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WHY SO MANY “SCHOOLS” OF THERMODYNAMICS?

WOLFGANG MUSCHIK

ABSTRACT. A classification representing some main branches of phenomenological non-
equilibrium thermodynamics is discussed. Differences and similarities of these selected
branches are explained. Starting out with basic concepts of phenomenological thermody-
namics, more developed theories with different back-grounds contributing to contemporary
thermodynamics are considered. Because of its vast extent, this field cannot be presented
completely in a single reasonably sized paper without any omissions.

1. Introduction

The question, why there are so many schools of thermodynamics, can be answered
concisely: There is no natural extension from thermostatics to thermodynamics. This ex-
tension from thermostatics to thermodynamics seems to be easy: one has to replace the
reversible processes of thermostatics by real ones and has to extent the balances of con-
tinuum mechanics by the appropriate thermal quantities such as heat flux density, internal
energy and entropy.

But it is not so easy as supposed [1], because usually thermostatics is formulated for
discrete systems [2], whereas thermodynamics can be presented in two forms, as a non-
equilibrium theory of discrete systems [3, 4] or in a field formulation extending the bal-
ances of continuum mechanics [5]. Both descriptions are used in practice which is wide-
spread for thermodynamics. Its methods can be successfully applied in various different
disciplines such as Physics and Physical Chemistry, Mechanical and Chemical Engineer-
ing, Heat and Steam Engine Engineering, Material Science, Bio-Sciences, Energy Con-
version Techniques, Air Conditioning and Refrigeration. Consequently, it is impossible
to mention the different terminologies [6], methods and schools completely in this brief
survey.

Presupposing that classical thermostatic is well-known, we will proceed along a way which
is sketched in Table 1. Beginning with the original irreversible thermodynamics [7], a field
which was methodically finished in the middle of the sixties, we will discuss contemporary
non-equilibrium thermodynamics which we have divided into seven sections (that is only
one possible incomplete classification): Rational [8], extended [9, 10], endoreversible [11]
and quantum thermodynamics [12], mesoscopic theory [13], GENERIC [14] and evolution
and variational criteria [15, 16, 17]. This classification is not at all complete and unique:
Bio-thermodynamics [18, 19, 20], second law analysis [21], finite time thermodynamics
[22], mathematical foundation and relativistic formulations of thermodynamics [23] are
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missing, as well as all non-phenomenological theories: Statistical Thermodynamics, trans-
port theory and molecular simulations.

Classical Irreversible Thermodynamics

Thermodynamics of Irreversible Processes

Non-Equilibrium Thermodynamics

Rational Thermodynamics

Large or small state spaces
Constitutive Theory
Exploitation of dissipation
inequality

Extended Thermodynamics

Extended Irreversible Thermodynamics
Extended Rational Thermodynamics

Endoreversible Thermodynamics
Mesoscopic Theories
GENERIC
Evolution criteria
Quantum Thermodynamics

Table 1

There are basic concepts which can be found in all schools of thermodynamics, thus al-
lowing for a classification of these schools [24]. Such a classification can be done by
answering the following questions [1]:

• Is the considered system described as a discrete one or in field formulation?
• Are temperature and entropy primitive concepts or derived quantities?
• Is the chosen state space small or large?
• Are all constitutive equations properly defined on the chosen state space?
• Is the dissipation inequality global or local in time, postulated or based on experi-

mental facts?
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• What is the procedure for exploiting the dissipation inequality [25]?
• Is the relation between heat flux density and entropy flux density universal or

material-dependent?
• Are complex materials described by a mesoscopic theory or by introducing addi-

tional fields and their balances [26, 27]?
• Are the non-equilibrium processes restricted to endoreversible thermodynamics or

are they described without reversible parts?
• Has the phenomenological description of a non-equilibrium system a correct quan-

tum mechanical background?

2. Basic Variables

2.1. Discrete systems. A system which is separated by a partition from its surroundings
is called a discrete thermodynamic system or a Schottky system [28], if the interaction
between the system and its environment can be described by the heat exchange Q̇, the
power exchange Ẇ and the material exchange ṅe, represented by the external rates of the
mole numbers [29].

