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AN ALGORITHM FOR PAYOFF SPACE IN C1-GAMES

DAVID CARFÌ a∗ AND ANGELA RICCIARDELLO b

ABSTRACT. In this paper we present an algorithm implemented by MATLAB, and several
examples completely realized by this algorithm, based on a method developed by one of
the authors to determine the payoff-space of certain normal-form C1-games. Specifically,
our study is based on a method able to determine the payoff space of normal form C1-
games in n dimensions, that is for n-players normal form games whose payoff functions
are defined on compact intervals of the real line and of class at least C1. In this paper
we will determine the payoff space of such normal form C1-games in the particular case
of two dimensions. The implementation of the algorithm gives the parametric form of the
critical zone of a game in the bistrategy space and in the payoff space and their graphical
representations. Moreover, we obtain the parametric form of the transformation of the
topological boundary of the bistrategy space and of the transformation of the critical zone.
The final aim of the program is to plot the entire payoff space of the considered games.
One of the main motivations of our paper is that the mixed extension of a bimatrix game -
the most used in the application of Game Theory - is a game of the type considered. For
this reason we realized an algorithm that produces the payoff space and the critical zone of
a game in normal form supported by a finite family of compact intervals of the real line.
Resuming in details, the algorithm returns: the parametric form of the critical zone; the
parametric form of the transformation of the topological boundary of the bistrategy space;
the parametric form of the transformation of the critical zone. All of them are graphically
represented. To prove the efficiency of the algorithm, we show several examples. Our final
goal is to provide a valuable tool to study simply but completely normal form C1-games
in two dimensions.

1. Introduction

Often in Game Theory the study of a normal-form game consists principally in the de-
termination of the Nash equilibria in mixed strategies and in the analysis of their various
stability properties (see, for instance, Refs. [1], [2], and [3]). Others feel the need to know
the entire set of possibilities (consequences) of the players actions, what we call the payoff
space of the game; moreover, they introduce other forms of non-cooperative solutions such
as the pairs of conservative strategies [4, 5]. Nevertheless, only recently Carfı̀ proposed a
method to determine analytically the topological boundary of the payoff space and conse-
quently to handle more consciously and precisely the entire payoff space [6]. This method
gives a complete and global view of the game, since, for instance, it allows to know the
positions of the payoff profiles corresponding to the Nash equilibria in the payoff space
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of the game or the position of the conservative n-value of the game. The knowledge of
these positions requires, indeed, the knowledge of the entire payoff space. Moreover, the
knowledge of the entire payoff space becomes indispensable when the problem to solve
in the game is a bargaining one: in fact, the determination of a bargaining solution (or of
compromise solutions) needs the analytical determination of the Pareto boundaries or at
least of the topological one [7]. In Ref. [6] Carfı̀ presented a general method to find an ex-
plicit expression of the topological boundary of the payoff-space of a Game and this latter
boundary contains the two Pareto boundaries of the game.

2. Preliminaries and notations

For the ease of the reader we recall some basic notions of Game Theory. We shall
consider n-person games in normal form. The form of definition we will give is particu-
larly interesting since it is nothing but the definition of a specific differentiable parametric
ordered submanifold of the Euclidean space.

Games in normal form. Let E = (Ei)
n
i=1 be a finite ordered family of non-empty sets.

We call n-person game in normal form upon the support E each pair G = (f,R), where
f is a function of the cartesian product ×E of the family E into the Euclidean space Rn

and R is one of the two natural orders (≤ or ≥) of the real n-dimensional Euclidean space
Rn. By ×E we mean the cartesian product ×n

i=1Ei of the finite family E. The set Ei is
called the strategy set of player i, for every index i of the family E, and the product ×E
is called the strategy profile space, or the n-strategy space, of the game. The set {i}ni=1 of
the first n positive integers is said the set of players of the game G; each element of the
cartesian product ×E is said a strategy profile of the game; the image of the function f ,
i.e., the set of all real n-vectors of type f(x), with x in the strategy profile space ×E, is
called the n-payoff space, or simply the payoff space, of the game f .

Pareto boundaries. The Pareto maximal boundary of a game G = (f,R) is the subset
of the n-strategy space of those n-strategies x such that the corresponding payoff f(x)
is maximal in the n-payoff space, with respect to the usual order R of the euclidean n-
space Rn. We shall denote the maximal boundary of the n-payoff space by ∂f(S) and
the maximal boundary of the game by ∂f (S) or by ∂(G). In other terms, the maximal
boundary ∂f (S) of the game is the reciprocal image (by the function f ) of the maximal
boundary of the payoff space f(S). We shall use analogous terminologies and notations
for the minimal Pareto boundary (for an introduction to Pareto boundaries see Ref. [8]).

