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ON DEFINING S -SPACES

FRANCESCO STRATI ∗

ABSTRACT. The present work is intended to be an introduction to the Superposition Theory
of David Carfì. In particular I shall depict the meaning of his brand new theory, on the one
hand in an informally fashion and on the other hand by giving a formal approach of the
algebraic structure of the theory: the S -linear algebra. This kind of structure underpins the
notion of S -spaces (or Carfì-spaces) by defining both its properties and its nature. Thus I
shall define the S -triple as the fundamental principle upon which the S -linear algebra is
built up.

1. An outline of distribution theory

In a footnote in Dieudonné (1983) is written:
The role of Schwartz in the theory of distributions is very similar to the
one played by Newton and Leibniz in the history of Calculus: contrary
to popular belief, they of course did not invent it, for derivation and
integration were practiced by men such as Cavalieri, Fermat and Roberval
when Newton and Leibniz were mere schoolboys. But they were able to
systematize the algorithms and notations of Calculus in such a way that it
became the versatile and powerful tool which we know, whereas before
them it could be handled via complicated arguments and diagrams.

This note is a very fascinating one, because it summarizes the extent of the work of Schwartz.
During the first part of the 20th Century, many mathematicians struggled with the weak
solution of a linear partial differential equation, which had been faced by Poincaré in the
late 19th Century. Given a differential operator

A : f → ∑
a

caDa f

that has C∞ coefficients defined in an open set Ω ⊂Rn, we can define ⟨ f , l⟩=


Ω
f (x)l(x)dx

where f (x) is locally integrable in Ω and l is continuous in (Ω,K) i.e. with compact support.
Rather

⟨A · f , l⟩= ⟨ f ,At · l⟩.
It is important to define a solution ⟨A · f ⟩= 0 ∀ f ∈C∞ and thus for ⟨At · l⟩= 0 ∀l ∈ (Ω,K).
Following Dieudonné (1983), all the locally integrable functions in Ω are called weak so-
lutions for ⟨A ·u = 0⟩, even if they are not differentiable. A general solution it was not so
simple to find. Schwartz was unaware of the Sobolev’s work, albeit was right him who gave
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B2-2 F. STRATI

a rigorous definition of distributions in a functional point of view in 1936. Schwartz was
influenced by Leray, Cartan, De Rham and the difficulties in defining the δ -function. The
point it was to find something that works like the same problem faced for the simpler linear
differential operator solved by Du Bois-Reymond in 1879, thus any weak solutions Du = 0
must be a constant.
A more interesting step was that of finding a generalized operator which acts on functions
that are not differentiable. In a particular way, Cartan E. in 1922 defined an external deriva-
tive w = Ldy∧dz+Gdz∧dx+Rdx∧dy where, although L,G,R were not differentiable, it
was be possible to define dw = Sdx∧dy∧dz given an S continuous. Rather  

U
Sdxdydz =

 
Σ

(Ldy∧dz+Gdz∧dx+Rdx∧dy)

for any open set U and smooth boundary Σ (Dieudonné 1983). As a little generalization of
this, Choquet and Deny gave an interesting theorem in defining an integral


E Fdγ which

is made of all mass distributions (E,γ) similar to (E0,γ0), where E0 is a compact support
of a mass distribution γ0. This theorem is very close to the concept of distributions, and to
the concept of Sobolev functional. Rather it has been developed the notion of generalized
derivative for which it was important the definition of regularization owed to Leray. He
used the convolution between a sequence of C∞ functions gn with compact support tending
to 0 and a locally integrable function f , where


gn = 1. He states that if f is continuous,

p∗ f is convergent to f in each compact subset and it is a C∞ function. Given that, there
exists a generalized derivative h such that gn ∗h is the derivative of gn ∗ f . Nowadays we
say that this function is Lebesgue integrable. As I said before, it has been Sobolev the
father of the first rigorous definition of such a functionals (distributions), he defined the
generalized derivative for every non-differentible function. Sobolev dealt with linear form
such as f → f k(x) in the space of C∞ function with compact support Ω(K). In order to find
a solution for the Cauchy’s problem for a second order hyperbolic equations with general
boundary conditions, he needed to find some particular functionals in Ω (called distributions
by Schwartz). Thus, considering the subspace Ω(K) of Ω consisting of all C∞ functions
with compact support K, it is a Fréchet space given the seminorm

gm,K( f ) = sup
|α|≤m,x∈K

|Dα( f )|, (1)

