
DOI: 10.1478/AAPP.91S1A6

AAPP | Atti della Accademia Peloritana dei Pericolanti
Classe di Scienze Fisiche, Matematiche e Naturali

ISSN 1825-1242

Vol. 91, Suppl. No. 1, A6 (2013)

NONLINEAR WAVE INTERACTIONS FOR QUASILINEAR
HYPERBOLIC 2× 2 SYSTEMS

CARMELA CURRÒ a∗ AND DOMENICO FUSCO a

ABSTRACT. A reduction approach based upon the combined use of differential constraints
theory and hodograph method is developed in order to determine closed form solutions
for 2 × 2 hyperbolic quasilinear nonhomogeneous models. The problem of integrating
the standard linear hodograph system associated with 2 × 2 homogeneous models is also
considered. Along the lines of the proposed reduction approach different examples of 2×2
governing models are analyzed in order to highlight the flexibility of the provided solutions
to describe hyperbolic wave processes.

Dedicated to Prof. G. Grioli on occasion of his 100th birthday.

1. Introduction

Quasilinear hyperbolic nonhomogeneous and autonomous systems of first order PDEs
involving two dependent and two independent variables (2 × 2) play a prominent role in
several physical and engineering applications where dissipative effects must be also taken
into account in the hyperbolic wave dynamics. A striking feature of these mathematical
models is that, under assumption of strict hyperbolicity, they can be recast into a form
which expresses the evolution of a privileged set of field variables, the Riemann variables,
along the related characteristic curves. As well known the homogeneous (non dissipative)
2 × 2 models can be linearized through the classical hodograph transformation although
the solution of the resulting pair of linear equations as expressed in terms of the Riemann
function is of very limited use in describing one dimensional wave processes. Hence over
the years attention was focused on developing appropriate reduction methods for integrat-
ing the hodograph system in a closed form [1, 2, 3]. If the governing balance laws are not
conservative then for the resulting 2×2 non homogeneous system of PDEs direct reduction
to linear form through the standard hodograph transformation is no longer possible so that
alternative linearizing approaches have been proposed through the use of direct methods
[4, 5] or of group methods [6, 7]. In view of determining exact wave-like solutions to
nonhomogeneous 2× 2 models which incorporate all the features of the classical Riemann
invariants and of the classical simple waves as those satisfying the linear hodograph equa-
tions associated to homogeneous systems, recently in [8] there was proposed an approach
based on the combined use of the hodograph method and of the differential constraints
technique. This approach proves to be an effective tool for integrating the highly nonlinear
hodograph system which arises from the non conservative set of field balance equations.
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As for many reduction techniques, an inherent aspect in this method is the possibility of se-
lecting structural forms of the response functions involved in the constitutive laws (model
constitutive laws) related to a given system of balance equations. In the latter context the
resulting exact solutions also provide a mathematical vehicle for validating governing sys-
tems of interest in physical applications. It is to be also noticed that the leading lines of
the method in point permit a complete and accurate description of the wave interaction to
classes of 2× 2 strictly hyperbolic and homogeneous systems which encompass a number
of relevant mathematical models to wave propagation (see [9]).

Here we consider the following quasi-linear hyperbolic system of first order PDEs

Ut +A (U)Ux = B (U) (1)

where U =

u1 , u2

T
, A, B are matrix coefficients while x and t denote, respec-

tively, space and time coordinates. The strict hyperbolicity of (1) requires the matrix A
to admit two real distinct eigenvalues λ and ν with corresponding left l(λ), l(ν) and right
d(λ),d(ν) eigenvectors. Hereafter we assume l(λ) · d(λ) = l(ν) · d(ν) = 1. Along the
lines of the investigation worked out in [10, 11] we append to (1) a first order differential
constraint of the form

l(λ) ·Ux = p (U, x, t) (2)

where the function p (U, x, t) is to be determined and in fact defines the class of searched
solutions. The paper is organized as follows. In Section 2 we write the over-determined
system (1) and (2) in terms of Riemann field variables and then we use the standard hodo-
graph transformation in order to recast the resulting hodograph system into a quasi-linear
form. The main steps of consequent resulting consistency process are illustrated. Within
the proposed theoretical framework later it is also revisited the problem of integrating in a
closed form the standard linear hodograph system arising from the classical 2 × 2 homo-
geneous models. Next in Section 3 attention is focused on the traffic flow model proposed
in [12]. Here we consider two simple waves travelling along different families of charac-
teristic curves and we illustrate in detail the alteration in the profiles as well as in the wave
time distortion of the emerging pulses caused by the interaction process. Furthermore in
Section 4 it is considered a special class of nonhomogeneous 2 × 2 models for which the
reduction approach under interest provides exact solutions which result to be also appro-
priate to describe simple wave-like evolution. The interaction of quasi-simple waves is
investigated thoroughly for the governing system of nonlinear transmission lines [13] for a
special form of the material response functions therein involved. It is shown that soliton-
like superposition [2] of pulses travelling in opposite direction may also occur. Section
5 is mainly devoted to point out that the reduction theoretical framework outlined in this
paper can be also relevant to investigate wave problems and especially wave interactions
ruled hyperbolic models more general than those 2 × 2. Actually we consider multicom-
ponent quasilinear homogeneous systems which can also involve more space variables. As
well known, despite generalized hodograph methods have been proposed for diagonaliz-
able and semi-Hamiltonian (1+ 1) homogeneous systems with an arbitrarily large number
of components [14], in general it is a hard task to determine solutions in a closed form
to initial value problems in order to achieve an exact description of wave interaction pro-
cesses. Here, along the lines of the general procedure worked out in [15] as well as of
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the reduction method developed in Section 2, we are able to describe special wave pro-
cesses by determining exact solutions to the full set of governing field equations through
integrating an auxiliary strictly hyperbolic 2× 2 homogeneous subsystem which arises as
an intermediate step from the resulting reduction process. Finally Section 6 consists of
conclusions and some general remarks.