The method. We deal with a type of normal form game G = (f,R) defined on the
product of n compact non-degenerate intervals of the real line R, and such that the payoff
function f is the restriction to the n-strategy space of a C1 -function defined on an open
set of the Euclidean space Rn containing the n-strategy space S (that, in this case, is
a compact non-degenerate n-interval of the Euclidean n-space Rn). We recall that the
topological boundary of a subset S of a topological space (X, τ) is the set defined by the
following three equivalent propositions:

(1) it is the closure of S without the interior of S: ∂(S) = cl(S)\int(S);
(2) it is the intersection of the closure of S with the closure of its complement ∂(S) =

cl(S) ∩ cl(X\S);

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. LXXXVIII, No. 1, C1A1001003 (2010) [19 pages]



AN ALGORITHM FOR PAYOFF SPACE IN C1-GAMES C1A0101003-3

(3) it is the set of those points x of X such that any neighborhood of x contains at
least one point of S and at least one point in the complement of S.

The key theorem of the method proposed by Carfı̀ is the following one.

Theorem 2.1. teo1 Let f be a C1 function defined upon an open set O of the euclidean
space Rn and with values in Rn. Then, for every part S of the open O, the topological
boundary of the image of S by the function f is contained in the union f(∂S) ∪ f(C),
where C is the critical set of the function f in S, that is the set of all points x of S such
that the Jacobian matrix Jf (x) is not invertible.

3. Algorithm

In this section we present the algorithm that we used to determine numerically the pay-
off space of normal form C1-games in 2 dimensions.

Let A,B,C,D be the vertices of the initial rectangular domain. The inputs are the coor-
dinates of such vertices and the functions f1 (·) and f2 (·) that define the game f , so that
f (P ) = (f1(P ), f2(P )) con P ∈ R2.
Denote by xmin and xmax (ymin and ymax) the minimum and maximum of vertex abscis-
sae (ordinates).

STEP 1. TRANSFORMATION OF THE TOPOLOGICAL BOUNDARY.

Then the initial domain is the rectangle

RABCD = {(x, y) : xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax} .

The transformation of the topological boundary, is a new quadrilateral, of vertices (A′, B′, C ′, D′),
where a point P ′ is the image of a point P , by means the following transformation

P ′ = (f1(P ), f2(P )) ∀P ∈ {A, B, C, D}

STEP 2. PAYOFF SPACE AND CRITICAL ZONE.

We evaluate the Jacobian determinant of the game f .
If it is zero, then the payoff space agrees the transformation of topological boundary.
Otherwise, the Jacobian determinant is a function of x or y.
In this case, we solve the jabobian in the depending variable. The critical zone is defined
by all the points of this transformation, that are in the initial domain RABCD, too.

The payoff space is the area delimited by the topological boundary and the critical
zone. Note that, if the critical zone is void, the payoff space agrees the transformation of
the topological boundary.

STEP 3. PLOTS

The outputs of the algorithm are the graphics of transformation of topological boundary,of
critical zone (if it exists), of payoff space.
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4. First game

Description of the game. We consider a loss-game G = (f,<), with strategy sets
E = F = [0, 1] and biloss (disutility) function defined by

f (x, y) = (−4xy, x+ y)

for every bistrategy (x, y) of the game.
The critical space of the game. In the following, we shall denote by A, B, C and D

the vertices of the square E × F , starting from the origin and going anticlockwise.
Jacobian matrix. The Jacobian matrix is

Jf =


−4y −4x
1 1


,

for every bistrategy (x, y). The Jacobian determinant is

detJf (x, y) = −4y + 4x

for every pair (x, y). The critical zone is the subset of the bistrategy space of those bis-
trategies verifying the equality −y + x = 0. In symbols, the critical zone is the segment

C(f) =

(x, y) ∈ [0, 1]

2
: x = y


= [A,C]

that is graphically represented in Fig. 1.

FIGURE 1. Bistrategy square with critical zone.

Transformation of the critical space. Let us determine the image f ([A,C]). The
value of the biloss function upon the generic point (y, y) of the segment [A,C], is

f (y, y) =

−4y2, 2y


.

The image of the critical zone is represented in Fig. 2.
The biloss (disutility) space. Transformation of the topological boundary of the

bistrategy space. We start from the image f ([A,B]). The segment [A,B] is defined by
y = 0

x ∈ [0, 1]
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FIGURE 2. Plot of the transformation of the critical zone.

The value of the biloss function upon the generic point is f (x, 0) = (0, x), that is graphi-
cally represented in Fig. 3.

FIGURE 3. Plot of the transformation of the segment [A,B].

We now consider the image f ([D,C]). The segment [D,C] is defined by
y = 1

x ∈ [0, 1]

The value of the biloss function upon the generic point is f (x, 1) = (−4x, x+ 1) that
is graphically represented in Fig. 4.