we call distributions the linear form T on Ω. Sobolev identified the space L1
loc as the space

of all locally integrable functions which is identified with a subspace of the space (denoted)
D ′(Ω) of all distributions. It is now possible to define the Dirac function x → δ (x−a) as a
measure, rather the more δ is shrinked, the more it becomes high so as to retain its mass
1 at a point a. Also, he gave the notion of derivative of its functional and he considered
the weak topology for the space D ′(Ω), defined (D ′(Ω),D(Ω)). Given that, he applied the
Leray approach to the distributions in order to verify the existence of the limits in the weak
topology: a gn ∗T is a distribution f → T (g̃n ∗ f ) which it is a C∞ function, and the gn ∗T
converges weakly to T as n → ∞, because of this limit property they are called generalized
functions.
Another step in order to enlarge the extent of the theory of these functionals, was to apply
them in harmonic analysis. In fact, the Fourier F f transorm had meaning only for those
functions f ∈ Rn belonged to the space L1(R), then by Plancherel (Dieudonné 1983) is it
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ON DEFINING S -SPACES B2-3

possible to define an isometry f → F f for the space L2(Rn), namely Hilbert spaces onto
Hilbert spaces; it could be defined in the space L1 ∩L2. Weil extended this property to
f ∈ L1 ∩L∞. But Schwartz gave a proper solution to this problem by using the Sobolev
functionals, in particular by defining the notion of test functions S (Rn). This is a very
important idea, a function which tests another function, i.e. a function by which it is
possible to probe into another one. In order to grasp its meaning it is usually explained by
the example of temperature. If we deal with point-function such as f (x) = y we shall define
a rigid evaluation of a function which boils down to a single point, and a temperature cannot
be defined as a point at all. Thus another method of evaluation could be a uniform avarage
of a temperature T throughout a set [a,b] by means of the definite integral

 b
a f (T )dt. But it

is still a naive definition of temperature. Rather it is not uniforlmy distribuited throughout a
set [a,b], it will be a part of the set that is heating up more than another, for example the
two extreme points could be colder than its middle points. Thus it is important to consider a
weight for a uniform avarage, by the frequency of the test functions it is possible to modify
the uniform avarage in order to study where the heat is more concentrated in that function
by the integral

 b
a f (T )ϕ(T )dt. We are thus interested in f (T ), and in order to know its

behaviour we do need test functions ϕ(T ) by which one can study f (T ). We define a test
function ϕ as a function which belongs to C∞(Rn) and it is rapidly decreasing at infinity,
thus a compact support. For the generalization in harmonic analysis it is important to say
that a Fourier transorm in S (Rn) is a bijection with the Fréchet topology

tk,m( f ) = sup
|α|≤k,x∈Rn

(1+ |x|)m|Dα f (x)|.

Given that S (Rn,K) ⊂ S (Rn) their injection is continuous and their union is dense
in S (Rn). The continuous linear forms on S (Rn) are called, by Schwartz, tempered
distributions S ′(Rn). In this space the Fourier transform is the transposed automorphism
in S (Rn), thus

⟨FT, f ⟩= ⟨T,F f ⟩.

The most important difference between general distributions and tempered distributions is
that the latter act on an open support test functions. Let me clarify this difference. The space
S (Rn) is an open support test functions space thus is weaker than the closed support test
function. The former need not to vanish outside the support, they must be rapidly decreasing
together by all their derivatives, whereas compact test functions must vanish identically
outside of some compact support. I have not stressed this difference before because it
could have arisen some confusion in understanding the right meaning of it. Moreover
it is important to recall that a general distribution is a continuous mapping from the set
of compact test functions into the set of real or complex numbers, whereas a tempered
distribution is a continuous mapping from the open support test functions into the set of
complex numbers, also it can be defined as the dual S ′ of the Schwartz distribution S . The
distribution is a functional itself such as the tempered distributions. This space is placed in
an intermediate position between the space ϒ′ of distributions with compact support and the
space of all distributions D ′. Thus

C∞
k → S →C∞,
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B2-4 F. STRATI

these are injections and they are continuous linear mapping, moreover they have danse
images. By transposing the above sequence we obtain continuous injections (Trèves 1967)

ϒ
′ → S ′ → D ′,

and it is possible to understand the relations among them, rather S ′ contains ϒ′, and thus
the dual of S is a space of distributions S ′. The notion of tempered distribution is a
very important one for our aim, rather the superposition integral is a relation between two
tempered distributions which gives rise another tempered distribution in a very particular
manner, I shall explain this in the next section.