2. Exact solutions via hodograph method and differential constraints

In this Section we outline the reduction procedure recently developed in [8, 9] by the
authors in order to find exact solutions to quasilinear hyperbolic systems of form (1). The
method combines the hodograph transformation and the differential constraints theory and
also provides a useful tool for generating wave-like solutions in a closed form which result
to be appropriate for describing the interaction of nonlinear waves. By means of a standard
procedure [16] for the system (1) the Riemann variables R and S can be introduced

R (U) =


l(λ) · dU S (U) =


l(ν) · dU (3)

whereupon the system (1) along with the differential constraint (2) can be recast into the
following characteristic form

Rt + λRx = l(λ) ·B =C (R,S) , St + νSx = l(ν) ·B =D (R,S) (4)

Rx = p (R,S, x, t) (5)

By direct inspection, it is easy to ascertain that the compatibility of (4) and (5) requires the
following conditions to be satisfied

p (C − λp)R = pt + λpx + (C − λp) pR +DpS

(6)

(C − λp)S + νpS = 0.

In [8] there has been proved the following
Proposition. Let

Ut +A (U)Ux = B (U) (1)

be a quasilinear strictly hyperbolic 2 × 2 system endowed with the differential constraint
(2), then the solution of (1) in the hodograph plane (R,S) satisfies the following quasilinear
first order system

xS =


λ− C

p


tS , xR =

D

p
tS + νtR

(7)

DtS + (p (ν − λ) + C) tR = 1
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or alternatively when p = 0

t (R) =


1

C (R)
dR

(8)
CxR +DxS = ν.

Proof. Through the standard hodograph transformation

x = x (R,S) , t = t (R,S) , J =
∂ (x, t)

∂ (R,S)
̸= 0 (9)

the system of equations (4)-(5) reduces to

xS = λtS − JC, xR = νtR + JD (10)

tS = pJ (11)

so that owing to (6) the two possible forms (8) or (7) arise. □

It is worth noticing that in a different way from the constraint free case where the hodo-
graph transformation reduces the original 2× 2 nonhomogeneous quasilinear model to the
highly nonlinear first order pair of hodograph equations (10), within the present reduc-
tion approach appending the constraint equation (2) to (1) in fact defines a strategy for
integrating the resulting hodograph system in a closed form.

Recently in [9] the 2 × 2 homogeneous systems associated to (1) (B = 0) has been
considered. Here, despite the inherent linearity of the associated hodograph system, it
is well known that the classical Riemann method provides in the hodograph plane exact
solutions of direct use in wave problems only in a few cases so that several reduction
methods have been developed for solving initial or boundary value problems. Hence the
problem of generating closed form wave-like solutions to the standard linear hodograph
system has been faced in a systematic way by means of the approach we developed hitherto.
In particular we proved the following

Proposition. Let

Ut +A (U)Ux = 0 (12)

be a quasilinear strictly hyperbolic 2 × 2 homogeneous system with eigenvalues λ and ν
satisfying the condition

∇


∇λd(λ)

ν − λ
+

∇

∇λd(λ)


d(ν)

∇λd(ν)


d(ν)+

(13)

(∇λd(ν))(∇λd(λ))

(ν − λ)2
+

∇

∇λd(λ)


d(ν)

ν − λ
= 0
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then the solution to (12) in the hodograph plane (R,S) is given by

t (R,S) = Φ (R,S)


Λ (R,S) (Z (S)−M (R,S)) +

dZ

dS
−MS


(14)

x (R,S) = Φ (R,S)


(λΛ (R,S)− λS) (Z (S)−M (R,S)) + λ


dZ

dS
−MS


where

Φ (R,S) = exp


λR

ν − λ
dR


, Λ (R,S) =

λSS

λS
+

 
λR

ν − λ


S

dR

(15)

M (R,S) =


Ψ(R,S)

γ (R)λSΦ (R,S)
dR, Ψ(R,S) = exp


λS

λ− ν
dS


with Z (S) and γ (R) being arbitrary functions.

Proof. Here by limiting ourselves to the non trivial case λS ̸= 0 where the governing
system (12) written in terms of the Riemann variables decouples, we recast relation (13) in
the characteristic form

λRS

λS
+

λR

ν − λ


S

+
λRS

ν − λ
+

λRλS

(ν − λ)
2 = 0. (16)

Then, by taking (16) into account the equations (6) can be easily solved so that we get

p (R,S, x, t) = γ (R)


γ (R)


λRS

λS
+

λR

ν − λ


x+ (17)

γ (R)


λR − λ


λRS

λS
+

λR

ν − λ


t+ exp


λS

λ− ν
dS

−1

.

