", to appear.
- [5] D. hen, C. C. Lindner and D. R. Stinson, "Further results on large sets of disjoint group-divisible designs", *Discrete Math.* **110**, 35-42 (1992).
- [6] D. Chen, R. G. Stanton and D. R. Stinson, "Disjoint packings on 6k + 5 points", *Utilitas Mathematica* **40**, 129-138 (1991).
- [7] D. Chen and D. R. Stinson, "Recent results on combinatorial constructions for threshold schemes", *Australasian J. Combin.* **1**, 29-48 (1990).
- [8] D. Chen and D. R. Stinson, "On the construction of large sets of disjoint group divisible designs", Ars Combinatoria 35, 103-115 (1993).
- [9] T. Etzion, "Optimal partitions for triples", J. Combin. Theory (A) 59, 161-176 (1992).
- [10] T. Etzion, "Partitions of triples into optimal packings", J. Combin. Theory (A) 59, 269-284 (1992).
- [11] Hartman, "The fundamental constructions for 3-designs", Discrete Math. 124, 107-132 (1994).
- [12] J. Lei, "Completing the spectrm for $LGDD(m^v)$ ", J. Combin. Designs 5, 1-11 (1997).
- [13] J. X. Lu, "On large sets of disjoint Steiner triple systems I, II, and III", J. Combin. Theory (A) 34, 140-146, 147-155, and 156-182 (1983).
- [14] J. X. Lu, "On large sets of disjoint Steiner triple systems IV, V, and VI", J. Combin. Theory (A) **37**, 136-163, 164-188, and 189-192 (1984).
- [15] P. J. Schellenberg and D. R. Stinson, "Threshold schemes from combinatorial designs", *JCMCC* 5, 143-160 (1989).
- [16] J. Schonheim, "On maximal systems of k-tuples", Studia Sci. Math. Hung. 1, 363-368 (1966).
- [17] J. Spencer, "Maximal consistent families of triples", J. Combin. Theory (A) 5, 1-8 (1968).
- [18] L. Teirlinck, "A completion of Lu's determination of the spectrum of large sets of disjoint Steiner triple systems", *J. Combin. Theory (A)* **57**, 302-305 (1991).

- ^a Hebei Teacher's University Institute of Mathematics Shijiazhuang, 050016, P.R. China
- ^b Beijing Jiaotong University Department of Mathematics Beijing, 100044, P.R. China
- ^c Università degli Studi di Messina Dipartimento di Matematica Viale Ferdinando Stagno d'Alcontres, 31 Contrada Papardo 98166 Messina, Italy
- * To whom correspondence should be addressed | e-mail: lofaro@unime.it

Presented 25 November 2009; published online 17 September 2010

© 2010 by the Author(s); licensee Accademia Peloritana dei Pericolanti, Messina, Italy. This article is an open access article, licensed under a Creative Commons Attribution 3.0 Unported License.