
DOI: 10.1478/C1A1001002

AAPP | Atti della Accademia Peloritana dei Pericolanti
Classe di Scienze Fisiche, Matematiche e Naturali

ISSN 1825-1242

Vol. LXXXVIII, No. 1, C1A1001002 (2010)

ON THE STABILITY BOUNDS IN A PROBLEM OF CONVECTION
WITH UNIFORM INTERNAL HEAT SOURCE

FLORICA IOANA DRAGOMIRESCU a∗ AND ADELINA GEORGESCU b

ABSTRACT. Two Galerkin methods are applied to a problem of convection with uniform
internal heat source. With each method analytical results are obtained and discussed. They
concern the parameter representing the heating rate. Numerical results are also given and
they agree well with the existing ones.

1. Introduction

Natural convection induced by an internal heat source is a phenomenon which has been
intensively studied, especially in order to point out its influence on other processes. The
motion in the atmosphere or mantle convection are two among such phenomena [1]. They
bifurcate from the conduction state as a result of its loss of stability. A major importance is
given to thermal convection processes in terrestrial bodies driven by internal heat sources
in which the heat source is a function of time and, moreover, can vary from one terrestrial
body to another. In spite of their importance, due to the occurrence of variable coefficients
in the nonlinear partial differential equations governing the evolution of the perturbations
around the basic equilibrium, so far these phenomena were treated mostly numerically
and experimentally [2, 3]. In [4] we carried out a linear study for the eigenvalue prob-
lem associated with the equations for a convection problem with an uniform internal heat
source in a horizontal fluid layer bounded by two rigid walls [1]. Our method was based
on Fourier series expansions for the unknown functions. Numerical results and graphs
pointed out a destabilizing effect of the presence of the heat source. In [5] another two
methods based on Fourier series expansions (a Chandrasekhar functions - based method
and a shifted Legendre polynomials - based method) were used to study analytically the
eigenvalue problem deduced in [4].

In [6] a linear stability analysis for a natural convection problem induced by internal
heating is performed in order to point out the effects of the heat distribution. This is a
function of both the critical Rayleigh number and the critical wavenumber. Some non-
uniform distributions were considered along with the uniform one. It was shown that a
concentration of the heat source near the bottom boundary implies a decreasing of the
stability domain; namely it lowers the temperature difference at which the convection sets
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in. The variation of the critical wavenumber is small and there is only a slight influence of
this distribution on the size of the convection cells. When the heat source is placed near
the top boundary an enlargement of the domain of stability occurs.

Another analytical study for a problem of convection in a fluid saturated porous layer
heated internally and in the presence of a linearly varying gravity field is presented in [7]. It
was proved that the principle of exchange of stabilities holds as long as the gravity field and
the integral of the heat source have the same sign. Convection in a medium with internal
heat source was also analyzed in [8] by linear stability methods and nonlinear stability
(energy type) methods. Numerical bounds for the critical value of the control parameter,
the Rayleigh number, were given and the continuous dependence of the solution of the
initial boundary value problem on the internal heat source was proved.

In [1] a horizontal layer of viscous incompressible fluid with constant viscosity and
thermal conductivity coefficients is considered. The performed numerical investigation
concerned the vertical distribution of the total fluxes and their individual components for
small and moderate supercritical Rayleigh number in the presence of a uniform heat source.
In this context, the heat and hydrostatic transfer equations are [1]

η = k
∂2θB
∂z2

, (1)

dpB
dz

= −ρBg, (2)

where η = const. is the heating rate, θB , pB and ρB are the potential temperature, pressure
and density in the basic state. In the fluid, the temperature at all point varies at the same
rate as the boundary temperature, so the problem is characterized by a constant potential
temperature difference between the lower and the upper boundaries ∆θB = θB0 − θB1 .
Taking into account (1) this leads to the following formula for the potential temperature
distribution [1]

θB = θB0 −
∆θB
h


z +

h

2


+

η

2k


z2 −

h2

2

2
. (3)

In nondimensional variables the governing system of equations is
dU

dt
= −∇p′ +∆U+Grθ′k,

divU = 0,
dθ′

dt
= (1−Nz)Uk+ Pr−1∆θ′,

(4)

where U = (u, y, w) is the velocity, θ′ and p′ are the temperature and pressure deviations
from the basic state [6], Gr is the Grashof number, Pr is the Prandtl number and N is a
dimensionless parameter characterizing the heating (cooling) rate of the layer.