Furthermore integration of equations (7) along with (17) gives rise to

x− λt = λSΦ (R,S) {M (R,S)− Z (S)} (18)

t (R,S) = Φ (R,S)


Λ (R,S) (Z (S)−M (R,S)) +

dZ

dS
−MS


. (19)

Then the relations (18) and (19) give the solution (14) provided that condition (13) holds.
□

The solution (14) involves the arbitrary functions Z (S) and γ (R) and this is useful
for solving initial and/or boundary value problems so that the study of nonlinear wave
interactions can be carried on. As well known, an exhaustive description of nonlinear wave
interactions can be performed only if the explicit evaluation of the characteristic wavelets
α (x, t) = const and β (x, t) = const associated to (1) and ruled by the following equations

C(λ) : αt + λαx = 0 , C(ν) : βt + νβx = 0 (20)

α (x, 0) = β (x, 0) = x
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is obtained. Within the latter theoretical framework in [8] a special class of nonhomoge-
neous models allowing for simple wave-like interactions has been considered, whereas in
a recent paper [9] the wave interaction problem for 2 × 2 homogeneous systems has been
exhaustively investigated by means of exact solutions to initial value problems. In line
with the systematic analysis developed in [8, 9], in the next sections we’ll consider exact
solution to special initial value problems for different examples of 2×2 governing models.

3. Traffic flow: Rascle model

We consider the 2×2 hyperbolic system of balance laws introduced in [12] for describ-
ing traffic flow

∂ρ

∂t
+

∂

∂x
(ρv) = 0 (21)

∂y

∂t
+

∂

∂x
(yv) = 0

where ρ (x, t) and v (x, t) are, respectively, the density and the velocity of the cars on the
roadway while y = ρ (v + P (ρ)) . The model (21) has been first introduced by Aw &
Rascle in order to preserve the anisotropic character of the traffic flow. The function P (ρ)
is smooth and strictly increasing and it satisfies

P (0) = 0, lim
ρ→0

ρP ′ (ρ) = 0, ρP ′′ (ρ) + 2P ′ (ρ) > 0 ∀ρ > 0. (22)

The last assumption ensures strict hyperbolicity. A standard form for the function P (ρ) is
P (ρ) = ργ , γ > 0. The characteristic wave speeds associated to (21) are

λ = v, ν = v − ρP ′ (ρ) (23)

with corresponding left eigenvectors

l(λ) =

P ′ (ρ) ; 1


; l(ν) =


0; 1


(24)

If ρ > 0 the ν−wave is genuinely nonlinear and the λ−wave is linearly degenerate [17].
The greatest eigenvalue λ is equal to the flow speed v so that the anisotropic character of
the traffic is strictly preserved. The homogeneous governing system (21) does not take
into account any dissipation which is inherent in these problems. Upgraded models were
considered in later papers [18, 20] and recently in [19] a nonhomogeneous model has been
investigated within the context of differential constraints theory and several generalized
Riemann problems have been solved. However it has to be remarked that, owing to the ba-
sic modelling assumptions (22), the hyperbolic governing system in point possesses a wave
speed which is always exceptional (as the material wave speed in fluid dynamics) while the
other wave speed never does. Because of (24) the Riemann variables (3) specialize to

R = v + P (ρ) , S = v (25)
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The integration of the associated hodograph system yields the following classes of closed
form solutions in terms of Riemann invariants

t (R,S) =


f ′ (R− S)

Γ (R)
dR+ Z ′ (S)

(26)

x (R,S) =


Sf ′ (R− S) + f (R− S)

Γ (R)
dR+ SZ ′ (S)− Z (S)

where f (R− S) =
1

ρ
, Z (S) is an arbitrary function and

p (R,S) =
Γ (R)

f (R− S)
(27)

is the constraint p−function. In view of describing in the (x, t)− plane the interaction
of two simple waves travelling along characteristic curves of different type , we assume
that at t = 0, the C(λ) travelling pulse occupies the region xl ≤ x ≤ −xf and the C(ν)

travelling pulse the region xf ≤ x ≤ xr (see Figure 1). Both pulses separate regions of
constant states, furthermore we suppose λ > ν > 0 and we assume the initial data smooth
functions as follows

R (x, 0) = R (x) =


R1 x < xl

ω (x) xl ≤ x ≤ −xf

R2 x > −xf

(28)

S (x, 0) = S (x) =


S1 x < xf

ζ (x) xf ≤ x ≤ xr

S2 x > xr

ω (xl) = R1, ω (−xf ) = R2, ζ (xf ) = S1, ζ (xr) = S2.

Moreover, owing to the differential constraint (5) along with (27), the initial data R (x)
and S (x) must satisfy the condition

Γ (R (x)) = R′ (x) f (R (x)− S (x)) .

In the (x, t)−plane there are several distinct simple wave regions where the characteristic
wavelets x− λt, x− νt can be explicitly calculated so that we are able to achieve an
exhaustive analysis of the nonlinear wave interaction in point by investigating the alteration
in the profile as well as in the wave time distortion of the emerging pulses. Here we
consider firstly the regular pulse propagating along the characteristic C(λ) associated to
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the linearly degenerate eigenvalue λ and we have (see Figure 1)

REGION II

 R = ω (α) , S = S1 xl ≤ α ≤ −xf , xl ≤ β ≤ xf

x− λ (ω (α) , S1) t = α
(29)

REGION V



R = ω (α) , S = S2 xl ≤ α ≤ −xf , β ≥ xr

x− λ (ω (α) , S2) t = α+ Ir (α)

Ir (α) =
 xr

α


1− f(R(ξ)−S2)

f(R(ξ)−S(ξ))


dξ

(30)

