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ABSTRACT. After a brief survey of current density functional theory (DFT), based on
an incompletely known one-body potential V (r), a method due to Cordero, March, and
Alonso (CMA) is summarized. This obtains the ground-state density n(r), for spherical
atoms as yet, from a semi-empirical fine-tuning of Hartree-Fock (HF) theory, which of
course involves a non-local potential because of the presence of the Fock operator. This
leads to n(r) for spherical atoms of quantum Monte Carlo quality. A more recent proposal,
related to CMA but different, by Bartlett, is also reviewed.

1. Introduction

While the forerunner of modern density functional theory (DFT) [1], namely the Thomas-
Fermi (TF) theory, was orbital-free, being based on a ground-state density n(r) obtained
from the energy functional ETF[n] given by [2, 3]

ETF[n] = ck


n5/3(r)d3r+


Vext(r)n(r)d

3r+
1

2
e2

n(r)n(r′)

|r− r′|
d3rd3r′, (1)

where ck = (3h2/10m)(3/8π)2/3, via the variational principle

δ(E − µN) = 0, (2)

where µ is the chemical potential and N the total number of electrons in the molecule
or cluster being considered, the local density approximation (LDA) to the single-particle
kinetic energy t1 ∝ n5/3(r) integrated through space is bypassed now in DFT [1] by
returning to ‘correlated orbitals’ generated by the local one-body potential

V (r) = Vext(r) + Velectrostatic(r) + Vxc(r). (3)

Here, unfortunately, uncontrolled approximations are involved in constructing the exchange
(x) – correlation (c) potential Vxc(r) given in terms of the, as yet unknown, exchange-
correlation functional Exc[n] by [1, 4]

Vxc(r) =
δ

δn(r)
Exc[n]. (4)
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In Appendix A, following Amovilli et al. [5], we show that of four of the more pop-
ular current energy density functionals, only one, by PBE, satisfies to date the required
variational principle in Eq. (2). This means that only the PBE functional of the four con-
sidered can have, underpinning it, an antisymmetric N -electron correlated ground-state
wavefunction.

While the local potential V (r) defined above, given Vxc(r) ‘exactly’, generates (in prin-
ciple) the formally exact ground-state density, we give some attention below to a summary
of recent studies by Cordero, March, and Alonso [6], and later by Bartlett [7], which return
to correlated orbitals but relax the requirement that they are generated by a local potential.

2. One-body potential theory of molecules and solids modified semiempirically for
electron correlation

Some six decades ago, March and Murray [8, 9], by means of infinite order perturba-
tion theory, set up a one-body potential theory suitable for treating molecules and defective
solids. Their approach adopted a local potential V (r), already considered by Slater [10]
as a simplification of the Hartree-Fock method, the latter involving essentially a non-local
one-body potential due to the presence of the Fock operator [11]. Subsequently, Slater’s
work on the one-body potential V (r) was formally completed by Kohn and Sham [4].
These authors demonstrated that the potential V (r) had an exchange-correlation compo-
nent Vxc(r) which must be added to the Hartree potential:

V (r) = VH(r) + Vxc(r), (5)

involving the as yet unknown energy functional Exc[n] in Eq. (4), where n is the electron
density.

While major progress in quantum chemistry has resulted from a number of proposed
approximate energy functionals Exc [5], there is presently no systematic procedure to en-
sure that ‘refinements’ of such available functionals will converge to the exact ground-state
energy E. And indeed, while the Slater-Kohn-Sham (SKS) form of density functional the-
ory (see, e.g., Parr and Yang [1]) is a variationally based method for Fermions, Amovilli et
al. [5] have recently shown in this Journal that three out of four currently popular forms of
Exc[n] lead to ground-state energies below the exact E for some of the trial test cases for
which E is known from correlated wave function theory or quantum Monte Carlo (QMC)
simulations. This, of course, is a deeply serious matter for it means that some of the widely
used forms of Exc and hence Vxc in Eq. (4) cannot have any underlying antisymmetric
many-electron wave function.

Subsequent to the work of [6], Bartlett has recently written a frontier article [7] enti-
tled ‘towards an exact correlated orbital theory for electrons’. In this review, Bartlett also
stresses that DFT methods ‘are fraught with difficulty’, and he notes in specific terms nu-
merous errors in present functionals, in addition to the possible violation of the variational
principle by some choices ofExc[n] which are currently widely used in quantum chemistry,
as demonstrated in [5].

