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ON THE STABILITY OF NONAUTONOMOUS BINARY
DYNAMICAL SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

SALVATORE RIONERO a∗

ABSTRACT. Nonlinear nonautonomous binary reaction-diffusion dynamical systems of
partial differential equations (PDE) are considered. Stability criteria - via a nonautonomous
L2−energy - are obtained. Applications to nonautonomous Lotka-volterra systems of
PDEs and to “preys” struggle for the life, are furnished.

To Giuseppe Grioli for his hundredth birthday

1. Introduction

In [1]-[2] the nonlinear stability of the null solution of the nonautonomous binary dy-
namical systems  ẋ = a(t)x+ b(t)y + f(x, y, t),

ẏ = c(t)x+ d(t)y + g(x, y, t),
(1)

with f and g nonlinear functions such that f(0, 0, t) = g(0, 0, t) = 0, has been studied.
Successively in [3] the asymptotic behaviour of solutions to the nonautonomous nonlinear
third order PDE

utt + a(t)ut = b(t)uxx + c(t)uxxt + F (u), (2)

(with F (u) nonlinear and such that F (0) = 0) modeling several phenomena, has been
analyzed and, in particular, the stability of the null solution has been studied. It is to
remark that, setting

ut = v, b(t) = γ12, c(t) = γ22, (3)

(2) is equivalent to the nonautonomous binary reaction-diffusion system with self and cross
diffusion  ut = v,

vt = −av + γ12uxx + γ22vxx + F (u),
(4)

and that in [3], (2) has been studied by analyzing (4). In order to continuing a methodical
study of stability of nonautonomous binary systems, the present paper is devoted to the
stability of the null solution of the nonautonomous binary, reaction-diffusion, dynamical
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systems of PDEs given by ut = a11(t)u+ a12(t)v + γ1(t)∆u+ F1(t, u, v),

vt = a21(t)u+ a22(t)v + γ2(t)∆v + F2(t, u, v),
(5)

with (x, t) ∈ Ω× R+, Ω being a smooth domain of R3, under the boundary conditions βφ+ (1− β)∇φ · n = 0,

φ = u, v,
(6)

with n the outward unit normal to ∂Ω and

β : x ∈ ∂Ω ⇒ β(x) ∈ (0, 1), β(x) ≢0, (7)

smooth function and
aij : t ∈ R+ ⇒ aij(t) ∈ C1(R+) ∩ R, i, j = 1, 2, 3,

γi : t ∈ R+ ⇒ γi(t) ∈ R+,

aij ,
daij

dt , γi ∈ L∞(R+), Fi(t, 0, 0) = 0,

(8)

with Fi nonlinear functions of u and v.

Section 2 is devoted to some preliminaries. In particular the functional space in which
is studied the system at stake is introduced together with the basic spectral problem. In the
subsequent Section 3 the properties of a nonautonomous L2−energy are analyzed while
Sections 4 and 5 are respectively devoted to the linear and nonlinear stability. In Section 6
the stability of binary reaction-diffusion systems of PDEs of Lotka-Volterra type is consid-
ered. The “preys” struggle for the life and their survival strategy is put in evidence in the
subsequent Section 7, while Section 8 is devoted to a final remark. The paper ends with
an Appendix (Section 9) in which the main tools of the Direct Method for the stability of
nonautonomous systems are recalled.

2. Preliminaries

We assume that Ω ⊂ R3 is a smooth bounded domain having the interior cone property,
and denote by

• < ·, · > the scalar product of L2(Ω);
• < ·, · >∂Ω the scalar product of L2(∂Ω);
• ∥ · ∥ the norm of L2(Ω);
• ∥ · ∥∂Ω the norm of L2(∂Ω);
• W 1,2(Ω, β), the functional space such that

W 1,2(Ω, β) =

φ ∈W 1,2(Ω) ∩W 1,2(∂Ω), βφ+ (1− β)∇φ · n = 0, on ∂Ω


.