It has to be remarked that, as it is expected and according to the general analysis developed
in [9], from (30) it follows that the travelling simple wave associated to the exceptional
eigenvalue λ never evolves into a shock. Furthermore, in the special case S1 = S2 = S0

(red lines in Figure 1) we find Ir =

 xr

xf


1− f (R2 − S0)

f (R2 − ζ (ξ))


dξ = const so that the

only effect of the interaction ( region IV ) on the right emerging wave is to produce a
profile which would correspond to the initial conditions at t = 0

R (x) =


ω (x− Ir) xl + Ir ≤ x ≤ −xf + Ir

R0 otherwise
(31)

S (x) =


ζ (x) xf ≤ x ≤ xr

S0 otherwise

that is a change in the origin of x in the original pulse (dashed red lines) and the interaction
is in fact soliton-like [2, 21].
Next we consider the simple wave corresponding to a regular pulse propagating along the
characteristic C(ν) and in this case we have (see Figure 1)

REGION III

 R = R2, S = ζ (β) , −xf ≤ α ≤ xr, xf ≤ β ≤ xr

x− νt = β
(32)

REGION VI



R = R1, S = ζ (β) , α ≤ xl, xf ≤ β ≤ xr

x− νt = β + Il (β)

Il (β) =
 β

xl


f(R1−S(β))
f(R(ξ)−S(ξ))

f ′(R(ξ)−S(β))
f ′(R1−S(β)) − f(R(ξ)−S(β))

f(R(ξ)−S(ξ))


dξ

(33)

Here the critical time associated to the C(ν) travelling pulse in absence of interaction
(t

(III)
c ) and the critical time after the interaction process (t

(V I)
c ) are related as follows
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[9]

t(V I)
c = t(III)c −min

β


1

νSζ ′ (β)

dIl (β)

dβ


(34)

with νS =
2P ′ (ρ) + ρP ′′ (ρ)

P ′ (ρ)
> 0. From (34) it follows that the wave time distortion due

to the interaction is strictly related to the choice of the initial data R (x, 0) and S (x, 0).
For the particular choice P (ρ) = ργ , R1 = R2 = R0 we have

t(V I)
c = − 1

νS


1

ζ ′ (β)
+

γ + 1

γ

 −xf

xl

ρ (ω (ξ) , S1) (R0 − ω (ξ))

(ρ (ω (ξ) , ζ (β)))
1+2γ dξ


. (35)

Finally, in order to illustrate the interaction process as well as the wave behavior described
hitherto, we consider the numerical solutions of the system (21) with initial data simulating
two simple waves travelling along different families of characteristic curves. In particular
the simple wave travelling along the C(λ) curve, obtained when S =const, is a contact
discontinuity corresponding to situations where each car just follows the leading car at the
same speed. The simple wave travelling along the C(ν) curve, obtained when R =const,
describes the more realistic situation of a regular pulse (if t < tc) with speed dependence
of car density v = v (ρ). Here we have considered a travelling simple wave connecting
smoothly the left constant state (R0, S1) with the right constant state (R0, S2) and simu-
lating a rarefaction-like wave (S1 < S2) so that, as well known and in line with (35), in
absence of interaction (ω (x) = R0) it never evolves into a shock wave. In Figure 2 and
in Figure 3 we show the resulting interaction process which simulates a situation where an
amount of fast cars running towards slow cars results in the fast cars slowing down and the
slow cars speeding up. We notice that, as it is expected from (35), no critical time occurs
for the rarefaction-like wave.

4. Nonlinear transmission lines: quasi-simple waves interactions

In a different way from 2 × 2 quasilinear hyperbolic homogeneous systems of PDEs,
for governing models involving source-like terms as in (1) the Riemann variables are no
longer invariant along the associated family of characteristic curves so that direct use of
standard hodograph transformation does not permit to investigate thoroughly the interac-
tion of waves.

Here we consider the special case where the system (4) takes the form:

Rt + λRx=C (R) , St + νSx=D (S) . (36)

Let α and β be the left and right propagating characteristic wavelets defined in (20); we
set R (α) =


dR

C (R)
− t, S (β) =


dS

D (S)
− t (37)

so that it is straightforward to ascertain that along the characteristics associated to (36)R (α) and S (β) behave as Riemann invariants.
Next we prove that the combined use of the involutive differential constraint (2) and of
the hodograph transformation allows us to construct explicit solutions to (36) in the en-
tire domain where existence is expected to hold. These solutions expressed in terms of
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t

xf xr−xfxl

I

IV

III
II

V

V I

C(λ)

C(ν)

R0, S1 R0, S1 R0, S2ω (x) ζ (x)

Figure 1. Qualitative behavior in the (x, t)−plane of the interaction between
two simple waves travelling along different characteristic curves. The initial data
for R (x) and S (x) are as in (28) with R1 = R2 = R0. The red lines would
correspond to the choice S1 = S2 = S0 when the interaction is soliton-like [2].
The dashed lines evidentiate that the emerging pulse in fact behaves as it results
to be generated by the initial data (31).

the “Riemann-like invariants” (37) turn out to be useful to investigate nonlinear wave pro-
cesses.