The basic variables of a discrete system are the work variables a, the mole numbers n, the
internal energy U , the contact temperature Θ [30, 31] and additional internal variables ξ

(1) (a,n, U,Θ, ξ)(t).

The “equation of motion” of these variables is the first law of thermodynamics valid in
non-equilibrium [32]

(2) U̇ = Q̇+A · ȧ+ h · ṅe.
Here the A are the generalized forces and h the molar enthalpies describing the change
of the internal energy of the open system. Both quantities, A and h, are constitutive
ones given by non-equilibrium constitutive equations. The rates Q̇, ȧ and ṅe which are
determined by the environment are also given by constitutive equations.

The rate of a non-equilibrium entropy is defined by

(3) Ṡ :=
1
Θ
U̇ − A

Θ
· ȧ− µ

Θ
· ṅ+ αΘ̇ + β · ξ̇.

The entropy production follows from isolating the system

(4) Σ = −µ
Θ
· ṅi + αΘ̇ + β · ξ̇.

Here the ṅi are the internal mole number rates by chemical reactions. For determining the
entropy production, the rate equations of ṅi, Θ̇ and ξ̇ are necessary. The second law of
thermodynamics, the dissipation inequality, is given by

(5) Σ(t) ≥ 0.

If this dissipation inequality is accepted as a formulation of the second law of thermo-
dynamics, Clausius inequality can be derived by integrating along a process (1), but not
vice-versa [33].
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2.2. Field formulation. The basic variables in field formulation depend on the system
under consideration. Describing a solid, the deformation gradient F and the temperature
are the suitable variables, if no internal degrees of freedom are relevant

(6) (F,Θ)(x, t).

A fluid with internal orientational degrees of freedom has eight basic variables at the clas-
sical level of description: mass density, velocity, spin density, internal energy density

(7) (%,v, s, ε)(x, t).

The basic variables of a fluid described in extended thermodynamics contain variables
belonging to dissipation: the dissipative part of the stress tensor T + p1 and the heat flux
density q

(8) (%,v, ε,T + p1, q)(x, t).

Here p is the hydrodynamic pressure of the fluid.

The “equations of motion” of the basic variables are the balance equations which are the
starting-point of every field formulation

(9) ∂t(%a) +∇ · (v%a+ Ψ) = ϕ+ σ.

Here the symbols have the following meaning: basic fields a(x, t) , velocity v(x, t), mass
density %(x, t), conductive fluxes Ψ(x, t), supplies ϕ(x, t) and productions σ(x, t).

There are three classes of fields included in the balances (9): the basic fields, the given
fields, such as ϕ and fields determined by constitutive equations, such as Ψ and some of
the σ.

In more detail, the balances of the basic variables are [34]

• Mass

(10) ∂t%+∇ · (v%) = 0

• Momentum

(11) ∂t (%v) +∇ ·
(
v%v −T>

)
− %k = 0

• Angular momentum

M(x, t) := x× v(x, t) + s(x, t)(12)
∂

∂t
(%M) + ∇ · (v%M − [x×T]> −W>)−

− %[x× k + g] = 0(13)

• Spin

(14) ∂t(%s) +∇ · (v%s−W>)− ε : T− %g = 0
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• Total energy

e(x, t) :=
1
2
v2(x, t) +

1
2
s(x, t) ·Θ−1(x, t) · s(x, t) + ε(x, t)(15)

∂

∂t
(%e) + ∇ ·

[
v%e−T> · v −W> ·Θ−1 · s+ q

]
−

− %k · v − %g ·Θ−1 · s− %r = 0(16)

• Internal energy

∂t(%ε) + ∇ · (v%ε + q) − ∇v : T − %r −
− ∇(Θ−1 · s) : W − (Θ−1 · s) · ε : T = 0(17)

• Entropy, dissipation inequality

(18) ∂t(%s) + ∇ · (v%s + Φ)− ϕ = σ ≥ 0, ∀(x, t).