1.1. The derivative of a distribution. It is a very important tool because of its utmost
useful property: a derivative of a distribution is a distribution itself, by this property one can
state the existence of infinity derivatives. The trick is to move the derivation from f , which
can be non-differentiable, to ϕ which it is well known a differentiable one. Now given a
distribution T and a test function ϕ the ⟨T ′,ϕ⟩ is the derivative of T :

⟨T ′,ϕ⟩=
 +∞

−∞

T ′(x)ϕ(x)dx = [T (x)ϕ(x)]+∞
−∞ −

 +∞

−∞

T (x)ϕ ′(x)dx, (2)

I used the integration by parts and it is something rather important to understand: the [· · · ]+∞
−∞

is 0 because of the properties of ϕ . Rather a test function vanishes outside its support, and
so ϕ → ∞ is obviously equal to 0. Thus our derivative becomes

⟨T ′,ϕ⟩=−
 +∞

−∞

T (x)ϕ ′(x)dx =−⟨T,ϕ ′⟩. (3)

It is a quite important property because one is able to find the derivative even for non-
functions like the Heaviside one (h). Look at the following example

⟨h′,ϕ⟩=−⟨h,ϕ ′⟩,

thus

−⟨h,ϕ ′⟩=−


∞

0
h(x)ϕ ′(x)dx

=−


∞

0
ϕ
′(x)dx

= [ϕ ′(x)]∞0
=−[ϕ(∞)−ϕ(0)]

= ϕ(0)

= ⟨δ ,ϕ⟩,

(4)

furthermore

⟨h′,ϕ⟩= ⟨δ ,ϕ⟩ ∴ h′ = δ .

I have just obtained the derivative of the Heaviside function, that is not even a function, this
is the power of this generalized derivative: the derivative of a distribution.
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ON DEFINING S -SPACES B2-5

2. The superposition theory

2.1. An intuitive approach. The importance of the distribution theory is of course known,
but during these years, many mathematical methods have been developed for Lp-spaces.
A very used space is that of Hilbert and L2-spaces or Banach spaces (L1) et cetera. The
development of these (and other) spaces and their methods, has been an important field of
study in order to enhance many beautiful tools of the functional analysis, but it has been
left, surprisingly, the distribution theory in the background. For instance, when one study
spectral theory may happen to face a class of eigenfunctions that cannot be integrable in the
Hilbert sense, thus the notion of this space it has been extended in order to deal with those
functions which are not square-integrable. It is a serius puzzle because it is important in
order to define nuclear spaces. This extension has been done by using the Schwartz space
S and it is now called rigged Hilbert space. It is called the Gel’fand triple

φ ⊂ H ⊂ φ
′

where φ is the space of test functions, H the Hilbert space and φ ′ the Schwartz space. Given
that L2 is dense in S , it is possible to treat those eigenfunctions that are not lying in an
L2-space, in Schwartz spaces (see Gel’fand and Vilenkin (1964)). Although this extension
allows us to use non-L2 objects as if they were, many other functions and quasi-functions
are impossible to deal with, and thus it is important to enlarge the Gel’fand triple on a richer
one: The S -triple (Carfì 2006). This expansion is called: Superposition theory and it has
been built up by a very clever intuition of Carfì. In this section I shall depict his theory in
an intuitive fashion and I shall clarify the meaning of this brand new structure: the Carfì
space (C↑). It is rather important to understand that a Carfì space is not just an extension of
that of Hilbert, but it is a space made of a new algebraic-topological structure that gives to it
some very fascinating properties.
I have said that the rigged Hilbert space leans on the Schwartz space in order to enlarge the
action of a Hilbert space. It would be thus intuitive to comprehend the notion of Carfì space
such as a space by which one is able to deal with math-objects that cannot be applied in a
rigged Hilbert sense. I am afraid to say: no, it is not so simple. A Carfì space has a structure
which generalizes the notion of continuity and generalizes the notion of scalar product, the
S -triple is thus this structure, and it is composed by

S ′
n,


Rm


m∈N

,(·|·)L2


. (5)

In (5) the S ′
n is the space of tempered distributions, the (


Rm)m∈N denotes the operations of

superposition, and the (·|·)L2 is the L2-product. The reader has not to be worried if he does
not understand them at this stage, the meaning of those objects will be clear throughout the
following subsections.
The (5) is a generalization of the topological vector space (S ′

n,+, ·) and, as a matter of
definition (see A), it is continuous in + and (·). Rather (