Through the change of variables

R = R
 R, S , S = S

 R, S (38)

the relations (7) specialize to

xS = λtS , x R = νt R (39)

t R =
C

p (ν − λ)
. (40)

Hence the set of equations (6) selects all possible structural conditions to be obeyed by
λ, ν, C (R) , D (S) and consequently the compatible forms of the constraint function p in
order to make consistent the reduction process in point. Once p is determined, insertion
in (40) allows us to obtain special classes of solutions in a closed form to the nonlinear
governing model in point. Because of their inherent wave features these solutions can be
of direct use in studying nonlinear superposition of regular pulses.

For a complete list of all resulting cases we refer to [8]; here, by way of illustration, we
consider a possible model of physical interest. Within mathematical modelling of nonlinear
dissipative transmission lines, in applications where electromagnetic pulses propagating
at finite wave speeds have to be taken into account the following hyperbolic system is
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Figure 2. Simulation of two interacting simple waves travelling in the posi-
tive x-direction. The numerical solution of (21) with model laws P (ρ) = ρ
is obtained with initial data S (x) = 85 + 4 tanh (x) , R (x) = 155 +
2 sech (0.1 (x+ 70)) .

assumed [13]

L
∂u

∂t
+

∂v

∂x
= −ru

(41)

g (v)
∂v

∂t
+

∂u

∂x
= f (v)

where L is the constant inductance, r the constant resistance, g (v) the capacitance, f (v)
the conductance whereas u (x, t) and v (x, t) denote, respectively, current and voltage.
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Figure 3. 3D-plots of nonlinear wave interaction of two simple waves. The
profile for density ρ (x, t) is obtained with the same initial data as in Figure 2.

The model (41) has been recently investigated in [22] where several Generalized Riemann
Problems have been solved by a combined use of the differential constraints approach and
of the method of characteristics. Furthermore, functional forms for the material response
functions f (v) and g (v) have been also characterized.

The characteristic wave speeds associated to (41) are

λ =
1

Lg (v)
; ν = − 1

Lg (v)
(42)

with corresponding left eigenvectors

l(λ) =


1;


g(v)
L


; l(ν) =


1; −


g(v)
L


. (43)

Because of (43), the Riemann variables (3) specialize to

R = u+
1√
L

 
g (v)dv, S = u− 1√

L

 
g (v)dv (44)

whereas system (4) becomes

Rt +
1

Lg (v)
Rx = − r

L
R+

1√
L


r

L

 
g (v)dv +

f (v)
g (v)


(45)

St −
1

Lg (v)
Sx = − r

L
S − 1√

L


r

L

 
g (v)dv +

f (v)
g (v)


.
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Bearing in mind the structure of the source-like term involved in (36), in the sequel we
focus our attention on material response functions satisfying

r

L

 
g (v)dv +

f (v)
g (v)

= 0. (46)

Therefore if the structural condition (46) is obeyed by f (v) and g (v) , then the Riemann-
like invariants R (α) and S (β) are defined through the relations

R (α) = R (x, t) exp
 r
L
t

; S (β) = S (x, t) exp

 r
L
t

. (47)

Although the Riemann variables in the present dissipative case are not invariant along
the characteristic curves C(λ) and C(ν) respectively, nevertheless we will show later that
the representation of the general solution of the system (45) can be obtained in terms of the
characteristic parameters α and β. Hence, through a suitable choice of initial conditions
there can be generated pulse-like solutions to the nonhomogeneous system under consid-
eration whose behavior extends that of classical simple waves (“quasi-simple waves”).

The relation (46) defines the classes of governing models which are consistent with
(47). In the sequel we limit ourselves to the following constitutive case also considered in
[22]

g (v) = g0v
−4, f (v) = −3

r

L
g0v

−3 (48)

where g0 is a material constant. Bearing in mind (20), here we have

C(λ) :
dx

dt


α=const

= c0

 R (α)− S (β)
−2

exp


2r

L
t


(49)

C(ν) :
dx

dt


β=const

= −c0

 R (α)− S (β)
−2

exp


2r

L
t



being c0 =
4

L


g0
L

. In this case from (6) the following form for the p function is obtained

p

x, t, R, S =

S − RK0

 R exp − r
L t


2

xK0

 R+ 1
 (50)

with K0

 R an arbitrary function. Owing to (50), the first order nonlinear system of
PDEs (39) and (40) allows for explicit integration and the following representation of the
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solution in terms of the characteristic parameters α and β is easily obtained

exp


2r

L
t (α, β)


= 1 +

2r

c0L

S (β)− R (α)


M
 R (α)


−N

S (β)


+

m
 R (α)


+ n

S (β)


x (α, β) =
M
 R (α)


+N

S (β)


R (α)− S (β)
(51)

dm

dα
= 2M

 R (α)
 R′ (α) ,

dn

dβ
= 2N

S (β)
 S′ (β)

M
 R = −


d R

K0

 R
with N

S arbitrary function.
As far as the Cauchy problem is concerned, we choice initial data for R and S as follows

R (x, 0) = R (x, 0) = R (x) , S (x, 0) = S (x, 0) = S (x) −∞ < x < +∞

so that from (51) the functions M (α) , N (β) ,m (α) , n (β) are determined

M (α) =
1

2

 α

x0

(R (ξ) + S (ξ)) dξ − αR (α)

N (β) =
1

2

 β

x0

(R (ξ) + S (ξ)) dξ − βS (β)

(52)

m (α) = αR (α)

 α

x0

(R (ξ) + S (ξ)) dξ −
 α

x0

R (ξ)S (ξ) dξ − αR2 (α)

n (β) = βS2 (β)− S (β)

 β

x0

(R (ξ) + S (ξ)) dξ +

 β

x0

R (ξ)S (ξ) dξ

while, because of (5) and (50), R (x) and S (x) must satisfy the following differential
condition

[1 + xK0 (R (x))]R′ (x) =
S (x)−R (x)

2
K0 (R (x)) . (53)
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As usual in order to describe the interaction of two opposite travelling quasi-simple waves
in the (x, t)−plane we are led to the following choice (see Figure 4 )

R (x) =

 ω (x) xl ≤ x ≤ −xf

R0 otherwise
; S (x) =

 ζ (x) xf ≤ x ≤ xr

S0 otherwise
(54)

ω (xl) = ω (−xf ) = R0, ζ (xf ) = ζ (xr) = S0.