However, one aim in the present article is to compare and contrast the proposal of
Bartlett on a correlated orbital theory, with the earlier study of Cordero, March, and Alonso
[6]. This is especially prompted by Bartlett’s writing, and we quote again here, ‘our one-
particle theory will look almost like Hartree-Fock theory ...’. That description will be
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shown to apply quite precisely also to [6], with, however, the, of course major, difference
that Cordero et al. invoke semiempirical ‘fine-tuning’ of the ground-state Hartree-Fock
(HF) density. However, given that Cordero et al. impose, in a spherical atom like Be or
Ne, the experimental ionization potential I (as they stress, to be corrected by a method
they outline for usually small relativistic effects when necessary), their approach already
constitutes one example of a (now approximate, of course) correlated orbital theory for
electrons. Briefly, the idea underlying [6] is to ‘fine tune’ the already highly accurate n(r)
of HF theory [12] to remove the difference between the ionization potential of Koopmans,
denoted there by IK , and the exact (non-relativistic) ionization potential I .

Put precisely, following [13], the asymptotic large r limit of the ground-state electron
density of a non-relativistic spherical atom is given in atomic units by

n(r)

r→∞ = Arγ exp(−2

√
2Ir) . (6)

In HF theory with its non-local potential, all the individual orbitals building up the density
in Eq. (6) fall off in the same exponential manner governed by IK in marked contrast to
the case of a local potential V (r).

The achievement of Cordero et al. is to modify HF theory to retain the Kato cusp at the
nucleus (see Eq. (8) below) but to ensure the correct asymptotic form (6) by building in the
measured I , as mentioned already, into Eq. (6).

The semiempirical correlated orbital theory of CMA, in the language of RJB [7], con-
sists of the following, published so far for the spherical atoms Be, Ne, Mg and Ar ground-
states:

(i) Solve the self-consistent field (SCF) HF equations [6] numerically. However, this
solution is now, because of semiempirical inclusion of correlation, not for the in-
tegral atomic number Z (i.e. 4 for Be: 10 for Ne etc.), but for a fractional value,
Z ′ say, near to Z. The value of Z ′ is fixed precisely by appeal to the experimen-
tally measured ionization potential I (corrected, when necessary, for usually small
relativistic effects (see [6]). The resulting normalized density n(r, Z ′) thereby ob-
tained from occupied normalized HF orbitals ψi(r, Z

′) for neutral atoms with N
electrons, i.e. n(r, Z ′) has N = Z, not Z ′. This density n(r, Z ′), before final
modification, describes either fractional cations or anions, but not neutral atoms.

(ii) This density is then scaled to a final density

nλ(r) = λ3n(λr, Z ′) (7)

where λ is to be determined to satisfy the Kato cusp condition [14]. For atoms this
reads

∂n(r)

∂r


r=0

= −2Z

a0
n(r = 0) : a0 =

~2

me2
. (8)

By detailed comparison with available QMC simulations, it turns out for the four atoms
cited above that the ground-state densities thereby obtained are of QMC quality. The fact
that this semiempirical fine-tuned HF density: to be determined by steps (i) and (ii) ex-
plained above, is an excellent approximation to the true ground-state density n(r), has its
origins in the work of Møller and Plesset, some 6 1

2 decades ago [12], who by HF pertur-
bation theory proved that the HF ground-state density was correct to second-order in the
difference between the Fock operator and the exact non-relativistic Hamiltonian.
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We stress again that, as with the recent RJB proposal [7], the SKS requirement of an
exact ground-state density [1] is relaxed slightly, in the CMA correlated orbital theory, by
means of adapting the one-body HF potential which is, as mentioned above, intrinsically
non-local. Returning for a moment to the RJB method [7], there it is explicitly concluded
that ‘our one-particle theory will look almost like Hartree-Fock theory etc.’, making clear
the similarities between the CMA semiempirical theory and the method of RJB. A second
important similarity is the insistence in both methods that the ionization potential I is
exact: as explained above this is put in ‘by hand’ in the CMA method by making use of the
experimentally measured value. RJB in this latter respect goes further, at least in principle,
in insisting that his approach guarantees a correct one-particle energy spectrum, but with
an approximate density paralleling that in the CMA theory.

Returning to semiempirical approaches, we want to emphasize here that the ultimate
aim of these would be to utilize the measured ground-state electron density n(r) for molecules
and solids. As a specific example we cite the work of Howard et al. [15] on a crystal of for-
mamide. Following an approach now referred to as ‘quantum crystallography’ by workers
in the field; notable names being J. Karle and L. Massa, one sets up an approximate, but
nevertheless idempotent, density matrix of Dirac [16] single-particle(s) form

γs(r, r
′) =


occupied i

ψ∗
i (r)ψi(r

′) (9)

where the ψi(r) denote orthonormal orbitals. The property of idempotency, plus the fact
that Eq. (9) is such that γs(r, r) = n(r), the measured ground-state density from, say,
X-ray diffraction experiments, are the important characteristics of Eq. (9).

