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TEMPERATURE IN QUANTUM DYNAMICS

ALESSANDRO SERGI ∗

ABSTRACT. What is the meaning of the thermodynamical temperature in quantum me-
chanics? What is its role in the classical limit? What can we say about the interplay
between quantum and thermal fluctuations? Can we impose a constant-temperature con-
straint within dynamical simulations of quantum systems as we do in simulations of clas-
sical systems? These questions will be reviewed here. In particular, it will be shown how
a quantum version of the celebrated Nosé constant-temperature dynamics can be defined
within the phase space formulation of quantum mechanics.

1. Introduction

Since the advent of quantum mechanics, unitary time evolution has not been given a sat-
isfactory physical interpretation. In order to interpret it correctly, one should explain why
complex numbers are so intertwined with the most fundamental formulations of quantum
mechanics [1]. On more practical terms, unitary evolution is a computational problem: It
is based on the time propagation of oscillatory quantities, which are called phases. This
requires an enormous amount of memory for many-body systems. Moreover, the quan-
tum phase’s oscillatory behaviour causes the numerical error to grow very fast with time
(the infamous sign-problem of quantum dynamics). In practice, unless a more convenient
reformulation of the physical problem of unitary evolution is provided in the future, cal-
culations of quantum dynamics are doomed to be restricted to few-body systems and short
time intervals (of course, such a statement does not take into account the possible existence
of a quantum computer).

However, unitary evolution is strictly the characteristic of isolated systems (which are
just an idealization in nature). Nowadays, it has become widely appreciated that many
physical situations should be analyzed in terms of open system dynamics [2] and that both
decoherence and dissipation are ubiquitous in open quantum systems. They milden the
computational problem with unitary evolution. In the case of a Markovian dynamics, there
are already stochastic algorithms which are sufficiently powerful for simulating the dy-
namics of realistic systems such as optical lattices [3] and Bose-Einstein condensates [4].
Non-Markovian quantum dynamics is a much more difficult problem and, to our knowl-
edge, there is currently no general (or agreed upon) solution, as one could have expected
from an analogy with the issues in classical nonequilibrium statistical mechanics [5, 6].
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Conceptually, the prototype of an open quantum system is provided by a quantum sub-
system in contact with a thermal bath. Can one extend the idea of a thermal bath to calcu-
lations of time-dependent properties in quantum mechanics? Is a thermal bath a classical
concept only? And if it is a classical concept, how can we treat the consistent coupling
of quantum and classical degrees of freedom? Such topics will be reviewed in this paper.
Roughly speaking, they all revolve around the definition of a quantum temperature. Here
I defend the idea that the temperature is an intrinsically classical concept, which can be
defined for a quantum system in a rigorous way only when this is coupled to an external
classical bath. When such a philosophy is adopted, it becomes straightforward to extend
the method proposed by Nosé [7] for dynamical simulations at constant temperature from
the classical to the quantum realm. As a result, open quantum systems, consisting of a
quantum subsystem coupled to a classical bath, can be simulated by describing the dynam-
ics of the relevant quantum variables and of a few additional classical degrees of freedom.

This contribution is organized as follows. Section 2 introduces in a very general fashion
the problems associated with the meaning of temperature in the quantum realm. Basically,
it raises some questions that will remain unanswered here. Nevertheless, such issues are
partially the motivation behind the technical work reviewed here. Section 3 sketches the
technique (the famous Nosé dynamics) used to implement constant-temperature thermo-
dynamical constraints in classical molecular dynamics simulations [7]. In Section 4 the
phase space formulation of quantum mechanics, originally developed by Wigner [8], is
summarized. Section 5 reviews how the constant-temperature constraints have been re-
cently introduced in quantum dynamics through the Wigner phase space formulation [9].
In Section 6 it is shown how quantum mechanics can be defined in a partial Wigner repre-
sentation (Wigner-Heisenberg quantum mechanics). Again, it turns out that the algebraic
structure of the theory can be generalized in a way that allows one to introduce the Nosé
dynamics of the quantum degrees of freedom represented in phase space [10]. Some final
comments and conclusions are given in Section 7.