In (54) S0 is arbitrary whereas, according to (53), R0 is such that K0 (R0) = 0. In the
(x, t)−plane there are several distinct regions where the characteristic wavelets can be
explicitly calculated. In particular for the right travelling quasi-simple wave we have

REGION II


R = R (α) , S = S0 xl ≤ α ≤ −xf , xl ≤ β ≤ xf

x− c0L
2r

 R (α)− S0

−2 
exp


2r
L t

− 1

= α

(55)

REGION V



R = R (α) , S = S0 xl ≤ α ≤ −xf , β ≥ xr

x− c0L
2r

 R (α)− S0

−2 
exp


2r
L t

− 1

= α+ Ir (α)

Ir (α) =
R0−S0

( R(α)−S0)
2

 xr

xf
(ζ (ξ)− S0) dξ

we can observe that the right travelling pulse traverses region II where it is a quasi-simple
wave, it interacts with the left travelling pulse in region IV, emerges in the region V as a
quasi-simple wave identical with that produced by the initial conditions (54) at

t = t∗ =
L

2r
ln


1 +

2r

c0L
(S0 −R0)

 xr

xf

(ζ (ξ)− S0) dξ


(56)

Thus, the only effect of the interaction on the right travelling emerging wave is to produce
a profile which would correspond to change the origin of t in the original pulse. A similar
argument holds for the left travelling pulse which traverses the region III as a quasi-simple
wave, interacts in the region IV with the right travelling wave and emerges with unaltered
profile in region VI. The interaction process is qualitatively outlined in Figure 4. The
dashed lines evidentiate that the emerging pulse in fact behaves as it results to be generated
by the initial data (54) at t = t∗. Therefore these pulses evolve as hyperbolic waves but in
the interaction process exhibit a behavior which is in fact similar to that of solitons. The
results concerning the interaction of two quasi-simple waves have been also illustrated by
numerical integration of the system (41) endowed with the model laws (48) to which there
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t

t = t∗

xf xr−xfxl

I

IV

IIIII

VV I

C(λ)C(ν)

R0, S0 R0, S0 R0, S0ω (x) , S0 R0, ζ (x)

Figure 4. Qualitative behavior in the (x, t)−plane of the interaction between
two quasi-simple waves travelling in opposite directions. The initial data for
R (x) and S (x) are as in (54). The dashed lines point out that the right travelling
emerging pulse in fact behaves as it results to be generated by the initial data (54)
at t = t∗ (dashed horizontal line).

correspond for current u and voltage v, respectively, the initial data

u (x, 0) =
R (x) + S (x)

2
(57)

v (x, 0) =


g0
L

2

S (x)−R (x)
.

In particular we consider the numerical solution of (41) obtained with initial conditions
simulating two localized pulses originating at t = 0 from data which are not of quasi-
simple wave. Later they propagate through regions which are adjacent to quasi-constant
states so that the pulses in point, after a finite time, become quasi-simple waves. In Figure
5 and Figure 6 it is depicted the resulting interaction process.

5. Quasilinear hyperbolic systems of multicomponent field PDEs

In this section we consider a multicomponent quasi-linear hyperbolic homogeneous
system of first-order PDEs

Aγ ∂U

∂xγ
= 0 (58)

where xγ(γ = 0, ....m) denote the independent variables, U = U (xγ) ∈ RN is a column
vector representing the field while Aγ are N−order square matrices. In general for sys-
tems of form (58) it is a hard task to determine solution in a closed form to initial value
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Figure 5. Simulation of two interacting quasi-simple waves emerging from lo-
calized pulses. The numerical solution of equations (41) with model laws (48)
is obtained with parameters L = 1.1, r = 0.28, g0 = 104 and initial data
from (44) with R (x) = sech (2.2 (x− 4))+0.4 sech (1.4 (x+ 4)) , S (x) =
14 + sech (1.6 (x+ 4)) + 0.6 sech (2 (x− 4)) .
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Figure 6. 3D-plots of nonlinear wave interaction of the two quasi-simple waves
emerging from two localized pulses. The profiles for u (x, t) and v (x, t) are
obtained with the same initial data as in Figure 5.