For β > 0, it follows that {[4], pp.92− 98},


β

1− β
φ


2

∂Ω

+ ∥∇φ∥2 ≥ α∥φ∥2, (9)
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where α = α(Ω, β) is the smallest eigenvalue of the spectral problem ∆φ+ λφ = 0, in Ω,

βφ+ (1− β)∇φ · n = 0, on ∂Ω.
(10)

Setting 

u = U1, v = U2, B11 = a11 − αγ1, B22 = a22 − αγ2,

φ1 = γ1(∆U1 + αU1),

φ2 = γ2(∆U2 + αU2),

ψ1 = f1(t, U1, U2), ψ2 = f2(t, U1, U2),

(11)

(5)-(6) are reduced respectively to
∂U1

∂t = B11(t)U1 + a12(t)U2 + φ1 + ψ1

in Ω× R+,
∂U2

∂t = a21(t)U1 +B22(t)U2 + φ2 + ψ2,
(12)

βU1 + (1− β)∇Ui · n = 0, on ∂Ω× R+. (13)

3. Properties of nonautonomous generalized energies

In the Appendix (Section 9), the essential tools of the Liapunov Direct Method for
nonautonomous binary systems of ordinary differential equations (ODE) are recalled to-
gether with the properties requested to a function for being a Liapunov function in the
nonautonomous case are recalled.
The analysis performed in the sequel is based on the behaviour of the functional

E =
1

2


µ1(t)∥U1∥2 + µ2(t)∥U2∥2


, (14)

with µi, (i = 1, 2), suitable positive derivable functions in R+ and bounded there together
with the derivative µ̇i.
Setting

F∗ = inf
R+

F, F ∗ = sup
R+

F, (15)

for any function F : R+ → R, the following Lemma holds.

Lemma 1. The functional E has the following properties:

i) if (µi)∗ > 0, (i = 1, 2), then E is positive definite;
ii) the temporal derivative of E along the solutions of (12)-(13) is given by

Ė = 1
2


(µ̇1 + 2B11µ1)∥U1∥2 + (µ̇2 + 2B22µ2)∥U2∥2+

+ 2(µ1a12 + µ2a21) < U1, U2 >] + Φ1 +Φ2,
(16)
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with

Φ1 =

2
i=1

γiµi < Ui, φi >, Φ2 =

2
i=1

µi < Ui, fi >; (17)

iii) admits an upper bound which is infinitely small at the origin;
iv) if one of the functions µi is negative in R+, then E is indefinite and, in any disk

centered at the origin of the phase space, exists a domain in which E is positive.

Proof Property i) immediately follows since

E >
1

2
min [(µ1)∗, (µ2)∗] (∥U1∥2 + ∥U2∥2). (18)

Analogously in view of

Ė = µ̇1∥U1∥2 + µ̇2∥U2∥2 +
2

i=1

µi < Ui, U̇i >, (19)

and (12), (16) is easily obtained. As concerns iii) it is enough to observe that

E <
1

2
sup [(µ1)

∗, (µ2)
∗] (∥U1∥2 + ∥U2∥2). (20)

Finally iv), in the case µ2(t) < 0, ∀t ∈ R+, is given by

E =
1

2
(µ1∥U1∥2 − |µ2|∥U2∥2), (21)

and hence on the domain U2 = 0, one obtains

E >
1

2
(µ1)∗∥U1∥2. (22)

4. Linear stability

In view of (10), it easily follows that

Φ1 ≤ 0. (23)

Therefore disregarding Φ2, (16) reduces to

2Ė ≤

 (µ̇1 + 2B11µ1) ∥U1∥2 + (µ̇2 + 2B22µ2) ∥U2∥2+

+2(µ1a12 + µ2a21) < U1, U2 > .
(24)