2. Temperature and quantum fluctuations

As is well-known in classical thermostatistics [11], temperature is rigorously defined at
thermal equilibrium as a macroscopic intensive parameter:

T =

∂U

∂S


X

, (1)

where U is the internal energy, S is the entropy, and X stands for all the quantities that
are kept constant when performing the partial derivative. Temperature also appears as a
parameter of the equilibrium distribution function. For example, in the canonical ensemble
one has:

ρc = Z−1 exp [−βH] , (2)

where H is the Hamiltonian of the system under study, Z is the partition function, and
β = 1/kBT is the inverse of the product between the temperature and the Boltzmann
constant, kB . In classical mechanics, temperature can be estimated as an average of the
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microscopic kinetic energy

⟨
N

i=1

p2
i

2m
⟩ =

3
2
NkBT , (3)

where pi (i = 1, . . . , N) are the momenta of N particles of mass m in 3-dimensional
space. Equation (3) is also the basis of the equipartition theorem in classical statistical
mechanics. Conceptually, it states that the thermodynamical temperature is directly related
to a microscopic quantity of the system, viz., the kinetic energy.

In quantum mechanics, temperature is still defined by Eq. (1). Moreover, the meaning
associated with the symbols U and S is not modified when one considers quantum effects:
Quantum mechanics changes the nature of the microscopic states that are accessible to
the system but, once these are specified, the idea of a distribution of properties among
such states is purely classical. Of course, new concepts arise from the possibility for the
system of being in a coherent superposition of states, but we surmise here that they do not
involve the temperature. In quantum statistical mechanics, the distribution function must
be generalized as a matrix operator, i.e., the density matrix of the system. The temperature
appears as a parameter of the density matrix. For example, in the canonical ensemble one
has:

ρ̂c = Z−1 exp

−βĤ


, (4)

where Ĥ is now a Hamiltonian operator while the other symbols keep their meaning (al-
though the partition function is calculated differently with respect to the classical case).
The introduction of the density matrix brings with it a host of issues that are worth con-
sidering. What is more relevant to the present discussion is that in quantum mechanics
the temperature can be estimated as an average of the microscopic kinetic energy for free
particles only: Equipartition does not hold in general. In a certain sense this means that,
once quantum effects become relevant, a microscopic picture of thermal fluctuations is
somewhat lost.

The lack of a microscopic interpretation of quantum motion is by all means not re-
stricted to thermal fluctuations. In general, microscopic pictures of quantum phenom-
ena are ambiguous (i.e., they depend on the particular formalism adopted) and they were
banned altogether from quantum science by Niels Bohr. Of course, they were reinstated
by the intuitive genius of Richard Feynman through his space-time approach and, perhaps,
they have always been used in an unspeakable way by many quantum physicists. Probably,
the basic source of the problems with microscopic interpretations is that quantum mechan-
ics is intrinsically a statistical theory and the knowledge of the quantum state of the system
gives access to average quantities only: Once these are fixed, there is a large freedom in de-
vising various microscopic mechanisms providing the same average properties. Although
many agree that the quantum state describes some kind of microscopic motion (or fluctu-
ation), the theory provides only the knowledge of the dynamics of the state: Microscopic
dynamical variables are not really addressed by the various formulations of quantum me-
chanics (perhaps, with the exception of the De Broglie-Bohm theory [12]) and, when they
are, it is only as a means to calculate changes in time of average properties. For example,
a quantum state in the position representation (usually called wave function) ψ(x) allows
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one to calculate the average properties of Hermitian operators Â:

⟨Â⟩ ≡

dxψ∗(x)A(x, x′)ψ(x′) , (5)

where A(x, x′) is the position representation of the operator associated with a certain mi-
croscopic dynamical quantity. If x represents the coordinate of an objective being (for
example, a particle), Eq. (5) expresses the fact that x can vary over the domain of integra-
tion. This can be interpreted as a fluctuation of x over the same domain. The quantum
state ψ(x) weighs each value of x in a statistical sense and also associates a phase with it
(describing the oscillatory motion of the being considered): The phase of the wavefunction
represents the oscillatory and coherent nature of the microscopic quantum motion. How-
ever, we do not have a clear picture of such microscopic dynamics. As already discussed,
the theory of quantum mechanics only provides a recipe for calculating average proper-
ties through Eq. (5). The principle of superposition tells that if various quantum states,
ψ1, ψ2, . . . , ψn, are accessible to the system, then the total (coherent) state can be taken
to be ψ =

n
j=1 cjψj , where the cj are complex numerical coefficients in general. This

expresses the possibility of a quantum disorder (determined by the multiplicity of states
accessible) which, rigorously, takes place at T = 0. One can introduce a density matrix at
T = 0 which can be expressed as