The meaning of the particular quantities in the balances is as follows:
The basic fields:

mass density: %(x, t)(19)
material velocity: v(x, t)(20)

specific internal energy: ε(x, t)(21)
specific spin: s(x, t)(22)

External given quantities:
specific external force density: k(x, t)(23)

specific external angular momentum: g(x, t)(24)

Constitutive equations:
Cauchy stress tensor: T(x, t)(25)
couple stress tensor: W(x, t)(26)

moment of inertia tensor: Θ(x, t)(27)
heat flux density: q(x, t)(28)

specific energy supply: r(x, t)(29)
specific entropy density: s(x, t)(30)

entropy flux density: Φ(x, t)(31)
entropy production density: σ(x, t)(32)

entropy supply density: ϕ(x, t)(33)
temperature: Θ(x, t)(34)

3. Constitutive Equations

3.1. State space. The constitutive equations (25) to (34) have to be inserted into the bal-
ance equations for solving them by taking initial and boundary conditions into considera-
tion. There are different types of constitutive equations with respect to their domain:
Def.: The domain of the constitutive equations is called the state space or the constitutive
space. We distinguish between large and small state spaces:
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Def.: A state space is called a large one, if the material propertiesM are defined by maps
which are local in time on the basic fields z(t)

(35) M : z(t) 7→M(t), ∀t.
For defining the other class of constitutive equations, we need the concept of the process
history:
Def.: For a fixed time t and real s ≥ 0, the expression

(36) zt(s) := z(t− s), s ∈ [0, τ ]

is called the history of the process z(·) between t− τ and t.
Def.: A state space is called a small one, if the material propertiesM are defined by maps
on the process histories zt(·) of the basic fields

(37) M : zt(·) 7→M(t), ∀t.

The difference between the two types of state spaces is as follows: Small state spaces do
not include so many basic variables so that a description of the material being local in
time is possible. Therefore these materials may show after-effects, such as hysteresis or
creeping. Large state spaces are large enough for allowing an in time local description of
the material properties.

The choice of the state space is not restricted. If the state space is small, it includes locally
independent variables. In general, these variables are different from the wanted fields.
An example for that is Fourier heat conduction: The heat flux density depends on the
temperature gradient q = Q(∇T, . . .), but the temperature itself is the basic field and not
its gradient. The choice of the state space determines a class of materials which is defined
by all constitutive equations which are compatible with the state space and the material
axioms [35, 29] which will be briefly discussed in the next section.

Without taking material axioms into consideration first of all, some examples of small state
spaces Z(x, t) are:

(38) Z(x, t) = (%,v, ε)(x, t), no heat conduction, no internal friction,

(39) Z(x, t) = (%, ε,v,∇%,∇ε,∇v)(x, t),

(40) Z(x, t) = (%,v, ε, ξ,∇%,∇v,∇ε,∇ξ, %̇, v̇, ε̇, ξ̇(x, t),

(41) Zext(x, t) = (%,v, ε,T + p1, q)(x, t), Extended Thermodynamics.

The constitutive space of extended thermodynamics is identical to the space spanned by its
basic variables Zext(x, t) ≡ zext(x, t).

(42) Z(x, t) = (F,Θ,∇Θ)(x, t), Thermoelasticity,

(43) Z(x, t) = (F,Θ,∇Θ, ξ)(x, t),Thermoviscoelasticity,

(44) Z(x, t) = (Fe,Fp,Θ,∇Θ)(x, t), Thermoviscoplasticity,

(45) Z(x, t) = Ft(·),Θt(·))(x), Thermal After Effects.
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3.2. Entropy- and heat flux density. Two classes of theories can be distinguished with
respect to the general relation between the heat flux density q(Z(x, t)) and the entropy
flux density Φ(Z(x, t)):

(46) Φ(Z(x, t)) =
1
Θ
q(Z(x, t)) +K(Z(x, t))

In general,K 6= 0 is valid, and the entropy excess flux densityK is a constitutive equation.

There are schools presupposing that K ≡ 0 is universally valid. Theories using this
presupposition are called Clausius-Duhem theories. Consequently, the entropy balance in
Clausius-Duhem theories is according to (18)

(47) ∂t(%s) + ∇ · (v%s +
q

Θ
)− ϕ = σ ≥ 0, ∀ x, t.

Interesting is that the temperature does not appear in the balances (10) to (18). Temper-
ature is introduced into the balances by constitutive properties, here, in Clausius-Duhem
theories, by Φ = (1/Θ)q.