The boundaries are considered rigid and ideal heat conducting, so the boundary condi-
tions read

U = θ′ = 0 at z = −1

2
and z =

1

2
. (5)

In [4] in order to deduce the eigenvalue problem we considered the viscous incompressible
fluid confined into a rectangular box bounded by two rigid walls: V : 0 ≤ x ≤ a1,
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0 ≤ y ≤ a2, −1

2
≤ z ≤ 1

2
. We assumed that any unknown function in (4) is of the form

from [9]
f(x, y, z) = F (z)exp


i

2πm′ x

a1
+ 2πn′ y

a2


,

m =
2πm′

a1
, n =

2πn′

a2
, where a1 =

L

H
, a2 =

l

H
, L and l are the box sizes. Here m′ ≥ 1

and n′ ≥ 1 are the number of cells in the x and the y direction.
Another possibility is to assume disturbances periodic in x (period 2π/α) and y (period

2π/β), with a growth rate σ, also of the form

f(x, y, z) = F (z)exp

σt+ iαx+ iβy


.

In this case, a subsequent investigation will concern the condition in which the principle of
exchange of stabilities is valid.

In this paper, we treat only the stationary case and this implies that the principle of
exchange of stabilities is valid. We complete our analytical study from [4], [5] with some
remarks on the spectral methods used to solve the eigenvalue problem governing the linear
stability of the basic state for the convection problem with uniform internal heat source.

The eigenvalue problem associated with the equations (4)-(5) in a horizontal fluid layer
bounded by two rigid walls, governing the stability of the basic motion against normal
mode perturbations, deduced by us in [4] has the form

(D2 − a2)2W = Θ,
(D2 − a2)Θ = −a2R(1−Nx)W

(6)

with the boundary conditions

W = DW = Θ = 0 at x = ±1

2
. (7)

Here the Rayleigh number R = Gr ·Pr represents the eigenvalue, while W,Θ, the ampli-
tudes of the perturbations for the velocity and the temperature field respectively, form the
corresponding eigenvector (W,Θ).

2. On the convergence of the Galerkin method

In this section, we reveal some aspects of the convergence of the Galerkin method, one
of the most used method for converting a differential operator boundary value problem to
a discrete one.

There are more than one analytical possibilities to solve the system (6)-(7). However,
some remarks on the convergence of the system are in order. First, let us perform a trans-

lation of variables z = x+
1

2
, such that the problem (6) becomes

(D2 − a2)2W −Θ = 0,
(D2 − a2)Θ + a2R(N1 −Nz)W = 0,

(8)

with N1 = 1 +
N

2
and the boundary conditions

W = DW = Θ = 0 at z = 0 and 1. (9)
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The equations from (8) can be considered as a particular case of a more general eigen-
value problem with variable coefficients [10]

(D2 − a2)2W = f(z)Θ,
(D2 − a2)Θ = −a2Rg(z)W,

(10)

on 0 ≤ z ≤ 1.
The mathematical problem reads: for given f(z) and g(z) (in our case f(z) = 1 and

g(z) = N1−Nz) determine the minimum real positive R over all real positive a for which
there exists a nonnul solution of the system (10)-(9).