ρ(x, x′) =
n

j=1

n
k=1

cjc
∗
kψj(x)ψ∗k(x′) . (6)

Equation (6) expresses the possibility of a coherent (or oscillatory) motion of the system.
Since such a motion is described in an average sense only, it is called a quantum fluctuation.

When the temperature is different from zero, another form of disorder appears. Many
states, ψα, with α = 1, . . . , nT , (providing the same average properties) become accessible
to the system. However, such states are to be combined in a partially coherent way: A
probability γα, such that

nT

α=1 γα = 1, is associated to each state and a thermal density
matrix is introduced:

ρT (x, x′) =
n

α=1

γαψα(x)ψ∗α(x′) . (7)

Each state ψα is coherent but the non-zero temperature leads to the definition of the den-
sity matrix following Eq. (7) instead of Eq. (6). Hence, some degree of incoherence is the
signature of a non-zero temperature. However, things are not so easy since incoherent and
coherent fluctuations are mixed together by Eq. (7) and cannot be disentangled easily. This
means that, as far as static average properties are concerned, the distinction between ther-
mal (incoherent) fluctuations and quantum (coherent) fluctuations is somewhat arbitrary.
In other words, thermal fluctuations might be considered as coherent fluctuations that have
been mixed-up in the formalism so that one is no longer able to recover their dynamical
connection, relating the fluctuation at a given instant of time to that at a neighbouring in-
stant. Such a loss of temporal ordering of the representation hinders (but not completely,
unless T → ∞) the coherence itself. However, as it will be discussed in the following,
quantum fluctuations are not entirely equal to classical thermal ones.
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The classical limit is a very subtle topic in quantum mechanics [13], which is not fully
understood yet. In particular, Michael Berry, among others, has often written that the quan-
tum to classical limit (~ → 0) is singular [14]. Hence, it is surprising that the quantum to
classical transition can be achieved smoothly by varying the thermodynamical temperature
of a system. As a matter of fact, at T = 0 (β → ∞) any condensed matter system must
show quantum effects in order to accommodate a non-singular entropy S and its deriva-
tives: This is the content of the third principle of thermodynamics [11]. Yet, for β = 0
(T → ∞) any system becomes completely classical and all its coherent properties disap-
pear completely. This can be easily appreciated upon looking at the definition of the De
Broglie thermal wavelength

λ =
h√

2πmkBT
=


h2β

2πm
, (8)

and verifying its behaviour as T → ∞: λ (which also gives a measure of quantum delo-
calization, or space fluctuation, of extended objects) goes to zero when T goes to infinity.
From such a perspective, one can conclude that there is no definite boundary between
the classical and the quantum world: It is possible to move from one to the other just by
changing a macroscopic parameter such the thermodynamic temperature.

Perhaps, the clearest connection between thermal and quantum fluctuation is provided
by the path integral approach to quantum statistical mechanics [15]. In this approach the
partition function, Z = exp[−βĤ], of a system with a potential energy V (r) and kinetic
energy p̂2/2m can be written as

Tr exp

−β


p̂2

2m
+ V̂ (r)


= lim

P→∞


mP

2πβ~2

 
dr1 . . . drP

× exp


−β

P
α=1


mP

2β2~2
(rα − rα+1)2 +

V (rα)
P


rP+1=r1

, (9)

where P is the number of discrete replica of the system configuration, labeled collectively
with the coordinate r. The equality in Eq. (9) is strictly valid only for P → ∞. For any
finite P , the path integral expression is just an approximation. However, such an approxi-
mation is the basis for developing a very powerful approach to the numerical simulation of
time-independent properties of interacting bosonic systems, such as superfluid helium [16].
At the root of path-integral numerical methods one finds the so-called quantum-classical
isomorphism [17] entailed by Eq. (9):