Theorem 1. Let

(a12a21)
∗ < 0, B∗

11 ≤ −h1, B∗
22 < −h2, ∀t ∈ R+, (25)

hi, (i = 1, 2), being positive constant. Then

|a21| ≤ |a21(0)|e2h1t, |a12| ≤ |a12(0)|e2h2t, ∀t ∈ R+, (26)

guarantee the stability of the null solution, while

|a12| ≤ |a12(0)|e2(h1−ϵ)t, |a21| ≤ |a21(0)|e2(h2−ϵ)t, (27)

with 0 < ϵ =const.< min(h1, h2), guarantee the exponential asymptotic stability.
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Proof. We give the proof in the case {(a12)∗ > 0, B∗
21 < 0}. Choosing

µ1 = −a21, µ2 = a12, (28)

one obtains

µ1a12 + µ2a21 = −a21a12 + a12a21 = 0, (29)

and (23) reduces to

Ė ≤ 1

2


(µ̇1 + 2B11µ1)∥U1∥2 + (µ̇2 + 2B22µ2)∥U2∥2


. (30)

On the other hand (26) guarantee that µ̇1 + 2B11µ1 ≤ 0,

µ̇2 + 2B22µ2 ≤ 0,
(31)

while (27) guarantee  µ̇1 + 2B11µ1 < ϵB11µ1 ≤ −ϵh1|a21|∗,

µ̇2 + 2B22µ2 < ϵB22µ2 ≤ −ϵh2|a12|∗.
(32)

Therefore Ė ≤ 0 in the case (26) and Ė is negative definite in the case (27). In view of
(18) E is positive definite and exists a constant m > 0 such that

Ė ≤ −mE ⇔ E ≤ E(0)e−mt. (33)

Theorem 2. Let B11B22 > a12a21, ∀t ∈ R+, and (a12a21)∗ > 0, (B11)
∗ ≤ −h1, (B22)

∗ ≤ −h2,

min(|a12|∗, |a21|∗) > 0,
(34)

h1, (i = 1, 2), being positive constants. Then (26) guarantee the stability and (27) the
asymptotic exponential stability.

Proof. In view of (28) it turns out that

2(µ1a12 + µ2a21) < U1, U2 >≤ 2
√
µ1µ2

√
B11B22 < |U1|, |U2| >≤

≤ µ1|B11|∥U1∥2 + µ2|B22|∥U2∥2,
(35)

and (24) reduces to

Ė ≤ 1

2


(µ̇1 + 2B11µ1)∥U1∥2 + (µ̇2 + 2B22µ2)∥U2∥2


. (36)

Obviously, from now on, one has to follows, step by step, the proof of the previous theorem.
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5. Nonlinear stability

Theorem 3. Let

Φ2 ≤ kE1+η, (37)

with k and η positive constants and let the null solution be asymptotically linearly stable
either according to theorem 1. Then the null solution is nonlinearly exponentially locally
stable.

Proof. We give the proof in connection with theorem 1 (that one, in connection with
theorem 2, can be obtained with an analogous procedure).
In view of (33)1 and (37), it follows that

Ė ≤ −mE + kE1+η ≤ (kEη −m)E. (38)

Therefore for

Eη(0) <
m

k
, (39)

one obtains (by an iterative procedure)

Ė ≤ −δE ⇔ E ≤ E(0)e−δt, (40)

with

δ = m− kEη(0). (41)

6. Stability of nonautonomous binary reaction-diffusion PDEs Lotka-Volterra mod-
els

We consider, in the case β ≡ 1,Ω = (0, 1), the nonautonomous Lotka-Volterra models ut = a(t)u− b(t)uv + γ1(t)∆u,

vt = −c(t)v + d(t)uv + γ2(t)∆v,
(42)

with a, b, c, d, positive functions of t. System (42) is a particular case of (5) and admits the
positive steady solution (ū = c̄

d̄
, v̄ = ā

b̄
), with ā, b̄, c̄, d̄ positive constants if and only if

a = āφ(t), b = b̄φ(t), c = c̄φ1(t), d = d̄φ2(t). (43)

Assuming (43) for biological reasons, (42) reduces to ut = φ(t)(ā− b̄v)u+ γ1∆u,

vt = φ1(t)(−c̄+ d̄u)v + γ2∆v.
(44)