problems in order to achieve an exact description of wave interaction processes. Although
the approach worked out in the previous Sections concerns wave analysis for 2× 2 strictly
hyperbolic systems, here we would like to underline that it can be also viewed within the
broader context of investigating wave interaction processes ruled by quasilinear hyperbolic
homogeneous systems of N > 2 first-order PDEs eventually involving more space vari-
ables. Actually, along the leading lines of investigation proposed by the authors in [15]
in the sequel we outline the main steps of a reduction method worked out for determining
exact solutions with inherent wave features to the class of models (58) through the inte-
gration of an auxiliary 2 × 2 subsystem. We assume (58) to be hyperbolic with respect to
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the time coordinate x0 = t, namely for each unit space vector n ≡ (ni) , i = 1..m the
equation

det

−λA0 +An


= 0, An =

m
i=1

Aini (59)

has N real roots λi and the matrix An has a complete set of left and right eigenvectors.
The autonomous system (58) is invariant with respect to the one-parameter (ϵ) infinitesimal
translation group

x′
γ = xγ , x′

σ = xσ + ϵwσ σ ̸= γ (60)
where wσ are constants and xγ is a chosen space or time coordinate. The invariant solutions
of (58)

U = U (xγ , ξ) , ξ =

σ ̸=γ

wσxσ (61)

corresponding to (60) are defined by the system

Aγ ∂U

∂xγ
+ A∂U

∂ξ
= 0, A =


σ ̸=γ

wσA
σ . (62)

Owing to the invariance, the characteristic surfaces of the system (58) corresponding to the
class of solutions (61) transform into characteristic curves of the system (62) [23]. Now
we search for the following class of solutions

u1 = u1 (xγ , ξ) , u2 = u2 (xγ , ξ) , uk = uk (u1, u2) , k = 3, ..N. (63)

Insertion of (63) into (62) yields the over determined systemB ∂V

∂xγ
+ C ∂V

∂xξ
= 0 (64)

B
∂V

∂xγ
+ C

∂V

∂xξ
= 0 (65)

where the matrix coefficients B , C ,B ,C are defined in terms of the field vector
V =


u1 ; u2

T
as follows

Aγ∇VU =
 B ; B

T
, A∇VU =

 C ; C
T

, ∇V = ∂/∂V.

Next we assume the two equations (64) to be independent while we require the remaining
N − 2 equations (65) to be identically satisfied by any solution V = V (x2, ξ) of the
system (64). Hence the following compatibility conditions must be fulfilled

L B = B, L C = C (66)

where the matrix L is a Lagrange multiplier. The over determined set of 4 (N − 2) con-
ditions (66) characterizes the N − 2 functions uk = uk (u1, u2) along with the 2 (N − 2)
components of the matrix L in order that any solution V = V (xγ,ξ) of (64) provides
through (63) a solution of the original system (58). The structure of the solutions to sys-
tem (58) considered herein resembles that of the partially invariant (double wave) solutions
studied in [23, 24, 25], with the functions u1 , u2 playing the role of wave parameters. How-
ever, on this subject we observe first that the solutions (61) are in fact invariant solutions of
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the system (58). Furthermore, unlike the procedure worked out to determine double-wave
solutions here we treat (65) as a set of supplementary equations [26, 27] which must be
identically satisfied by any solution u1 , u2 of the system (64). That permits us to construct
solutions to systems of form (58) by means of the reduction approach proposed for inte-
grating 2× 2 hyperbolic systems and which are of more direct use for solving problems of
interest in non-linear wave propagation. As far as the hyperbolicity of the auxiliary 2 × 2
system (64) is concerned, in [15] it has been proved the following

Proposition. The hyperbolicity of the system (62) induces the hyperbolicity of the
system (64) with respect to the ξ−direction.

In particular two of the characteristic speeds of the spectrum of λ′s, solutions of (59)
are the eigenvalues of B with respect to the matrix C selected by the relations (63) and by
the pair of equations (64). Furthermore, the reduction process developed in [15] preserves
the genuine nonlinearity or the exceptionality of an eigenvalue. So that by requiring (64) to
be strictly hyperbolic, the combined use of hodograph method and differential constraints
theory allows us to obtain exact solutions to (58) which exhibit wave behavior and can be
used for studying nonlinear wave interactions of double plane waves.

By way of illustration, in the following we consider the system of balance laws for
isotropic ferromagnetic materials. In absence of electric charge and current, the Maxwell
field equations of electrodynamics are

·
B+∇×E = 0,

·
D−∇×H = 0 (67)

∇ ·B =0, ∇ ·D =0 (68)

B =µ

H2

H, D = εE (69)

where the overdot denotes time derivative whereas x = (x1, x2, x3)
T is the position vec-

tor. E (x, t) = (E1, E2, E3)
T and H (x, t) = (H1, H2, H3)

T are the electric and magnetic
fields respectively, ε is the constant electric permeability whereas the magnetic permeabil-
ity µ satisfies the following conditions [28]

µ > 0, µ+ 2µ′H2 > 0 (70)

so that the system of equations (67) turns out to be hyperbolic. Nonlinear wave propagation
for system (67) has been exhaustively investigated by several authors. In particular in [29]
the propagation of acceleration waves has been studied and the characteristic speeds have
been determined, it has been proved that two eigenvalues are always exceptional whereas,
under suitable constitutive assumptions, the system is fully exceptional. Setting

ξ = w · x− st, w ≡ (w1, w2, 0)
T (71)

in the present case (62) specializes to

A3 ∂U

∂x3
+ A∂U

∂ξ
= 0 (72)
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where

U =


H
E


, A =


P Q
−Q W


, A3 =


0 Q

−Q 0


(73)

P = −s (µI+ 2µ′H⊗H) , W = −sεI,

I = ∥δij∥ , H⊗H = ∥HiHj∥ i, j = 1, 2, 3

Qv = w × v, Qv = k× v, ∀v ∈ R3, k ≡ (0, 0, 1)
T
.