D − dimensional Quantum
Statistical Mechanics �

(D + 1)− dimensional Classical
Statistical Mechanics (10)

It is easy to realize how this latter statement stems from Eq. (9): As far as time-independent
statistical properties are concerned, a single quantum particle, for example, is mapped
onto a closed polymer-like ring of particles (called beads or replicas). As a result of this
mapping, the statistical mechanics of the quantum particle is isomorphic to the statistical
mechanics of the classical-like polymer. When T → ∞, the harmonic term (arising from
the quantum kinetic energy of the single particle) will be so big that all the polymer beads
will collapse onto a single point and the system will appear classical. The fact that at finite
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T the quantum-classical isomorphism is approximate can be understood by considering
not just one single particle but at least two interacting quantum particles. According to
Eq. (9) their quantum partition function will be analogous to the partition function of two
interacting ring polymers. But the word analogous must be conveniently emphasized. In
fact, the two ring polymers do not interact in a classical way, but each bead on a polymer
interacts, through V (r) only, with the homologous bead – identified by the index arising
from the discretization of β – on the other polymer. The gyration radius of each isomorphic
polymer is related to the De Broglie wave-length of the particle and, as such, it “measures”
the quantum delocalization of each particle in space (and time). What is the meaning of all
this? In order to get an idea of what is happening in the theory, one should note that upon
performing the transformation (an inverse Wick rotation):

β → − it
~
, (11)

the quantum partition function in Eq. (9) becomes identical to the trace of the real time am-
plitude. Hence, the discretization of β is analogous to the discretization of real time. Then
the path-integral formula (9) expresses the a-causal nature of quantum mechanics: The real
time propagator is obtained by summing over all paths of the particle where, because of
the quantum kinetic energy, each time configuration rα at time tα interacts with the past
configuration rα−1 at time tα−1 as well as with the future configuration rα+1 at time tα+1.
Quantum coherence and fluctuations are then linked to the time-symmetric nature of the
quantum theory [18]. Since β is analogous to a complex time, everything goes as if the
precise ordering (and, hence, the coherence) between the different configurations rα on
different polymers (or paths) has been lost so that the a-causal features becomes hidden: It
is well known that motion in complex time projects onto the ground state so that the effect
of coherent superpositions with excited states is minimized [19]. Hence, one can summa-
rize by saying, in a loose sense, that the thermal fluctuations occurring in a D-dimensional
quantum system are analogous, in complex time, to the thermal fluctuations in a D + 1
dimensional classical system. Perhaps, a more fundamental connection between quantum
and thermal fluctuations is provided by the Unruh effect [20]. It turns out that the inertial
(Minkowski) quantum vacuum is equivalent to a thermal bath of particles when seen from
an observer who constantly accelerates with respect to it. Such a bath does not display
the typical energy spectrum of free particles but it has excitation quanta known as Rindler
particles. Its temperature is related to the acceleration of the non-inertial observer. The
Unruh effect clearly shows that the particle’s existence is not covariant but depends on the
state of motion of the observer. This supports the idea that the fields, not the particles, must
be considered as the fundamental entities in physics. The Unruh effect also establishes an
equivalence between ground state (vacuum) quantum fluctuations and the thermal disorder
of a free field with a slightly distorted energy spectrum.

It is the author’s opinion that the topics reviewed in this section are not fully understood
yet. They all impinge on the role of the temperature in the quantum theory. In the next
section, we shall review a more technical approach to treat the more specialized problem
of describing quantum fluctuations at constant temperature in time-dependent situations.
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3. Thermal fluctuations in classical Molecular Dynamics

In order to generate thermal fluctuations within a classical Hamiltonian theory, one
needs to couple the system of interest with a thermal bath, i.e., a macroscopic system
with an infinite number of degrees of freedom. In other words, one has to to resort to
open-system dynamics. Under somewhat drastic approximations, such as the Markovian
assumption, the degrees of freedom of the bath can be integrated out (projected) and one
thus obtains the master equations or the generalized Langevin equations for the relevant
degrees of freedom [5, 6].