3.3. Material axioms. Material axioms are rules restricting the arbitrariness of the con-
stitutive mappings M in (35) and (37). These material axioms are called equipresence,
objectivitiy, material frame indifference [36], standard frame dependence [37] and the sec-
ond law. The particular schools differ in applying these axioms.

A brief characterization of the material axioms is as follows: Equipresence means that the
domain – the constitutive space – for all parts ofM – for all material properties – is the
same. Objectivity means that domain and range of the constitutive mapping are spanned
by objective quantities which transform by definition as tensor components under changing
the observer. Material frame indifference means that the constitutive mapping is observer-
independent and that a uniform motion of the material with respect to a standard frame of
reference does not influence material properties. Standard frame dependence means that
material properties depend on the motion of the material with respect to an arbitrary, but
fixed chosen frame of reference, called standard frame of reference. These axioms are
not independent of each other: If a material mapping is objective, then it is also observer-
independent. All in all, the denotion and the use of the material axioms is not unique and
differs from school to school [38]. This is even true for the least axiom, the second law
which is discussed in more detail in the next section.

4. Dissipation Inequality

The second law can be formulated in various different shapes [39, 25]. There are several
dissipation inequalities which are global in time: First of all, Clausius inequality which is
valid for discrete systems is [40]

(48)
∮  Q̇

Θ
+
∑
j

sj ṅej

 dt ≤ 0.
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Here, Θ is the contact temperature [30, 31], sj the molar entropy of the j-th component
and ṅej the external change of the mole number of the j-th component of the system.

Meixner [41] introduced two different temperatures, a non-equilibrium one Θ and an equi-
librium temperature Teq . His dissipation inequality runs as follows

(49)
∫ B

A

[
ṡeq +

1
%
∇ · q

Θ

]
dt ≥ 0,

∂seq
∂u

=:
1
Teq

.

Instead of introducing two temperatures, two different internal energies can be considered,
if a so-called accompanying process is created by projecting the non-equilibrium process
onto the equilibrium sub-space [42, 43]. Because of the gradient in (49)1, this inequality
belongs to a field formulation. This is also the case for the in time global dissipation
inequality used by Day [44] and Coleman/Owen [45]

(50)
∮ [

1
%
∇ · q

Θ
− r

Θ

]
dt ≥ 0.

Dissipation inequalities being local in time are first of all those of discrete systems (5) and
in field formulation (18). An other dissipation inequality was created by Gurtin/Williams
[46]. Introducing two temperatures, a surface temperature Θ and a bulk temperature ϑ,
this dissipation inequality estimates the entropy rate for a discrete system by surface and
volume integrals using field formulation:

(51) ṠG(t) ≥ −
∮
∂G

q

Θ
· df +

∫
G

%r

ϑ
dV.

The most imaginative dissipation inequalities are useless, if one is not able to exploit them.
In the next section we will do that for in time local dissipation inequalities in field for-
mulation. Examples for exploiting in time global dissipation inequalities can be found in
[44].

5. Exploitations of the 2nd Law

5.1. Original irreversible thermodynamics. State space of original irreversible thermo-
dynamics is the equilibrium sub-space, in case of one-component fluids (38) without the
velocity according to the material axiom of objectivity

(52) Z(x, t) = Zeq(x, t) = (%, ε)(x, t).

This choice of the state space is usually called the hypothesis of local equilibrium. The
entropy production σ can be represented as a product of forcesX and fluxes Y

(53) σ(x, t) = X(x, t) · Y (x, t) ≥ 0.

Forces and fluxes are not defined on the state space (52); they depend on constitutive
equations [7]

X = X (∇T,∇µ,k,T + p1),(54)
Y = Y(q,∇v).(55)
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Forces and fluxes are related by phenomenological equations

(56) Y = Y (X), 0 = Y (0)

which are presupposed to be linear

(57) Y (X) = L ·X, σ = X · L ·X ≥ 0.

The positive definite phenomenological matrix L satisfies the Onsager-Casimir relations
[7] which can be proved by statistical back-ground considerations or also by phenomeno-
logical arguments [47]

(58) L(−B,−ω, ....) = Λ · L>(B,ω, ...) ·Λ>, X(−t) = Λ ·X(t).