Rm)m∈N is a generalization of

+, and (·|·)L2 is a generalization of (·). By using the operations of superposition in lieu
thereof the simple sum +, it is possible to deal with an infinitive continuous sum in Rm and
this enlargement encompasses those functionals that are called smooth. It is important to
understand that the sum of a product ∑

m
i=1 aivi is, graphically, a point-like sum which gives
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FIGURE 1. Spaces in Rm

us a particular point-value, this has been generalized by Carfì in Rm (see Fig. 1) by using
smooth functionals and defining them through m-directions. The extent of this enlargement
becomes plain if the attention is focused on the notion of continuity, but so as to grasp this,
it is important to comprehend the concept of L2-product. Given a complex vector space A, a
mapping ⟨·, ·⟩= A×A → C, where x,y,z ∈ A and α,β ∈ C, is defined an inner product in
A if

• ⟨x,y⟩= ⟨y,x⟩
• ⟨αx+βx,z⟩= ⟨αx,z⟩+ ⟨βy,z⟩
• ⟨x,x⟩ ≥ 0
• ⟨x,x⟩= 0 ⇒ x = 0

An inner product involving functions can be thought of as ⟨ f ,g⟩=
 b

a f (x)g(x)dt (I omit to
list its properties) or, an important one , ⟨ f , f ⟩=

 b
a ( f (x))2dt < ∞. The important property

belonged to all of the inner products is that are true, namely to every function (real numbers,
matrices et cetera) corresponds a particular value. For instance look at the following example
for f (x) = 3x−2:  1

0
( f (x))2dx =

 1

0
(3x−2)(3x−2)

=
 1

0
9x2 −12x+4

= [3x3 −6x2 +4x]10
= 1

(6)

Given the (6) it is straightforward that it is possible to define the orthogonality so as to build
up pointwise-projections. It is a very important property, rather it can be generalized in
Carfì spaces by using non-true distributions. The meaning of them is quite an important one:
a distribution is called non-true if it can be involved in an L2-product, that is to say from a
product between a distribution and a family of distributions, it is obtained a place-definition
of that product rather than a poitwise one. It is crucial in defining Carfì spaces. The figure 2,
albeit not so precise, represents an L2-product, rather there is a vector −→v times a family vi
and this product gives rise to a global definition ϕ . The choice of ϕ is not random, in fact
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ON DEFINING S -SPACES B2-7

a test function is a function with some local properties which defines a place instead of a
point.
In this introduction I have defined the core concept of the superposition theory by which it
can be possible to build up the notion of Carfì space. It is now plain, even if in an intuitive
fashion, that the framework of Carfì spaces involves the space of tempered distributions
wherein it is possible to define not just continuous sums, such as topological vector spaces,
but smooth sums which tend to infinity. This can be melt into the definition of L2-product
by which one is able to use a particular kind of projection, rather its output is a global
definition of the product, i.e. it not possible to know who is the i-th coefficent but one is
able to know and study its global properties. The world is not in a pointwise connection, as
often as not when one studies world events he can only do it in a global view, and thus the
study of the world can be done in a more concrete way by using Carfì spaces rather than
Hilbert spaces. In the following subsection I shall depict the notion of S -linear algebra, it
is the most important object in order to define Carfì spaces.

2.2. Basic concepts on S -linear algebra. The framework underpins the notion of Carfì
space is the characterization of the S -linear algebra by which it is possible to define the
properties defined for the S -triple. I have stressed the importance of the concept of family,
and thus it is fundamental to define that one of interest for our aim. A family s(Rm,S ′

n) is
the space indexed by Rm, i.e. the mappings from Rm to S ′

n , thus if v is one of these families,
for p ∈ Rm, the distribution v(p) is denoted by vp. The family s(Rm,S ′

n) is a vector space
w.r.t. (with respect to)

+: s(Rm,S ′
n)