Within Molecular Dynamics simulation, one can represent thermal fluctuations by means
of a non-Hamiltonian theory [21] and just two additional degrees of freedom (or a few
more). This is achieved with the celebrated Nosé dynamics [7]. A modern way of sketch-
ing the classical Nosé dynamics is provided by the introduction of the so-called Nosé
Hamiltonian:

HN =
p2

2m
+ V (r) +

p2
η

2mη
+ gkBTη

= H +
p2

η

2mη
+ gkBTη , (12)

where kB is the Boltzmann constant, T is the thermodynamical temperature of the de-
sired canonical ensemble, (r, p) are the phase space coordinates (positions and momenta,
respectively) of the physical particles with mass m, (η, pη) are the two additional Nosé
degrees of freedom with inertial “mass”mη , and g is the number of the physical degrees of
freedom in configuration space. The equations of motion can be introduced upon defining
the extended phase space point as x = (r, η, p, pη) and the antisymmetric matrix [22]

BN =


0 0 1 0
0 0 0 1
−1 0 0 −p
0 −1 p 0

 (13)

as

ẋi =

j,k

∂xi

∂xk
BN

kj

∂HN
W

∂xj
= {xi, HW }BN , (14)

where the second equality on the right and side defines the non-Hamiltonian Nosé bracket.
When written explicitly, the Nosé equations read:

ṙ = p
m

ṗ = −∇V − p pη

mη

η̇ = pη

mη

ṗη = p2

m − 3NkBT .

(15)

They admit the phase space compressibility κN

κN =


i

∂ẋi

∂xi
= −3N

pη

mη
= β

d

dt
HT , (16)
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where

HT =
p2

2m
+ V (r) +

p2
η

2mη
(17)

and we assumed g = 3N .
The classical equilibrium statistical mechanics entailed by Nosé dynamics can be ad-

dressed by considering the stationary Liouville equation for the distribution function in the
extended phase space fN

e [23]. Such a function obeys the equationκN +

i,j

Bij
∂HN

∂xj

−→
∂

∂xi

 fN
e = 0 , (18)

and it is written explicitly as

fN
e ∝ exp[−βHT ]δ(E −HN) . (19)

Hence, thermal averages in the extended Nosé phase space of physical variables alone are
written as

⟨a(r, p)⟩N ∝

drdpdηdpηa(r, p)fN

e

=

drdpdηdpηa(r, p) exp[−βHT ]δ(E −HN) . (20)

Upon considering the integral

dηδ(E −HN) and the identity

δ(φ(η)) =

η0

δ(η − η0)

dφ

dη
(η0)

−1

, (21)

which is valid for any differentiable function φ = φ(η), one obtains

⟨a(r, p)⟩N = N

drdp a(r, p) exp[−βH] = ⟨a(r, p)⟩can . (22)

Equation (22) shows that one can calculate, by means of the Nosé dynamics, classical
averages in the canonical ensemble. In practice, the dynamics must be ergodic. We know
that this condition is not fulfilled for stiff harmonic systems. However, for all practical
purposes, it seems that Nosé-Hoover chains give a satisfactory solution to the ergodicity
problem [24], a chain being a sequence of Nosé variables thermostating each other in order
to drive the fluctuation of the one directly coupled to the relevant degrees of freedom.

4. Wigner’s quantum statistical mechanics

In the standard formulation of quantum statistical mechanics, dynamical variables are
represented by operators on functional spaces (for example, Ĥ, L̂, . . .), and statistical prop-
erties are addressed by the density matrix operator [13]:

ρ̂ =


k

γk|Ψ(k)⟩⟨Ψ(k)| , (23)
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obeying the Heisenberg equation of motion which, when written in matrix form [10], reads

i~
∂ρ̂

∂t
=


Ĥ, ρ̂


=


Ĥ ρ̂


·


0 1
−1 0


·

Ĥ
ρ̂


. (24)

Quantum averages are then calculated as

⟨Â⟩(t) = Tr

ρ̂(t)Â


. (25)

Almost surprisingly, quantum effects do not require one to renounce to phase space
and ordinary functions as the main mathematical objects of the theory. On the contrary,
operator quantum mechanics can be exactly represented in phase space, by using ordinary
functions, in an infinite number of ways [25]. The first and, perhaps, the simplest mapping
of this sort was provided by Wigner [8] who introduced the function [26, 27]:

fW (r, p) ≡ 1
(2π~)N


dNr′e(i/~)p·r′

ρ̂


r − r′

2
, r +

r′

2


=

1
(2π~)N

W {ρ̂} . (26)