But, in practice, the approach of the crystallographers is less directly related to corre-
lated orbital theory than Eq. (9) would suggest. Therefore, below, we shall (i) emphasize
the precise procedure adapted in current applications of quantum crystallography and (ii)
stress that approximations to γs(r, r′) in Eq. (9) can lead us to link correlated orbital theory,
as in the CMA approach, to current DFT theory.

Starting with step (i) immediately above, Eq. (9) is approximated by (cf. Holas and
March [17]) an expansion in a finite basis of K orbitals χi(r) as

γs(r, r
′) =

K
ij

Pijχi(r)χj(r
′). (10)

The orbitals χi may be chosen as real, which is always possible in the absence of a mag-
netic field. The symmetric matrix Pij entering Eq. (10) is a compact representation of the
parameters used in quantum crystallography to fit the measured Bragg reflection data, say
on the solid in question.

We take as an immediate example the work of Howard et al. [15] on formamide, already
referred to. An X-ray experiment on this molecule in its crystalline geometry had earlier
been carried out by Stevens [18]. The analysis reported in [15] leads to an idempotent
matrix which has the experimentally determined ground-state density n(r) as its diagonal
element γs(r, r).

But this now takes us back to correlated orbital theories distinguished by the use of
local potentials, as in the SKS method, and the HF-like non-local potential of the CMA
approach. For the former case, the idempotent Dirac matrix γs(r, r′) defined via Eq. (9),
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satisfies the equation of motion [19]

∇2
rγs −∇2

r′γs =
2m

~2
[V (r)− V (r′)] γs (11)

where V (r) is given in Eq. (5). Idempotency must, of course, be imposed on the phys-
ical solution of Eq. (11). But immediately we encounter the difficulties spelt out above
concerning the exchange-correlation potential Vxc(r) in Eq. (5).

Thus, Holas and March [17] have advocated an extension of the quantum crystallo-
graphic approach discussed above by applying a potential-locality constraint to the ap-
proach of Howard et al. [15]. This specific constraint has not yet, to the present writer’s
knowledge, been applied to the experimental data on formamide, but the way to do this is
set out very specifically in section III of Holas and March [17].

In the absence of this necessary data on a semiempirical Dirac density matrix γs(r, r′)
constructed from experiment X-ray intensities, which we regard as the ‘ultimate’ semiem-
pirical approach, let us approach our conclusion by returning to the correlated orbital ap-
proach of CMA, in which only the experimental ionization potential is introduced semiem-
pirically. The CMA approach has been subsequently generalized off the diagonal by
Amovilli, March, and Talman [20], to form a Dirac density matrix γs(r, r′) with the CMA
density as its diagonal element γs(r, r′). We must reiterate that this γs does not satisfy
Eq. (11), since the Amovilli et al. γs is generated by a HF-like non-local potential. Never-
theless, there is a way, set out below, in which this ‘non-locally’ generated γs can be used
to make intimate contact with current DFT [1].

The essence of the approach proposed below to connect, albeit approximately, the CMA
correlated orbital theory with current DFT is to utilize the differential virial theorem de-
rived by Holas and March [21]. Essential input is then the kinetic energy tensor tij , con-
structed from the Dirac density matrix γs(r, r′) as (in atomic units)

tij =
1

4


∂2

∂ri∂r′j
+

∂2

∂rj∂r′i


γs(r, r

′)


r′=r

(12)

which leads to the force FK given by its components (FK)i as

(FK)i =
2

n(r)

3
j=1

∂tij
∂rj

. (13)

Then in Eq. (13) of Amovilli and March [22] the desired exchange-correlation potential
in Eq. (5) above is given by

Vxc(r) = −Velectrostatic(r) +
1

16π


[∇n · ∇∇2n]

n2(r′)|r− r′|
(r′)dr′

− 1

16π


∇4n(r′)

n(r′)|r− r′|
dr′ +

1

4π


∇ · FK(r′)

|r− r′|
dr′ . (14)

In Eq. (14) Velectrostatic(r) is the electrostatic potential, while, of course, to obtain Vxc(r)
exactly we need in Eq. (14) the exact ground-state density n(r) for, say, the molecule
or cluster under investigation, plus the force FK(r) determined by the Dirac idempotent
matrix γs(r, r′) through Eqs. (13) and (12).
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System Basis set LDA PBE PW91 B3LYP Best ab initioa

H− UGBS −0.54335 −0.52439 −0.52697 −0.53477 −0.52775
He UGBS −2.87217 −2.89293 −2.90005 −2.91522 −2.90372
Li UGBS −7.39838 −7.46216 −7.47423 −7.49296 −7.47806
Li− UGBS −7.43146 −7.47926 −7.49237 −7.51171 −7.50040
Be UGBS −14.52049 −14.62993 −14.64801 −14.67333 −14.66735
Ne UGBS −128.43480 −128.86640 −128.94669 −128.98096 −128.9376
H2O cc-pvqz −76.10341 −76.38317 −76.44145 −76.46961 −76.4274
LiBO cc-pvqz −107.04496 −107.53627 −107.63019 −107.69329 −107.540(5)b

Table 1. Ground-state energies for the systems studied in [5] at various lev-
els of DFT calculation and comparison with the best available variational non-
relativistic data. (a) After Refs. [23, 24, 25, 26]. (b) From diffusion quantum
Monte Carlo [5].