Here Λ is a diagonal matrix which describes the parity ofX under time reversal. The phe-
nomenological matrix depends on parameters which are odd under time reversal (B=magnetic
induction, ω= angular velocity). The use of the reciprocal relations was vehemently at-
tacked by the school of Rational Thermodynamics [48].

The exploitation of the dissipation inequality (57)2 in irreversible thermodynamics is clear:
The phenomenological matrix L has to be positive definite or at least positive semi-definite.

5.2. Extended irreversible thermodynamics. This extension of original irreversible ther-
modynamics consists in an other choice of the state space (52), that means, the hypothesis
of local equilibrium is cancelled. The state space (52) is replaced by that of extended ther-
modynamics (41) [49]. Result is that the entropy density depends on the heat flux density
and on the dissipative part of the stress tensor. Consequently, balance equations for these
additional basic fields are needed. Apart from the different choice of the state space, the
procedure of extended irreversible thermodynamics is as in the original one.

5.3. Non-Equilibrium Thermodynamics. The methods of exploiting the dissipation in-
equality are the same in extended rational and non-equilibrium thermodynamics, only the
choice of the constitutive space is different: The large state space in non-equilibrium ther-
modynamics can be chosen arbitrarily, whereas in extended rational thermodynamics (41)
is taken.

The balances (10) to (17) and the dissipation inequality (18) can be written in the shape

%ȧ + ∇ ·Ψ = Σ, a ∈ Rn,(59)
%ṡ + ∇ ·Φ ≥ ϕ.(60)

The fields a(z) and s(z) depend on the state space variables z(x, t). Consequently, the
derivatives in the balances have to be performed by the chain rule

(61) ∂t a =
∂a

∂z
· ∂tz, ∇ · a =

∂a

∂z
· ∇z.

Introducing them into the balances (59) and (60), we obtain the balance equations on state
space which are linear in the higher derivatives y. We obtain in matrix formulation

(62) y> := (∂tz,∇z) −→ A(z)y = C(z), B(z)y ≥ D(z).
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The abbreviations A, C, B and D depend on the constitutive quantities ∂a/∂z, and thus
on the state space variables z.

Now the question arises, how to exploit the dissipation inequality (62)3? There are two
possibilities to proceed:

#1: For fixed A,C, B and D the dissipation inequality excludes certain higher derivatives
y (process selective),

#2: The A,C, B and D have to be determined so that all process directions y are possible
(material selective).

The second statement can be expressed by the Coleman-Mizel formulation of the 2nd law
[50]:
� All solutions of the balance equations on state space y have to satisfy the dissipation
inequality

(63) ∧y : [ A(z)y = C(z) −→ B(z)y ≥ D(z) ] . �

The possibilities #1 and #2 are excluding each other, and the question arises what state-
ment is valid ? This question cannot be answered by the usual formulation of the second
law, because both the statements #1 and #2 refer to the same dissipation inequality. Conse-
quently, an amendment to the second law is needed. This amendment is the no-reversible
direction axiom [51]:

Except in equilibrium sub-space, reversible process directions in state
space do not exist.

Using this axiom, a proof of the Coleman-Mizel formulation (63) is possible [5], and the
second law is detected to be material selective.

The first exploitation method of the dissipation inequality, called Coleman-Noll technique
[52], is used in Clausius-Duhem theories and starts out with (47). Introducing the free
energy density

(64) f := u−Θs,

one obtains the dissipation inequality in the form

(65) %f• +∇ ·Ψ ≥ ψ.

After having chosen a constitutive space and having inserted the energy balance, the dissi-
pation inequality on the state space (62)3 becomes

(66) Gy ≥ H.

Now the constitutive constraints in Coleman-Noll technique are obtained by setting

(67) G(z) .= 0 ∧ H(z) ≤ 0.

This setting is of course an only sufficient condition, but whenever (67) is satisfied, the
second law is taken into account, but without considering other balances beyond the energy
balance. Those can be introduced additionally into the procedure, or one chooses the
second technique which is based on

� Liu’s Proposition [53, 51]: Presupposing the Coleman-Mizel formulation of the 2nd
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law, the following statement is valid: In large state spaces constitutive equations satisfy the
Liu relations

(68) B(z) = λ(z)A(z), λ(z)C(z) ≥ D(z).