Operators can also be Wigner-transformed in order to obtain their phase space representa-
tion:

χW (r, p) ≡

dNr′e(i/~)p·r′

χ̂


r − r′

2
, r +

r′

2


=W {χ̂} . (27)

In such a way, the so-called Wigner’s formulation of quantum mechanics is obtained.
Quantum averages can then calculated in phase space as

Tr (ρ̂(t)χ̂) ≡

dNrdNp fW (r, p, t)χW (r, p) . (28)

The equation governing the time evolution of the Wigner function can be obtained by
considering Wigner’s transform of the product of operators [28]

W {χ̂1 × χ̂2} = χ̂1 exp

i~
2
←−
∂iBc

ij

−→
∂j


χ̂2 . (29)

With the above result, the Moyal bracket is introduced upon taking the Wigner transform
of the quantum commutator

{χ1,W (r, p), χ2,W (r, p)}M ≡ W {[χ̂1, χ̂2]} =W {χ̂1χ̂2 − χ̂2χ̂1}

= χ̂1 exp

i~
2
←−
∂iBc

ij

−→
∂j


χ̂2 − χ̂2 exp


i~
2
←−
∂iBc

ij

−→
∂j


χ̂1 . (30)

Hence, the Wigner-Moyal equation of motion is obtained upon Wigner-transforming the
Heisenberg equation of motion for the density matrix

∂tfW (r, p, t) = − i
~
{HW , fW (t)}M

= − i
~
−→
MfW (t) . (31)
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Moyal bracket enters the definition of quantum averages according to

⟨χ̂⟩ =

dxχW (x) exp


− it

~
−→
M


fW (x)

=

dxχW (x) exp


it

~
←−
M


fW (x) , (32)

where Moyal’s propagator has been defined as
−→
M ≡ HW


e

i~
2
←−
∂iBc

ij

−→
∂j − e− i~

2
←−
∂iBc

ij

−→
∂j


. (33)

The two lines in Eq. (32) define the Schrödinger and Heisenberg dynamical picture in phase
space, respectively, depending on whether the Wigner function or the dynamical variable
evolves in time. Equation (31 can be equivalently rewritten as

∂tfW = (∂iHW )Bc
ij

−→
∂jfW +


n=3,5,7,...

1
n!


i~
2

n−1

HW

←−
∂iBc

ij

−→
∂j

n

fW , (34)

in which case it is known as the Wigner-Liouville equation. Wigner originally showed that
Eq. (34) can be used to calculate quantum corrections to thermodynamical equilibrium [8].

5. Nosé dynamics in quantum phase space

The antisymmetric matrix structure of Eq. (30) can be exploited in order to generalize
the Moyal bracket. In particular, upon defining the special antisymmetric tensor field in
quantum phase space

Bij = Bij [fW (x); ξn(x), t] , (35)

a generalized Moyal bracket can be introduced as

{HW , fW }M,B = HW e
i~
2
←−
∂iBij

−→
∂jfW − fW e

i~
2
←−
∂iBij

−→
∂jHW . (36)

The antisymmetric tensor field can be postulated in order to define a special dynamics
in quantum phase space: Non-linear effects, non-equilibrium evolution, a deterministic
approach to open-system dynamics and other possibilities yet to be explored. Bij was
used in Ref. [9] to introduce thermal fluctuations in the quantum evolution. This will be
reviewed here.

A Nosé-Moyal operator can be defined adopting the antisymmetric matrix given in
Eq. (13) and extending Wigner’s phase space upon including two additional degrees of
freedom (the Nosé coordinates):

−→
MN ≡ HN

W


e

i~
2
←−
∂iBN

ij

−→
∂j − e− i~

2
←−
∂iBN

ij

−→
∂j


. (37)

The dynamical variables can be propagated in time as

χNW (t) = exp

it

~
−→
MN


χNW (0) . (38)

At variance with the standard Wigner case, one obtains an adjoint Moyal operator

−→
MN,† ≡ HN

W


e

i~
2

“←−
∂iBN

ij

−→
∂j+
←−
∂i(∂jBN

ij)
”
− e−

i~
2

“←−
∂iBN

ij

−→
∂j+
←−
∂i(∂jBN

ij

”
. (39)
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The adjoint dynamics for the Nosé-Wigner function will be defined by

fNW (t) = exp

− it

~
−→
MN,†


fNW (0) . (40)

The stationary Nosé-Wigner function, fNW,e, is the solution of the following equation:

−

iLN + κN


fNW,e =


n=3,5,7,...