Following Kolomy [11] the convergence of the Galerkin method can be considered for
the sixth-order equation (D2 − a2)3W = −a2R(N1 −Nz)W obtained by eliminating Θ
between the two equations from (10). The following result holds:

Proposition 1. The operator L = (D2 − a2)3 is not symmetric in the sense of an L2(0, 1)
inner product on a space of functions satisfying W = D2W = (D2 − a2)2W = 0 at
z = 0, 1.

In order to prove Proposition 1, consider the inner product (LW,W ∗) in L2(0, 1) with
W,W ∗ functions from DL,

DL := {U ∈ L2(0, 1)|U = D2U = (D2 − a2)2U = 0 at z = 0, 1}.
The operator L is said to be symmetric if (LW,W ∗) = (W,LW ∗) for any W,W ∗ ∈ DL.
In our case, by direct integration by parts it can be proven that (LW,W ∗) = (W,LW ∗).
However, W ∗ is not a function from DL, namely W ∗ satisfies boundary conditions of the
type

W ∗ = D2W ∗ = D(D2 − a2)W ∗ = 0 at z = 0, 1, (11)
whence Proposition 1.

In [4] the quoted sixth order equation together with the boundary conditions (11) was
investigated using spectral methods based on trigonometric Fourier series and good numer-
ical results were obtained.

Consider the eigenvalue problem (6)-(7). Rescalling (6) by the factor
1

λ
, λ = a2R, the

eigenvalue problem can be written in the form Aw − λKw = 0, with

A =


(D2 − a2)2 0

0 (D2 − a2)


, K =


0 1

Nx− 1 0


. (12)

Here w ∈ DA, with D(A) the definition domain of the matricial differential operator A
given by

DA :=

w = (W,Θ) ∈


L2


− 1

2


,
1

2

2

|W = DW = Θ = 0 at z = −1

2
,
1

2


.

The following convergence result was proved.

Theorem 1. [10] Let λ be a parameter in the equation

Aw − λKw = 0, (13)

where A and K are linear operators, and the domain of A, DA, is a linear manifold that
is dense in a Hilbert space H with the inner product (·, ·). Let DA be contained in the
domain of K, and assume that the following conditions are fulfilled:
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a) the operator A is a positive-definite, selfadjoint operator; that is (Au, u) > 0 and
(Au, v)− (v,Au) = 0;

b) the operator A−1K can be extended to a completely continuous operator on the
Hilbert space Hn, where Hn is the completion of DA under the norm (Au, u)1/2.

Then the Galerkin method for calculating the eigenvalues of (13) is a convergent process
in Hn.

Using the definitions of the matricial differential operators, all the conditions of the the-
orem are satisfied so, the Galerkin method for computing the eigenvalues of (6) converges
in the norm of H0, with H0 the Hilbert space obtained by completing DA (which is a
preHilbert space) to a Hilbert space.

Remark. Similarly, the convergence can be proved in the case of L2(0, 1).

3. Galerkin type spectral methods

The expansion functions used for the unknown fields encountered in various convec-
tion problems from hydrodynamic stability theory must have a basic property: they must
be easy to evaluate. Trigonometric and polynomial functions have this property. A sec-
ond requirement is the completeness of the sets of expansion functions. This assures that
each function of the given space can be written as a linear combination of functions from
the considered set (or, more likely, as a limit of such a linear combination). The Cheby-
shev polynomials, the Legendre polynomials, the Hermite functions, the sine and cosine
functions, satisfy this condition.

In the Galerkin approach used here the basis (trial) functions satisfy the boundary con-
ditions. In this case, following Rama Rao [12], the simplest choice seems to be to writing
W and Θ as

W =

∞
m=0

amh1m(x), Θ =

∞
m=0

bmh2m(x), (14)

where h1m(x) = (1− 4x2)m+2, h2m(x) = (1− 4x2)m+1. With this choice, the unknown
functions W and Θ satisfy the boundary conditions (7). Replacing these expressions in
(6) and imposing the condition that the obtained equations are orthogonal to h1n(x) and
h2n(x) respectively, n ∈ N we obtained an algebraic system in the unknown coefficients
am and bm. The condition that these coefficients are nonnull gives us the secular (dis-
persion) equation. However, an important remark is in order: the physical parameter N
representing the heating (cooling) rate is missing from this equation.