2 → s(Rm,S ′
n) : (v,w) →→ v+w where v+w : Rm → S ′

n : p →→ vp +wp;
×: R× (Rm,S ′

n)→ s(Rm,S ′
n) : (λ ,v) →→ λv where λv : Rm → S ′

n : p →→ λvp.
Let v be a family in the space S′n indexed by Rm. The family v is called a family of class S
(S -family), if for each test function φ ∈ Sn, the function v(φ) : Rm →K defined by

v(φ)(p) := vp(φ)

for each index p ∈Rm, belongs to the space of Sm. This space is denoted by S(Rm,S′n). The
operator generated by the family v, is the operator v̂ : Sn → Sm : φ →→ v(φ), sending every
test function φ of Sn into its image v(φ) under the family v (Carfì 2010).
We call the L (Sn,Sm), the set of all the linear and continuous operators among two
topological vector spaces Sn and Sm. Consider a linear operator A : Sn → Sm, it is
topologically transposable if its adjoint ∗A : S ∗

m → S ∗
n defined by ∗A(a) = a◦A, maps the

distribution space S ′
m → S ′

n. It is known that the space S is a Fréchet space, as we have
seen (Sec. 1), and thus a countable projective limit (intersections) of Banach spaces. The
main difference from Sobolev spaces is plain, rather it is, roughly speaking, a Banach space
with Lp-norm. The space of tempered distribution is the dual of the Fréchet space S , and it
is known that it can be a space rather differet from the Fréchet one, indeed its dual is given
by the weak-⋆topology (i.e. the weakest topology in X ′ wherein all the linear functions
f →→ f (x)∀x ∈ X , are continuous). The family S(Rm,S′n) is a subspace of s(Rm,+, ·) and
for each v, the operator v̂ is linear in S(Rm,S′n). We call S -linear combination (or linear
superposition) of v w.r.t. the system of coefficients a, the distribution

Rm
av := a◦ v̂ : φ →→ a(v̂(φ)) (7)
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i.e. 
Rm

av = t(v̂)(a).

Given (7) we can state that v̂ is transposable and weakly continuous, i.e. continuous from
Sn to Sm w.r.t. the pair of weak topologies (σ(Sn),σ(Sm)). Given the definition of
S -linear superposition it is important to say that the two vector spaces S (Rm,S ′

n) and
L (Sn,Sm) are isomorphic

(·)∧ : S (Rm,S ′
n)→ L (Sn,Sm) : v →→ v̂. (8)

Thus, as a matter of definition, it is continuous in its inverse

(·)∨ : L (Sn,Sm)→ S (Rm,S ′
n) : A →→ A∨ := (δx ◦A)x∈Rm . (9)

It is worth noting that (8) is the operator generated by an S -family, whereas (9) is the
operator which generates an S -family. It is possible to define other kinds of superposition
operator, a rather important one is the superposition of a family of numbers (real or complex)
w.r.t. a distributional system of coefficients, that is to say: a family of real or complex
numbers x = (xi)i∈Rm is an S -family if a function fx : Rm →K defined by fx(i) = xi is an
S -function ∀x ∈ Rm. The function fx is called the test function associated with the family x
(Carfì 2007b). Thus, given a ∈ S ′

m, the superposition of the family x w.r.t. a is
Rm

ax := a( fx). (10)

If we melt the two kinds of superposition we have seen into a new one, we shall obtain
a particolar S -linear combination. Thus, we call ⟨·, ·⟩ the canonical bilinear form on
S ′

n ×Sn where v ∈ S (Rm,S ′
n) and the test function φ ∈ Sn, by ⟨v,φ⟩ we denote the

family of numbers defined by

⟨v,φ⟩i = ⟨vi,φ⟩ ∀i ∈ Rm.

Moreover, given a ∈ S ′
m we obtain a superposition

Rm
av,φ


=

Rm

a⟨v,φ⟩. (11)

We have thus two kinds of operator
Rm

(·, ·) : S ′
m ×S (Rm,S ′

n)→ S ′
n : (a,v) →→


Rm

av (12)

and 
Rm

(·,v) : S ′
m → S ′

n : a →→

Rm

av; (13)

the superposition operator S ′
n with coefficients-system in S ′

m and the superposition operator
in S ′

n associated to an S -family v respectively.
Another interesting type of superposition is the superposition of the family v w.r.t. the regular
distribution generated by the K-constant functionals on Rm of value 1: the distribution
[1Rm ], we denote this superposition by

Rm
v :=


Rm

[1Rm ]v. (14)

This kind of superposition is very important because of the propery of orthonormality 2.2.
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FIGURE 2. L2-product

The L2-product. We have seen in Sec. 1 an intuitive introduction to the concept of L2-product
(see Fig. 2). Now it is time to introduce it in a more rigorous manner. We have seen (Sec. 1)
that an L2-product is a product between a distribution times a family of distributions, by
which we obtain a non-locally definite value. This notion stems from the impossibility
to compute a product (δx|δy) because of its nonsense by using Hilbert spaces. The very
clever intuition of Carfì was to compute a product (δx|δ )L2 between a distribution and an
entire family. Given this intuition it is possible to study the non-locally properties of every
function and non-function