Let us determine the image f ([C,B]). The segment [C,B] is defined by
x = 1

y ∈ [0, 1]

The value of the biloss function upon the generic point is f (1, y) = (−4y, 1 + y), that
is graphically represented in Fig. 5.
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FIGURE 4. Plot of the transformation of the segment [D,C].

FIGURE 5. Plot of the transformation of the segment [C,B].

Let us finally determine the image f ([A,D]). The segment [A,D] is defined by
x = 0

y ∈ [0, 1]

The value of the biloss function upon the generic point is f (0, y) = (0, y), that is graphi-
cally represented in Fig. 6. The image of the transformation of the topological boundary of
the bistrategy space is plotted in Fig. 7, while the resulting payoff space is shown in Fig. 8.

5. Second game

Description of the game. We consider a loss-game G = (f,<), with strategy sets
E = F = [0, 1] and biloss (disutility) function defined by

f (x, y) =


x− 1

2
xy, y − 1

2
xy


for every bistrategy (x, y) of the game.
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FIGURE 6. Plot of the transformation of the segment [A,D].

FIGURE 7. Plot of the transformation of the topological boundary of the
bistrategy space.

FIGURE 8. Payoff space.
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The critical space of the game. In the following we shall denote by A, B, C and D
the vertices of the square E × F , starting from the origin and going anticlockwise.

Jacobian matrix. The Jacobian matrix is

Jf =


1− 1

2y − 1
2x

− 1
2y 1− 1

2x


for every bistrategy (x, y). The Jacobian determinant is

detJf (x, y) = 1− 1

2
x− 1

2
y

for every pair (x, y).
The critical zone is the subset of the bistrategy space of those bistrategies verifying the

equality y = 2− x, i.e.:

C(f) =

(x, y) ∈ [0, 1]

2
: y = 2− x


= (C)

that is graphically represented in Fig. 9.

FIGURE 9. Bistrategy square with critical zone.

Transformation of the critical space. Let us determine the transformation of the criti-
cal zone. It is defined by the relations

y = 2− x
x ∈ [0, 1]

The value of the biloss function upon he generic point (x, 2− x) is

f (x, 2− x) =

x− x2, 2− x− x2


.

The image of the critical zone is pictured in Fig. 10.
The biloss (disutility) space. Transformation of the topological boundary of the

bistrategy space. We start from the image f ([A,B]). The segment [A,B] is defined by
y = 0

x ∈ [0, 1]
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FIGURE 10. Plot of the transformation of the critical zone.

FIGURE 11. Plot of the transformation of the segment [A,B].

FIGURE 12. Plot of the transformation of the segment [D,C].

The value of the biloss function upon the generic point is f (x, 0) = (x, 0), that is graphi-
cally represented in Fig. 11.
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We now consider the image f ([D,C]). The segment [D,C] is defined by
y = 1

x ∈ [0, 1]

The value of the biloss function upon the generic point is f (x, 1) =

1
2x, 1−

1
2x


, that

is graphically represented in Fig. 12. Let us determine the image f ([C,B]). The segment
[C,B] is defined by 

x = 1
y ∈ [0, 1]

The value of the biloss function upon the generic point is f (1, y) =

1− 1

2y,
1
2y


, that is

graphically represented in Fig. 13.

FIGURE 13. Plot of the transformation of the segment [C,B].

Finally, let us determine the image f ([A,D]). The segment [A,D] is defined by
x = 0

y ∈ [0, 1]

The value of the biloss function upon the generic point is f (0, y) = (0, y), that is graphi-
cally represented in Fig. 14. The image of the transformation of the topological boundary
of the bistrategy space is pictured in Fig. 15, and the resulting payoff space is shown in
Fig. 16.

6. Third game

Description of the game. We consider a loss-game G = (f,<), with strategy sets
E = F = [0, 1] and biloss (disutility) function defined by

f (x, y) = (x, y + xy)

for every bistrategy (x, y) of the game.
The critical space of the game. In the following we shall denote by A, B, C and D

the vertices of the square E × F , starting from the origin and going anticlockwise.
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FIGURE 14. Plot of the transformation of the segment [A,D].

FIGURE 15. Plot of the transformation of the topological boundary of
the bistrategy space.

Jacobian matrix. The Jacobian matrix is

Jf =


1 0
y 1 + x


,

for every bistrategy (x, y). The Jacobian determinant is

detJf (x, y) = 1 + x

for every pair (x, y).
The critical zone is the subset of the bistrategy space of those bistrategies verifying

the equality x = −1. So there are not points of the critical zone in the strategy sets (see
Fig. 17).