Here λ(z) and the entropy production density are state functions

(69) σ(z) := λC − D ≥ 0.

The entropy production density is independent of the higher derivatives y (62)1, and there-
fore independent of the process direction. �

The Liu technique takes all balances properly into account. This can be done also by
the Coleman-Noll technique, if the balances are additionally introduced into (65) as con-
straints.

6. Endoreversible Thermodynamics

If reversible discrete systems interact irreversibly with each other by exchanges as dis-
cussed in sect. 2.1, we call such systems endoreversible ones [11]. This endoreversible
description corresponds to the hypothesis of local equilibrium in field formulation. Be-
cause a cycle time is attached to the reversible discrete systems, this theory is also called
finite time thermodynamics [22].

Prototypes of endoreversible systems are the Novikov [54] and the Curson-Ahlborn [55]
machines. Here we discuss briefly the Novikov machine with heat leak (see fig.1). The
power P of this machine is defined by introducing a cycle time τ by which the work −W
is devided

(70) P :=
−W
τ

=
QH
τ

(
1 +

QL
QH

)
≥ 0.

The entropy production of this two-reservoir machine (temperatures TH and TL) is

(71) Σ = QH(
1
Ti
− 1
TH

) + ∆Q(
1
TL
− 1
Ti

)− QH −∆Q
Ti

− QL + ∆Q
TL

.

Note that the term proportional to ∆Q is zero, and that consequently the entropy produc-
tion does not depend on ∆Q and Ti, if QH , QL, TH and TL are given.

First of all, the temperature Ti, TL < Ti < TH , is arbitrary. We now demand that ac-
cording to the philosophy of endoreversible thermodynamics the Novikov machine is a
reversible one. Consequently Clausius equality, the reversibility condition of the Novikov
machine, becomes

(72) −QH −∆Q
Ti

− QL + ∆Q
TL

= 0

by which Ti is determined, if the heat leak ∆Q is known. It is determined by the tempera-
ture difference, the cycle time and by heat conductivity κ of the heat leak

(73) ∆Q = κτ

(
1
TL
− 1
Ti

)
.
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−∆Q
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?

QH

Fig.1 Thermodynamic diagram of a 2-reservoir Novikov engine with heat leak

As from the diagram can be seen, an analogous relation is valid for the heat exchange QH

(74) QH = λτ

(
1
Ti
− 1
TH

)
.

Inserting (74), (72) and (73) into (70), we obtain for the power

(75) P = TL

(
1
TL
− 1
Ti

)[
λ

(
1
Ti
− 1
TH

)
− κ

(
1
TL
− 1
Ti

)]
.

The arbitrary temperature Ti is now determined by the demand
“P −→ extremal” under constant heat conductivities [56]. This results in

(λ+ 2κ)
(

1
TL
− 1
Ti

)
− λ

(
1
Ti
− 1
TH

)
= 0,(76)

Pextr = TL
λ2

4(λ+ κ)

(
1
TL
− 1
TH

)
.(77)

How these endoreversible machines represent realistic models is discussed in [57].

7. Mesoscopic Theory

7.1. Mesoscopic space. For describing complex materials one needs additional fields m
beyond the usual ones of a five-field or a eight-field theory whose basic fields are mentioned
in (7). In principle, there are two possibilities for introducing these additional fields: One
can add them together with their balance equations to the basic fields, or one can add them
as variables completing the space-time [58]. In the first case which is the conventional
concept, we have to generate the balances of the additional fields m(x, t), an enterprise
which is often difficult. In the second case wich is called the mesoscopic theory, we know
already, as we will see, all balance equations defined on the mesoscopic space [59]

(78) (·) ≡ (m,x, t) ∈M× IR3 × IR1

which is spanned by space-time extended by the setm of the mesoscopic variables.
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7.2. Mesoscopic balances. The mesoscopic balances are defined on the mesoscopic space.
Consequently, they are of the shape [34]

∂t[%(·)a(·)] + ∇x · [v(·)%(·)a(·) + Ψ(·)] +
+ ∇m · [u(·)%(·)a(·) + Ξ(·)] = ϕ(·) + σ(·).(79)

Here %(·) is the mesoscopic mass density, that is the mass density of all particles in a
volume element at (x, t) whose mesoscopic variable has the value m. The mesoscopic
mass balance is according to (79)

(80)
∂

∂t
%(·) + ∇x · {%(·)v(·)}+∇m · {%(·)u(·)} = 0.