We assume that φ and φ1 are smooth functions defined in R+, bounded together with their
first derivative φ̇, φ̇1. Further - in order to guarantee that the “preys” density u grows in
the absence of “predators” and diffusivity (γ1 = 0) and vice versa the “predators” density
v decreases in the absence of preys and absence of diffusivity (γ2 = 0), we assume that φ
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and φ1 are positive functions of t ∈ R+. Following [2], we set

U1 = d̄
c̄u, U2 = b̄

āv,

τ = ā
 t

0
φ(z) dz, r = c̄

ā , F (t) = φ1

φ ,

γ̄1 = γ1

āφ , γ̄2 = γ2

āφ ,

(45)

and (44) becomes 
∂U1

∂t = (1− U2)U1 + γ̄1∆U1,

∂U2

∂t = rF (U1 − 1)U2 + γ̄2∆U2,
(46)

under the boundary conditions

U1 = U2 = 1, for x = 0, 1. (47)

Remark 1. We remark that:
i) (46)-(47) has (1, 1) as equilibrium steady state where neither species is extinct;

ii) for
φ1

φ
= const.,

γi
φ

= const., (48)

(46)-(47) reduces to the autonomous case;
iii) the nonlinear stability of (1, 1) guarantees the survival of both the species (and

hence the ecological equilibrium).

Theorem 4. Let
F ≤ F (0)e2(h1−ϵ)t, h1 − ϵ > 0, (49)

with h1, ϵ positive constants. Then (1, 1) is linearly, asymptotically, exponentially stable.

Proof. Setting
U1 = 1 +X, U2 = 1 + Y, (50)

it turns out that 
∂X
∂t = −Y + γ̄1∆X −XY,

∂Y
∂t = rFX + γ̄2∆Y + rFXY,

(51)

under the boundary conditions

X = Y = 0, x = 0, 1. (52)

Following (11) and linearizing one obtains
∂X
∂t = −αγ̄1X − Y + γ̄1(∆X + αX),

∂Y
∂t = rFX − αγ̄2Y + γ̄2(∆Y + αY ),

(53)

with α = π2 [?], and it immediately follows that by virtue of (49) all the conditions
requested by theorem 1 are verified.

Theorem 5. Let
0 < F ≤ m1 = positive constant. (54)

Then (1, 1) is locally nonlinearly asymptotically exponentially stable.
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Proof. Let us begin by recalling that in C0(0, 1) the following inequalities hold [10],
∥∇φ∥2 ≥ π2∥φ∥2,

 1

0
φ4 dx ≤ 1

π2

  1

0
(∇φ)2 dx

2
,

(55)

and hence it follows that 1

0
φ2φ1dx ≤

  1

0
φ4dx

 1

0
φ2
1dx

 1
2 ≤

≤ 1
π∥∇φ∥

2 · ∥φ1∥ ≤ 1
π∥∇φ∥

2(∥φ∥2 + ∥φ1∥2)
1
2 .

(56)

Directly from (51) it follows that

2Ė = µ̇1∥U1∥2 + µ̇2∥U2∥2 + 2(−µ1 + µ2rF ) < X,Y > +

+µ1γ̄1 < X,∆X > +µ2γ̄2 < Y,∆Y > .
(57)

On the other hand in view of (55)1, it follows that

< φ,∆φ >= −∥∇φ∥2 ≤ −(1− η)∥∇φ∥2 − ηπ2∥φ∥2, (58)

with η < 1 and hence (57) implies

2Ė ≤ (µ̇1 − ηπ2γ̄1µ1)∥X∥2 + (µ̇2 − ηπ2γ̄2µ2)∥Y ∥2+

+2(−µ1 + µ2m1) < |X|, |Y | > +

+(1 + 2F )µ1γ̄1∥∇X∥2


1
π∥X∥ − (1− η)


+

+(1 + 2F )µ2γ̄2∥∇Y ∥2


1
π∥Y ∥ − (1− η)


.