Furthermore from (68) we obtain

sµH3 = (w ×E) · k, sεE3 = − (w ×H) · k. (74)

The characteristic speeds, λ(±) and λ1,2, associated to (72) are defined by
s2εµ−w ·w


λ2 = 1 double exceptional waves

(75)

λ2

s2εµ


2µ′H2 + µ


− µw ·w − 2µ′ (w ·H)

2

+

4µ′ (w ·H)H3λ−

µ+ 2µ′H2

3


= 0

with corresponding left eigenvectors

l(±) =


q(±)×H , 1
sελ(±)

q(±)×

q(±)×H

 T
l(1,2) =


s2εµλ2

1,2H− (q1,2·H)q1,2 , sµλ1,2 (q1,2×H)
T

being q = −λw + k. Next we search for solutions of (72) of the following form

U = U (V) , V = (E1, H2)
T (76)

so that the resulting 2× 2 system (64) can be recast in the following characteristic form

Rξ + SRx3
= 0, Sξ + λ1Sx3

= 0 (77)

where the associated Riemann invariants R and S are defined by

R = λ(+), ∇VS= l(1) A∇VU.

Moreover from (65) the following compatibility conditions arise

l(−) A∇VU = l(2) A∇VU =0, ∇Vλ(+) = l(+) A∇VU. (78)

Finally we observe that, once the conditions (78) are satisfied, closed form solutions
to (77) can be found by means of the general reduction procedure developed in Section
2. These solutions through the relations (74) and (76) generate in turn a class of exact
solutions to the original system (67) which describe, for suitable initial value problems,
two nonlinear waves initiated as plane waves and exhibiting a soliton-like interaction.
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A6-22 C. CURRÒ AND D. FUSCO

6. Conclusions and final remarks

As well known the crucial aspect of investigating hyperbolic wave processes and es-
pecially wave interactions is strictly related to understanding in detail the behavior of the
solutions along the different families of characteristic curves which are associated to a
given governing model. In that context quasilinear hyperbolic and autonomous (2 × 2)
systems play a prominent role in several engineering applications because, under assump-
tion of strict hyperbolicity, they can be recast into a form which expresses the evolution of
a privileged set of field variables, the Riemann variables, along the related characteristic
curves. Hence the Riemann variables have an intrinsic wave feature and they prove to be
appropriate to describing nonlinear hyperbolic wave evolution whose mathematical mod-
elling usually requires solution in a closed form to initial and/or boundary value problems.
That is a hard task in general. Actually, direct use of the classical hodograph transfor-
mation to search for exact solutions to 2 × 2 quasilinear hyperbolic systems of first order
PDEs is very limited, even in the case of a non dissipative wave motion where the govern-
ing model is homogeneous (source free case) and the associated hodograph system turns
out to be linear, so that in principle the solution can be expressed in terms of the Riemann’s
function. In recent papers [8, 9] a reduction approach has been developed in order to de-
fine an appropriate framework where the hodograph transformation may be an effective
and successful tool for obtaining classes of exact solutions to 2 × 2 systems either ho-
mogeneous or non-homogeneous. The proposed method combines differential constraints
theory and hodograph transformation and also provides a mathematical vehicle for deter-
mining classes of quasilinear hyperbolic models allowing for exact solution to initial or
boundary value problems. In Section 2 we have outlined the main steps of the resulting
consistency process and later in order to highlight the flexibility of the provided solutions
in the description of nonlinear wave interactions we have considered different examples
of governing models. Furthermore in Section 3 we have considered the traffic flow model
proposed by AW & Rascle in [12] as an example of 2 × 2 homogeneous system which
turns out to be appropriate for illustrating interaction processes of nonlinear hyperbolic
waves travelling along different characteristic curves. In line with the analysis which re-
cently was worked out in [9] where several traffic flow situations have been simulated, here
we have investigated the alteration in the profile as well as the time distortion associated
to the interaction between a simple wave which connects smoothly two different constant
states (rarefaction-like wave) and a simple wave which simulates a situation where each
car follows the leading car at the same speed. Next in Section 4 attention has been fo-
cused on a special class of 2 × 2 non-homogeneous models which admits suitable field
dependent quantities behaving like the classical Riemann invariants associated to the ho-
mogeneous governing systems. In particular for the pair of equations describing nonlinear
dissipative transmission lines, under suitable constitutive model assumptions, closed form
solutions have been determined and nonlinear wave interaction of two regular pulses has
been studied. These pulses evolve as hyperbolic waves but exhibit a soliton-like behavior
in interaction. In Section 5 we have considered quasilinear hyperbolic homogeneous sys-
tems of N > 2 first-order PDEs eventually also involving more space variables. In order
to extend the approach herein proposed to investigate more general wave processes, by
means of ”ad hoc” reduction technique we have characterized classes of models which are
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consistent with special evolution processes ruled by an auxiliary 2× 2 hyperbolic subsys-
tem arising as intermediate step in searching for exact wave solutions to the original set of
field equations. Within this context the system of balance laws for isotropic ferromagnetic
materials has been studied.
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[4] C. Currò and G. Valenti, “A linearization procedure for quasi-linear nonhomogeneous and non-autonomous
2× 2 first-order systems”, International J. Non-linear Mechanics 31, 377-386 (1996).
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A6-24 C. CURRÒ AND D. FUSCO
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