Let us mention that the method is used in Ramma Rao [12] in a convective instability
problem of a heat conducting micropolar fluid layer situated between two rigid boundaries.
In order to investigate the critical values of the Rayleigh number at which instability sets
in the most rough approximation is taken, with only one term for each expression from
(14), so the approximate values of R are also crude. Nevertheless, in our case, for this
approximation, in the classical case of Bénard convection, corresponding to N = 0, the
critical value of the Rayleigh number R is R = 1705.715 for a = 3.17, which is a very
good approximation compared to the well-known value from Chandrasekhar [13]. We can
conclude that this approximation works with good results only in the classical case.
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A mathematical explanation for the absence of the parameter N could be that the chosen
set of expansion functions introduced an extraparity in the problem, leading to the loss of
one of the physical parameter, in this case the heating (cooling) rate N .

In [5] we considered also a basis of some hyperbolic functions for the expansion of the

unknown function W , i.e. W =
∞

n=1
W 1

nCn(x). For this choice the physical parameter N

was not present in the dispersion equation. This is why, we assume that a more suitable
choice is to consider the general case

W (x) =

∞
n=1

W 1
nCn(x) +W 2

nSn(x),

where Cn and Sn are the Chandrasekhar sets of functions defined in [13]

{Cn}n∈N, Cn(z) =
cosh(λnz)

cosh(λn/2)
− cos(λnz)

cos(λn/2)
,

{Sn}n∈N, Sn(z) =
sinh(µnz)

sinh(µn/2)
− sin(µnz)

sin(µn/2)
,

(15)

with λn, µn given in [13] by explicit values for n = 1, 2, 3, 4 and by a recurrence relation
for n > 4.

From (6)2 we obtain the expression of the unknown function Θ,

Θ(x) = −a2R

2
i=1

Θi(x) +A cosh(ax) +B sinh(ax)

with A,B deduced from the boundary conditions Θ

± 1

2


= 0. The functions Θi(x),

i = 1, 2, ..., 4, depending on the coefficients W 1
n and W 2

n , have the form



Θ1(x) =
∞

n=1

W 1
n(Nx− 1) cosh(λnx)

(λ2
n − a2) cosh(λn/2)

− 2NλnW
1
n sinh(λnx)

(λ2
n − a2)2 cosh(λn/2)


;

Θ2(x) =
∞

n=1

W 1
n(Nx− 1) cos(λnx)

(λ2
n + a2) cos(λn/2)

− 2NλnW
1
n sin(λnx)

(λ2
n + a2)2 cos(λn/2)


;

Θ3(x) =
∞

n=1

W 2
n(Nx− 1) sinh(µnx)

(µ2
n − a2) sinh(µn/2)

− 2NµnW
2
n cosh(µnx)

(µ2
n − a2)2 sinh(µn/2)


;

Θ4(x) =
∞

n=1

W 2
n(Nx− 1) sin(µnx)

(µ2
n + a2) sin(µn/2)

+
2NµnW

2
n cos(µnx)

(µ2
n + a2)2 sin(µn/2)


.
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Let us replace this expression in (6)1. The orthogonality relation on Cm, Sm, m ∈ N
imposed by the Galerkin procedure led us to an algebraic system for the unknown coeffi-
cients W 1

n and W 2
n

∞
n=1

W 1
n [(λ

4
n + a4)δnm − 2a2Tnm]− 2a2W 2

nUnm =
4

i=1

CΘi
+

2
k=1

Ck
m;