The biloss (disutility) space. Transformation of the topological boundary of the
bistrategy space. We start from the image f ([A,B]). The segment [A,B] is defined
by y = 0 and x ∈ [0, 1] . The value of the biloss function upon the generic point is
f (x, 0) = (x, 0) (see Fig. 18).
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FIGURE 16. Payoff space.

FIGURE 17. Bistrategy square with critical zone.

FIGURE 18. Plot of the transformation of the segment [A,B].

We now consider the image f ([D,C]). The segment [D,C] is defined by y = 1 and
x ∈ [0, 1]. The value of the biloss function upon the generic point is f (x, 1) = (x, 1 + x)
that is graphically represented in Fig. 19.
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FIGURE 19. Plot of the transformation of the segment [D,C].

Let us determine the image f ([C,B]). The segment [C,B] is defined by x = 1 and
y ∈ [0, 1]. The value of the biloss function upon the generic point is f (1, y) = (1, 2y).
Setting X = 1 and Y = 2y, we have X = 1 and Y ∈ [0, 2] (see Fig. 20).

FIGURE 20. Plot of the transformation of the segment [C,B].

Finally, let us determine the image f ([A,D]). The segment [A,D] is defined by x = 0
and y ∈ [0, 1]. The value of the biloss function upon the generic point is f (0, y) =
(0, y) that is graphically represented in Fig. 21. The image of the transformation of the
topological boundary of the bistrategy space is pictured in Fig. 22, while the resulting
payoff space is shown in Fig. 23.
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FIGURE 21. Plot of the transformation of the segment [A,D].

FIGURE 22. Plot of the transformation of the topological boundary of
the bistrategy space.

7. Fourth game

Description of the game. We consider a loss-game G = (f,<), with strategy sets
E = F = [0, 1] and biloss (disutility) function defined by

f (x, y) =


x− 3

4
xy, y − 3

4
xy


for every bistrategy (x, y) of the game.

The critical space of the game. In the following we shall denote by A, B, C and D
the vertices of the square E × F , starting from the origin and going anticlockwise.

Jacobian matrix. The Jacobian matrix is

Jf =


1− 3

4y − 3
4x

− 3
4y 1− 3

4x


,
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FIGURE 23. Payoff space.

for every bistrategy (x, y). The Jacobian determinant is

detJf (x, y) = 1− 3

4
x− 3

4
y

for every pair (x, y).
The critical zone is the subset of the bistrategy space of those bistrategies verifying the

equality y = 4
3 − x. In symbols, the critical zone is

C(f) =

(x, y) ∈ [0, 1]

2
: y =

4

3
− x


that is graphically represented in Fig. 24.

FIGURE 24. Bistrategy square with critical zone.

Transformation of the critical space. Let us determine the transformation of the criti-
cal zone. It is defined by the relations:

y = 4
3 − x

x ∈ [0, 1]

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. LXXXVIII, No. 1, C1A1001003 (2010) [19 pages]



C1A0101003-16 D. CARFÌ AND A. RICCIARDELLO

FIGURE 25. Plot of the transformation of the critical zone.

The value of the biloss function upon the generic point

x, 4

3 − x


is

f


x,

4

3
− x


=


x− x2,

4

3
− x− x2


.

The image of the critical zone is pictured in Fig. 25.
The biloss (disutility) space. Transformation of the topological boundary of the

bistrategy space. We start from the image f ([A,B]). The segment [A,B] is defined
by y = 0 and x ∈ [0, 1]. The value of the biloss function upon the generic point is
f (x, 0) = (x, 0), as shown in Fig. 26.

FIGURE 26. Plot of the transformation of the segment [A,B].

We now consider the image f ([D,C]). The segment [D,C] is defined by y = 1 and x ∈
[0, 1]. The value of the biloss function upon the generic point is f (x, 1) =


1
4x, 1−

3
4x


that is graphically represented in Fig. 27. Let us determine the image f ([C,B]). The
segment [C,B] is defined by x = 1 and y ∈ [0, 1]. The value of the biloss function upon
the generic point is f (1, y) =


1− 3

4y,
1
4y


(see Fig. 28).

Let us finally determine the image f ([A,D]). The segment [A,D] is defined by x = 0
and y ∈ [0, 1]. The value of the biloss function upon the generic point is f (0, y) = (0, y)
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FIGURE 27. Plot of the transformation of the segment [D,C].

FIGURE 28. Plot of the transformation of the segment [C,B].

(see Fig. 29). The image of the transformation of the topological boundary of the bistrategy
space is pictured in Fig. 30, and the resulting payoff space is shown in Fig. 31.

FIGURE 29. Plot of the transformation of the segment [A,D].
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C1A0101003-18 D. CARFÌ AND A. RICCIARDELLO

FIGURE 30. Plot of the transformation of the topological boundary of
the bistrategy space.

FIGURE 31. Payoff space.
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