(59)

Choosing

µ1 = m1, µ2 = 1, (60)

one obtains

2Ė ≤ −ηπ2m1γ̄1∥X∥2 − ηπ2γ̄2∥Y ∥2, (61)

under the initial conditions

∥X(0)∥ < (1− η)π, ∥Y (0)∥ < (1− η)π, (62)

and hence

Ė ≤ −ηπ2δE ⇔ E ≤ E0e
−ηπ2δt, (63)

with

δ = min[(γ1)∗, (γ2)∗]. (64)
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7. Struggle for the life

In the case u = v = 0, on ∂Ω, (42) admits the null solution (0, 0) (which is the only
steady state existing). The stability-instability of this solution is of primary interest since
its asymptotic stability implies the extinction of the “preys” (the “predators” eat generally
various species of preys). The “preys”, in order to survive, have to adopt a strategy guar-
anteeing the instability of the null solution. In order to understand this strategy one has to
consider the (linear) instability of the null solution of (42). Choosing as Liapunov function
the energy norm ∥u∥2 + ∥v∥2, one immediately obtains

1

2

d

dt
(∥u∥2 + ∥v∥2) = a(t)∥u∥2 − c(t)∥v∥2 + Φ̄, (65)

with

Φ̄ = γ1(t) < u,∆u > +γ2(t) < v,∆v >, (66)

and, by virtue of (55)1, one obtains

1

2

d

dt
(∥u∥2 + ∥v∥2) < [a(t)− αγ1(t)]∥u∥2 − [c(t) + αγ2(t)]∥v∥2. (67)

Therefore

a∗ < α(γ1)∗, (68)

implies asymptotic (linear) stability of the null solution. In view of (68) it follows that in
order to survive the “preys” have to stay “as close as possible” in order to guarantee γ1(t) ≃
0. Since {sinnπx} is a complete system of eigenfunction associate to the sequence of the
eigenvalues {n2π2} of the spectral problem ∆φ+ αφ = 0, x ∈]0, 1[,

φ = 0, x = 0, 1,
(69)

then, in view of u =
∞

n=1 un with un = Xn sinnπx, the (linear) instability is guaranteed
by the instability of the null solution of

dX1

dt
= [a(t)− π2γ1(t)]X1. (70)

(70) implies

X1(t) = X1(0) exp

 t

0

[a(τ)− π2γ1(τ)]dt, (71)

therefore

X1(0) > 0,

 t

0

[a(τ)− π2γ1(τ)]dt, (72)

guarantees the prey’s survival in [0, t].
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8. A Final Remark

We remark that in [1]-[3] a Liapunov functional - different from (14) and directly linked
to the eigenvalues of the problem at stake - has been introduced. In the case (12) this
functional is

Ṽ =
1

2


A(t)(∥U1∥2 + ∥U2∥2) + ∥B11U2 − a21U1∥2 + ∥a12U2 −B22U1∥2


, (73)

with
A = B11B22 − a12a21. (74)

(73), in the autonomous case, allows to obtain conditions guaranteeing the nonexistence
of subcritical instabilities [5] and hence appears to be ”a priori” the best candidate for the
nonautonomous case. We here, for the sake of simplicity, have not taken it into account.
The functional (73) has been used in [3].

9. Appendix

We recall here the basic conditions requested for the stability of nonautonomous sys-
tems.

i) Stability. The main theorem of the Direct Method for nonautonomous systems [9]
guarantee that:
the existence of a positive definite function W i.e.:

W ≥ m(∥U1∥2 + ∥U2∥2), m = positive constant, (75)

implies
– stability if the temporal derivative along the solutions is negative semidefinite

(i.e. Ẇ ≤ 0);
– asymptotic stability if admits an upper bound which is infinitely small at the

origin (i.e. W ≤ m1(∥U1∥2 + ∥U2∥2), m1 =const> 0) and its temporal
derivative along the solutions is negative definite {i.e. Ẇ < 0 for ∥U1∥2 +
∥U2∥2 ̸= 0 }.

ii) Instability. The null solution is unstable if exists a function W
– taking positive values in any disk centered at U1 = U2 = 0;
– Ẇ is positive definite for all t ≥ t0 > 0 in which W is bounded.
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