1
n!


i~
2

n−1

HN
W

←−
∂ iBN

ij

−→
∂ j +

←−
∂ i


∂jBN

ij

n

fNW,e ,

(41)

where
iLN = BN

ij


∂jH

N
W

−→
∂ i (42)

is the Nosé-Liouville operator. As Wigner originally showed, a solution of Eq. (41) can be
found as a power series in ~ :

fNW,e =


n=0,2,4,...

~nf
(n)
NW,e

= f
(0)
NW,e


1 +


n=2,4,...

~nf̃
(n)
NW,e


. (43)

The zero order solution is simply the classical Nosé distribution function in the extended
phase space:

f
(0)
NW,e ∝ δ(HN

W ) exp

−


κNdt


. (44)

5.1. Quantum-classical approximation. The variables η and pη are fictitious and have
the unique function of simulating the thermal bath. Accordingly, one can disregard quan-
tum effects in their time evolution. This amounts to take a quantum-classical limit of the
equations of motion for the Nosé-Wigner dynamics. The formalism admits the small ex-
pansion parameter


m/mη ≪ 1; hence, one can adopt the route to the quantum-classical

limit proposed in Ref. [29]. In the following we shall also consider that one is actually
interested in the averages of functions of the physical phase space a(r, p), so that, when
averaging over pη , linear terms in pη in the stationary equation disappear, because of the
form of the zero-order solution of the stationary equation. In the quantum-classical limit
Eq. (41) becomes:

n=3,5,7,...

1
n!


i~
2

n−1

V (r)
←−
∂r ·
−→
∂p

n

fNW,e = −(iLN − κN)fNW,e . (45)

Solutions of Eq. (45) provide the stationary quantum-classical Nosé-Wigner function. The
solution of the above equation is identical to that given by Wigner for the canonical en-
semble. For example, the second order correction term is

f
(2)
NW,e(r, p) = f

(0)
NW,e(r, p)


−~2

24
∂2V (r)
∂r2


3
β2

m
+ β3 p

2

m2


− ~2

24
β3

m


∂V (r)
∂r

2

.

(46)
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Within a quantum-classical Nosé-Wigner dynamics, the coupling of the system to a ther-
mal bath is simulated in a deterministic way by means of the Nosé variables (η, pη). No
additional complexity is added by using Nosé-Hoover chains [24] and, with suitable ad-
justments, the theory can also describe this more general case. In principle, the Nosé-
Wigner dynamics provides an alternative approach to open quantum system evolution that
is usually addressed by means of master equations. Moreover, by analogy with classical
Molecular Dynamics calculations, the quantum Nosé-Wigner dynamics can be likely used
to describe quantum open systems in nonmarkovian as well as nonequilibrium situations.

To summarize what we have said before, the quantum Nosé-Wigner dynamics has been
defined upon starting from the Wigner’s formulation of quantum mechanics after general-
izing the Moyal bracket in a suitable way. A quantum-classical approximation has been
taken in order to obtain an expression of the stationary Nosé-Wigner function. In this pic-
ture the classical thermostat is directly coupled to the quantum subsystem in phase space.
Can this formalism be applied to the case of quantum spins? In the next section, we shall
review the changes that are needed for dealing with quantum spins.

6. Nosé dynamics in the Wigner-Heisenberg representation

When one desires to study the coupling of quantum spins to a classical thermal bath,
it is convenient to take an alternative route. One can start from the Heisenberg formula-
tion of quantum mechanics and perform a partial Wigner transformation over the degrees
of freedom of the bath [29]. This way, the so-called Wigner-Heisenberg representation
of quantum mechanics is obtained [30]. For harmonic baths, a linear approximation of
the Wigner-Heisenberg bracket is exact. One can then generalize the Wigner-Heisenberg
bracket, upon exploiting its matrix structure, and introduce the quantum Nosé dynam-
ics [10, 31]. In this case, the thermostat can be coupled to the quantum subsystem through
buffer classical degrees of freedom. This formalism is sketched in the following.