One use of the CMA correlated orbital theory, which is a major proposal of the present
Letter, is to now use instead of the exact n(r) entering Eq. (14) the CMA semiempirical
fine-tuned HF density. The second approximation is to note that since FK(r) appears
inside a volume integration in the final term in Eq. (14), we substitute for the idempotent
Dirac matrix γs(r, r′), which should be generated from the exact local one-body potential
V (r) in Eq. (5) via Eq. (11), the off-diagonal idempotent matrix given by Amovilli, March,
and Talman [20]. Of course, this has a QMC accuracy on the diagonal, but off the diagonal
it is generated by a non-local HF-like potential [20, 6]. It would seem of considerable
interest for the many-electron theory of molecules and solids if one can finally pull together
correlated orbital theories such as CMA or RJB with current formulations of DFT, by
means of Eqs. (12) to (14) above.
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Appendix A. Classification of available density functionals

Here, we summarize a classification of available energy density functionals into two
groups, which we term (i) heuristic (H) and (ii) possibly variationally valid (PV). One
reason for such a classification emerges directly from what is today the biggest challenge
DFT faces: the problem of a systematic development of more and more accurate density
functionals. Variational validity can be a natural part of such a development. A functional
proving to be variationally valid on a large domain of chemical systems can be an important
indicator regarding the direction of functional development [5]. A further point concerns
the comparison with quantum Monte Carlo (QMC) techniques. Nowadays, DFT and QMC
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System LDA PBE PW91 B3LYP
H− H PV PV H
He PV PV PV H
Li PV PV PV H
Li− PV PV PV H
Be PV PV PV H
Ne PV PV H H
H2O PV PV H H
LiBO PV PV H H

Table 2. Classification of the density functionals considered in [5] as heuristic
(H) or possibly variational (PV) according to results of Table 1.

are the best candidates among the existing theoretical methods which could be able to over-
come the well-known computer problems related to the use of the most accurate quantum
chemistry methods.

While it seemed natural to test the still widely used LDA, there is a degree of arbi-
trariness about the selection of the further three exchange-correlation energy functionals
considered in this review, namely the functional of Perdew, Burke and Ernzerhof (PBE)
[27], of Perdew and Wang (PW91) [28] and the Becke three parameter Lee, Yang and
Parr functional (B3LYP) [29, 30]. However, B3LYP and PBE are certainly among the
most widely used. In the literature there are several studies on the performance of these
functionals; a resumé can be found in Refs. [31, 32].

For the study in [5] some realistic electronic systems were chosen in which electron
correlation plays a significant effect. Although the strongest effects occur in the Wigner
regime, for instance in an assembly of interacting electrons weakly confined in a quantum
dot, where correlation kinetic energy could be more than 10 % of the Kohn-Sham single
particle kinetic energy [33], our attention was limited in [5] to some systems whose en-
ergy can be readily reproduced by the use of a standard package for quantum chemistry
calculations.

Table 1 then records from [5] results obtained using the above functionals for the
ground-state energies of a few selected anionic and neutral atomic systems and the two
molecules H2O and LiOB, the latter molecule having been studied by Forte et al. [34] at
the coupled cluster singles and doubles (CCSD) level. Table 2 displays the grouping of the
four functionals tested in [5].

The fact that PBE is variationally valid in all species studied is clearly the most strik-
ing conclusion in [5]. In marked contrast, for B3LYP all ground-state energies fall below
the known and highly accurate quantum-chemical results for the species studied. Thus,
some Fermion constraint is missing (which is of course beyond the formally exact frame-
work of DFT) when the analogue of the (TF) variational principle (2) is employed on
the energy density functional with a B3LYP exchange-correlation term. (Note that the
LYP correlation-energy density functional has been developed from the strongly heuris-
tic Colle-Salvetti correlation-energy formula [35, 36].) While, needless to say, B3LYP
is a huge improvement on the TF statistical functional (1), which has been known for
decades to approach the correct non-relativistic ground-state energy for neutral atoms,
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namely −0.77Z7/3 a.u., from below at large atomic number Z [3], and therefore in the
present grouping is in category H, the conclusion that B3LYP intrinsically overestimates
the exchange-correlation energy is hard to avoid [5].
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