(δx|δ ) = δx : ϕ(x) : δx(ϕ). (15)
It is now straightforward the extent of (15) for its orthonormality implications. We say that
v∈S (Rm,S ′

n) is δ -orthogonal if there exists a function f :Rm →K such that (vp|v) = f δp
for each n-uple p. If the L2-product is orthogonal and if f ∈ [1Rm ], then (vp|v) = δp is called
δ -orthonormal (Carfì 2003). Thus, for what we have seen in (14)

Rm
uδ = u◦ δ̂

= u◦ ISn

= u.

(16)

Given this property it can be stated that S -span(δ ) = S ′
n (look at the following paragraph).

The S -linear hull. The S -linear hull of an S -family is the set of all the S -linear combi-
nations of the family v ∈ S (Rm,S ′

n) and it is denoted by S -span(v):

S -span(v) := t(v̂)(S ′
m). (17)
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Moreover (17) denotes

S -span(v) :=


u ∈ S ′

n : ∃a ∈ S ′
m : u =


Rm

av


.

It is now time to give an interesting property of the δ of Dirac: it can be thought of as an
extension of the canonical basis en in linear algebra. Rather, by δn it is possible to span
the whole Sn-space (see (16)) and it is possible to define its δ -orthonormal bases. We can
say that δ (and the Fourier families) is a system of S -generators for the entire space S ′

n.
This statement suggests the word ′generator′ to us. Let v ∈ S (Rm,S ′

n), it is a family of
S -generators for a subspace V of the space S ′

n iff its S -linear hull coincides with the
subspace V

S -span =V.

Moreover it is worth noting that the S -span(v) is a subspace of S ′
n and thus it contains all

the elements of v, hence
span(v)⊆ S -span(v).

Topological comments. We denote by β (S ′
n) the strong topology β (S ′

n,Sm), by σ(S ′
n)

the weak-⋆topology σ(S ′
n,Sn) and by σ(Sn) the weak topology σ(Sn,S ′

n) (see A.2).
Given that S is reflexive, then S ′ is semi-reflexive, thus the linear subspaces of S ′

n are
colsed in β (S ′

n) iff are closed in σ(S ′
n). It is interesting to know that the superposition

family v is the β (S ′
n)-limit of sequence of finite linear combinations of the family v. Let a

be in the coefficient space S ′
m, then the coefficient distribution a is the β (S ′

n)-limit of a
sequence γ of finite combinations of the Dirac family in S ′

m. Since spanβ (S ′
n)
(δ ) = S ′

m,
we have 

Rm
av =


Rm


β (S ′

n) lim
k→∞

γk


v

= β (S ′
n) lim

k→∞


Rm

γkv

by the (β (S ′
m)β (S

′
n))-continuity of the superposition operator t(v̂) (Carfì 2010). Rather,

given a v ∈ S (Rm,S ′
n) we have that

S -span(v)⊆ spanβ (S ′
n)
(v) = spanσ(S ′

n)
(v)

It is important to introduce the notion of closedeness because if an S -family is S -closed
w.r.t. σ(S ′

n) and/or β (S ′
n) it will encompass very suitable properties. The closedeness is a

natural kind of stability fo subsets of the space S ′
n arises with the definition of S -linear

combination. Let B be a subset of S ′
n, the part B is called S -closed in the space S ′

n iff
it contains all the superpositions of the S -families contained in B. In other words we
say that B is S -closed iff for each positive integer k ∈ N, for each S -family v ∈ B and
for each tempered distribution a ∈ S ′

n, the superposition

Rm av lies in the set B (Carfì

2010). Now, given a family of S -closed subsets ϒ = (ϒi)i∈I and let v be a family such
that v ∈ ∩ϒ. The family v is a family in the intersection iff vp ∈ ϒi where p ∈ Rm and i ∈ I.
Thus, given that ϒi is S -closed, the superposition


Rm av must belong to ϒi ∀a ∈ S ′

m and
∀i ∈ I, hence


Rm av ∈ ∩ϒ of the family ϒ. This is a quite an important statement because

gives the property of stability to all of the superpositions. Let B be a subspace of S ′
n, the
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ON DEFINING S -SPACES B2-11