Partial Wigner transforms of the density matrix

ρ̂W (R,P ) =
1

(2π~)3N


dzeiP ·z/~⟨R− z

2
|ρ̂|R+

z

2
⟩ , (47)

and of an arbitrary operator χ̂

χ̂W (R,P ) =

dzeiP ·z/~⟨R− z

2
|χ̂|R+

z

2
⟩ (48)

can be defined as in Eqs. (47) and (48). Using the above definitions, one can take the
partial Wigner transform of the Von Neumann equation (24). This gives rise to the Wigner-
Heisenberg form of the equation of motion

∂ρ̂W (R,P )
∂t

= − i
~


ĤW exp


i~
2
←−
∂ iBc

ij

−→
∂ j


ρ̂W (R,P )

− ρ̂W (R,P ) exp

i~
2
←−
∂ iBc

ij

−→
∂ j


ĤW


. (49)
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A linear approximation of such an equation, i.e.:

∂ρ̂W (R,P )
∂t

= − i
~


ĤW


1 +

i~
2
←−
∂ iBc

ij

−→
∂ j


ρ̂W (R,P )

− ρ̂W (R,P )

1 +

i~
2
←−
∂ iBc

ij

−→
∂ j


ĤW


, (50)

turns out to be exact for harmonic baths.
The structure of Eqs. (49) and (50) is suited to accommodate the Nosé Wigner-Heisenberg

dynamics [10, 31]. To this end, one needs to introduce a Nosé Wigner-Heisenberg Hamil-
tonian:

ĤN
W = Ĥs + Ĥb(R,P ) + Ĥc(R) +

p2
η

2mη
+NkBTη , (51)

where the sum Ĥs+Ĥb(R,P )+Ĥc(R) describes the partially Wigner-transformed Hamil-
tonian of the physical system, while the remaining terms describe the energy of the Nosé
variables. The dynamics of the Wigner-Heisenberg operators can be defined by means of
the generalized bracket:

χ̇ =

ĤN

W χ̂
 

0 e
i~
2
←−
∂ kBN

km

−→
∂ m

−e i~
2
←−
∂ kBN

km

−→
∂ m 0


·

ĤN

W

χ̂


, (52)

where the antisymmetric tensor field BN has been defined in Eq. (13). Such a formal-
ism was successfully adopted in [31] to study numerically the open-system dynamics of
a quantum spin coupled to a Ohmic bath of oscillators. This is the celebrated spin-boson
model, whose Hamiltonian in the Wigner-Heisenberg representation reads:

ĤW = −~Ωσ̂x −
N

J=1

cJRJ σ̂z +
N

J=1


P 2

J

2MJ
+

1
2
MJω

2
JR

2
J


. (53)

It turns out that at least 200 harmonic oscillators are needed to correctly represent the effect
of the bath in agreement with linear response theory [32]. The results obtained in Ref. [31]
show that, at least for the values of the parameters use in the numerical calculations, the
thermostated spin-boson Model defined by the extended Hamiltonian

ĤN
W = −~Ωσ̂x − c1R1σ̂z +


P 2

1

2M1
+

1
2
M1ω

2
JR

2
1


+

p2
η

2mη
+ kBTη , (54)

and by the dynamics given in (52) provides an optimal behavior with just one oscilla-
tor [33].

7. Conclusions

In this review we have considered the role of temperature in quantum mechanics. This
role still remains partially mysterious because of issues such as the interplay between ther-
mal and quantum fluctuations, the classical limit, the quantum-classical isomorphism, and
the Unruh effect, which, in the author’s opinion, have not been thoroughly understood
yet. Nevertheless, taking a practical attitude, one can extend the classical definition of the
temperature to the phase space formulation of quantum mechanics. To this end, we have
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reviewed the generalization of brackets in the Wigner and Wigner-Heisenberg representa-
tions of quantum mechanics. By means of such generalized brackets, the Nosé dynamics
has been defined in quantum phase space as well. In principle, this provides a deterministic
approach to the quantum dynamics of open systems which promises to be an interesting
and rewarding line of research.
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