∞
n=1

−2a2VnmW 1
n +W 2

n [(µ
4
n + a4)δnm]− 2a2Pnm =

4
i=1

SΘi +
2

k=1

Sk
n,

(16)

with

Tnm = (C ′′
n , Cm); Unm = (S′′

n, Cm); Vnm = (C ′′
n , Sm); Pnm = (S′′

n, Sm)

and

C1
m =

 1/2

−1/2

cosh(ax)Cm(x); C2
m =

 1/2

−1/2

sinh(ax)Cm(x);

S1
m =

 1/2

−1/2

cosh(ax)Sm(x); S2
m =

 1/2

−1/2

sinh(ax)Sm(x);

CΘi =

 1/2

−1/2

Θi(x)Cm(x); SΘi =

 1/2

−1/2

Θi(x)Sm(x).

This time, the secular equation depends on N and it follows from the condition that not all
these coefficients vanish. Numerical values of the Rayleigh number are then obtained and
displayed in Table 1 in comparison with previous results.

N a2 Ra- [4] Ra − here
0 9.711 1715.079324 1708.54
1 9.711 1711.742588 1651.04
2 9.711 1701.891001 1609.12
1 10.0 1712.257687 1651.1
4 10.0 1664.341789 1560.8
4 12.0 1685.422373 1739.2
10 9.0 1482.527042 1366.02
11 9.0 1446.915467 1366.05
12 9.00 1411.401914 1354.7

Table 1. Numerical evaluations of the Rayleigh number for various values of the parameters N and a.

For the eigenvalue problem (8)-(9), in [5], in order to avoid the loss of the parameter N
different sets of orthogonal functions based on polynomials, namely on shifted Legendre
polynomials (SLP) on [0, 1] were proposed. The method is similar to the one presented

here. Instead of {h1m(x)}m and {h2m(x)}m from L2

− 1

2
,
1

2


, we used the orthogonal

sets from L2(0, 1),

{βm(z)}m : βm(z) =

 z

0

 s

0

Qm+1(t)dtds =
1

4

 Qm+3 −Qm+1

(2m+ 3)(2m+ 5)
− Qm+1 −Qm−1

(2m+ 1)(2m+ 3)


,

and

{φm(z)}m : φm(z) =

 z

0

Qm(t)dt =
Qm+1 −Qm−1

2(2m+ 1)
,

respectively, with Qm the classical Legendre polynomials defined on [−1, 1].
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In this case, the expression of the secular equation contains the physical parameter N ,
so good numerical evaluations of the Rayleigh number for various values of N and a were
obtained.

In [14], a general Galerkin type method is proposed for the problem written in the
general form (10)-(7). The unknown function Θ is written as a Fourier series [14] of the
form

Θ =

∞
m=1

Am cos(pmz) +Bm sin(qmz), (17)

where pm = (2m−1)π, qm = 2mπ which implies that Θ satisfies the boundary conditions
(9). The expression of Θ, introduced in (10)1 leads to an expression of W in the form

W =
∞

m=1
Amfm(z)+Bmgm(z) in which the boundary conditions (7) are also considered

in order to find Am and Bm. However, in our case, the function f(z) is a constant one and
the application of the method in this form to (6)-(7) does not lead to a correct expression
of W .

4. Conclusion

In this paper a problem of convection with uniform internal heat source is investigated.
We complete a previous analytical study [4], [5] with some comments on the choice of the
expansion functions and their importance for the convergence of the Galerkin method. The
importance of the form of the system of ordinary differential equations which describes the
eigenvalue problem governing the linear stability of the stationary solution with respect to
this choice is pointed out. We present numerical results for the new introduced methods
which are similar to the ones obtained before.

The main conclusion of our analytical and numerical study performed in this paper and
the previous ones is that the choice of subspaces of trial functions with respect to whom
the approximation problems are solved influences the form of the algebraic system and
also the numerical evaluations. The good numerical results obtained for small values of
the spectral parameter are justified by the accuracy of spectral methods.
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