S -closed hull of B is the intersection of all the S -closed subsets containig B. It is denoted
by S -cl(B) or simply B̄S . Furthermore we call S -closed linear hulls those S -closed hulls
w.r.t. the subspaces of B and not only w.r.t. the sets of it, and it is denoted by S -span(B).
The relation between these two notions is

S -cl(B)⊆ S -span(B),

the collection of S -closed subsets containing B contains the collection of all S -closed
subspaces containing B.
Now, given an S -linear hull S -span of an S -family v, when it will be closed w.r.t. the
weak-⋆topology the superposition operator is a topological homomorphism for the weak-
⋆topologies σ(S ′

m) and σ(S ′
n), also the operator v̂ is a topological homomorphism w.r.t.

the pair of weak topologies (σ(Sn),σ(Sm)) and for the topological vector space (Sn)
into the space (Sm) (Carfì 2010). Given the closedeness w.r.t. σ(S ′

n), it is plain that the
superposition operator is a surjective topological homomorphism for the pair of strong
topologies β (S ′

m) and β (S ′
n) and for the weak-⋆topologies σ(S ′

m) and σ(S ′
n). Also, the

operator v̂ is an injective topological homomorphism for the weak topologies and for the
space (Sn) into the space (Sm). The following diagram

S ′
m

v̂t

> Im(v̂t)
i
> S ′

n

S ′
m/kerv

φ

∨ v̄

>

gives an idea about the relations among the objects I am using and it is important to
understand it so as to clarify the notions treated throughout this section. The function
φ : S ′

m →S ′
m/kerv is the canonical mapping, it is linear and onto. The S ′

m/kerv is thus the
quotient space such that for every x,y ∈ S ′

m, the x− y = 0 and thus x− y ∈ kerv, therefore
φ(x) = φ(y), but the most important thing is: if φ(x) = φ(y) then v̂t(x) = v̂t(y). The i is the
natural injection, that is to say for a y ∈ Im(v̂t), the mapping i assigns the same element
y regarded as an element of S ′

n. Given the closedeness in σ(Sn) it is plain that v̂(Sn)
is closed in the topological vector space (Sm). If v̂ is homomorphism then v̄ will be an
isomorphism, v̂t has a closed Im(v̂t) and thus it is a continuous linear mapping from S ′

m to
S ′

n, therefore it is an homomorphism.
It is now important to give a definition of an S -kernel. Let v = (vi)

n
i=1 be a family of linear

forms on a vector space V and let h be a linear form vanishing on the kernel of every form
vi of the family. Then, the form h is a linear combination of the family v:

kerv :=

i∈I

kervi . (18)

furthermore if W is a subspace of V , the W⊥ denotes the orthogonal of W . Given that h
vanishes on the kernel of the family v iff h is a linear combination of the family v, the linear
hull of the family v coincides with the orthogonal of its kernel, thus

(kerv)
⊥ = span(v).

Now it can be stated the S -version of the statment: let v = (vp)p∈Rm be an S -family of
an S ′

n-space, then the orthogonal of the kernel of the family coincides with the S -closed
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S -linear hull of the family w.r.t. the weak-⋆topology:

(kerv)
⊥ = spanσ(S ′

n)
(v).

If v is topologically exhaustive (i.e. if S -linear hull S -span v is σ(S ′
n)-closed) we have

(Carfì 2010):
(kerv)

⊥ = S -span(v).

It is justified by

(kerv)
⊥ = (Im(At))σ(S ′

n)
=

= (S -span(v))σ(S ′
n)
=

= spanσ(S ′
n)
(v).

S -bases. Let a v ∈ S (Rm,S ′
n), we say that v is S -linear indipendent iff a ∈ S ′

m and a
superposition


Rm av = 0S ′

n
implies a = 0S ′

m
a ∈ S ′

m ∧

Rm

av = 0S ′
n


⇒ a = 0S ′

m
.

We say that an exhaustive σ(S ′
n)-closed S -family v is S -linear indipendent and that the

superposition operator is an injective topological homomorphism for the weak-⋆topology
and for the strong topology, whereas v̂ is a surjective topological homomorphism for the
weak topologies and for the topological vector space (Sn) onto the space (Sm). The
concept of S -linear independence is fundamental in order to define the S -coordinate
operator. Following Carfì (2010), if v is S -linear independent, it is possible to consider
an algebraic isomorphism from S ′

m onto the S -linear hull S -span(v) by which one can
send every tempered distribution a ∈ S ′

m to the superposition

Rm av, that is the restriction

of the injection

Rm(·,v) to the pair of sets (S ′

m,span(v)). We shall denote the inverse of
this isomorphism by the symbol [·|v]. Thus

[·] :S span(v)→ S ′
m (19)

is a topological isomorphism w.r.t. the topology induced by the weak-⋆topology on the
S -linear hull S -span(v) iff the v-family is topologically exhaustive. Furthermore, given a
z ∈ S -span(v), the distribution a ∈ S ′

m, such that

z =

Rm

av,

is denoted by [z|v] and it is called the system of coordinates of z in v. I can now define the
concept of S -bases: given an S -family in S ′

n and let T be a subspace of S ′
n. The family

v is called S -basis of T if it is S -linear independent and it S -generates V , that is if the
superposition operator of the family v is injective and S -span(v) = T . Thus there exists a
unique a ∈ S ′

m such that u =

Rm av, moreover v is an S -basis of Sn iff t(v) is bijective.

We have seen a particular algebraic structure which is the framework that underpins the
notion of Carfì space. Rather this space is characterized by the S -linear algebra and boils
down to the notions belonged to the S -triple. Now we are able to comprehend the notion
of Carfì space and its importance in order to enlarge those mathematical concepts that were
bounded from the Lp spaces to the distribution one. It is thus possible to define non-locally
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functions, to define their global properties; there is a new fashion in looking at mathematics:
a global one by using Carfì spaces.

Appendix A.

A.1. Topological Vector Spaces. Given a space A over C, we have the vector addition and
the scalar multiplication

+ : A×A → A : (x,y) →→ x+ y

× : C×A → A : (λ ,x) →→ λx.

In order to define a topological vector space it is needed that a topology T of A is compatible
with the linear structure of A if + and × are continuous, that is to say A is provided by a
topology T, A×A with the topology T×T, C×A with the topology C×T (Trèves 1967).
Thus a topology C of λ defines the bases of neighorhoods with open or closed disks provided
by a center λ . If C is compatible w.r.t. the linear structure of A, then it is a topological
vector space, and thus it is traslation invariant. Rather, (see Trèves (1967)) the filter of
neighborhoods F(x) of the point x is the family of set A+ x where A varies over F(0). This
filter of neighborhoods of the origin has to be in a topology T compatible w.r.t. the linear
structure of A satisfying some properties. Thus the origin belongs to every subset V ∈ F, to
every V there is a P such that P+P ⊂V , for every V ∈ F and λ ̸=0 ∈ C then λV ∈ F, every
subset V is absorbing and balanced.

A.2. Duality in Topology. Given a topological vector space A, its dual A′ is defined as
the vector space of all continuous linear functionals on A, that is to say continuous linear
mappings from A to C. The concept of duality is of utmost importance in order to understand
the notions of this paper, rather the tempered distributions space is the dual of the space of
distributions.
When one talks about duality it is natural to think about orthogonality, informally a duality
seems like a rope that from a space goes to another one, the point touched onto the another
one is, of course, orthogonal w.r.t. the space of origin. This point onto the duality (another
one space) is called polar, and it is denoted (in the case of the orogin-space A) by Å.
Formally, given a subset G of A, the subset of A′

{x′∈A′; sup
x∈G

|⟨x′,x⟩| ≤ 1}

is defined polar Å of A. It is worth noting that given A ⊂ U , the Å is a convex balanced
subset of A′, and a rather important property is that of the cone of A. In few words, A is a
cone when x ∈ A implies λx ∈ A ∀λ > 0. In this case Å is the set of all continuous linear
functions on A which vanish identically in A, thus it is the orthogonal of A and hence Å is a
linear subspace of A′ (Trèves 1967).
The weak topology. Given a family of finite subsets of A, denoted by A, the corresponding
topology is σ(A,A′). Thus, continuous linear functionals x′ on A′ converge weakly to 0 if
for each x ∈ A, the ⟨x′,x⟩ converge to zero in C; that is to say a pointwise convergence in A.
It is the weakest topology of A that makes all elements of A′ continuous.
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The weak-⋆topology. Given g ∈ A′, the seminorm κg(x) = |g(x)| and κx(g) = |g(x)|, the
topology of κg is the weak topology for the seminorm {κg|g ∈ A′} whereas the topology de-
fined by the seminorm {κx|x ∈ A} generates the topology on A′ defined the weak-⋆topology.
Thus we are talking about a topology defined on the dual space.
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