The mesoscopic velocity v(·) and the mesoscopic change velocity u(·) are defined by

(81) (m,x, t) −→ (m+ u(·)∆t, x+ v(·)∆t, t+ ∆t).

The mesoscopic balance of momentum becomes
∂

∂t
[%(·)v(·)] +∇x ·

[
v(·)%(·)v(·)−T>(·)

]
+

+∇m ·
[
u(·)%(·)v(·)− T >(·)

]
= %(·)k(·).(82)

Because the molecules in a volume element at (x, t) have different values of m, we can
define a mesoscopic distribution function f(m,x, t) which is normalized as usual

(83)
∫
f(m,x, t) dM = 1.

The mesoscopic distribution function is related to the mesoscopic mass density by [60]

(84) %(·) = f(·)%(x, t)

which is in accordance with (83). From (80) and (84) follows the balance of the mesoscopic
distribution function [59]

∂

∂t
f(·) + ∇x · [v(·)f(·)] +∇m · [u(·)f(·)] +

+ f(·)
[
∂

∂t
+ v(·) · ∇x

]
ln %(x, t) = 0(85)

which is a Fokker-Planck type equation [62].

Using the mesoscopic distribution function, we obtain macroscopic fields of the order pa-
rameters of different order which extend the eight-field theory

A(x, t) :=
∫
f(·)mdM, a(x, t) :=

∫
f(·) mm dM,(86)

aN (x, t) :=
∫
f(·) m...N times...m dM.(87)

Here ab is the symmetric traceless part of ab.

The mesoscopic constitutive theory is not well developed up to now [61], but there is some
progress in applying the mesoscopic theory to microcracks [63] and other fields.



14 W. MUSCHIK

8. GENERIC 1

An other approach to non-equilibrium thermodynanics is that of
GENERIC [64, 65]. The idea is to modify the canonical equations of reversible mechanics
in such a way that one obtains the equations of motion of irreversible thermodynamics.

Starting out with a balance of an open system

∂t(%a) + ∇ · (v%a+A) = α, A :=
∫
%adV,(88)

Ȧ =
d

dt

∫
%adV =

∫
[∂t(%a) +∇ · (w%a)] dV(89)

in which the fields a(Z) depend on the basic variables Z, the functional derivative of A is

(90)
δA

δZ
=

∂(%a)
∂Z

.

This results in

(91) ∂t(%a) =
∂(%a)
∂Z

· ∂tZ.

Now the question arises: What are the rates of the basic variables Z? The answer is special
to GENERIC.

8.1. Modified canonical equations. For transforming “reversible” mechanics into “irre-
versible” non-equilibrium thermodynamics, one has to start out with the canonical equa-
tions

d

dt

(
p
q

)
=
(

0 −1
1 0

)( ∂H
∂p
∂H
∂q

)
, H = H(p, q).(92)

The transformation from canonical mechanics to thermodynamics is performed by the fol-
lowing setting [66]

(p, q) −→ Z,(93)

H(p, q) −→ E(Z) =
∫
e(Z(x, t))dV.(94)

Here e is the energy density, and Z(x, t) presents the variables of the constitutive space.
The symplectic is replaced by an other matrix

(95) symplectic −→ L,

and one obtains first of all the modified canonical equations of the reversible part of
GENERIC

Żrev := L � δE

δZ
,(96)

L(Z)� δE

δZ
:=

∫
L[Z(x, t),Z(x′, t)] · δE

δZ(x′, t)
dV ′.(97)

1General Equation for the Non-Equilibrium Reversible-Irreversible Coupling
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8.2. The irreversible part. Analogous to (96), the irreversibility of GENERIC is intro-
duced by an additional matrixM and the entropy density S

irreversibility −→ M, S(Z) =
∫
s(Z(x, t))dV,(98)

Żirr := M� δS

δZ
.(99)

The rate of the basic variables is generated by the sum of the reversible and the irreversible
rates

(100) Axiom: ∂tZ = L(Z)� δE

δZ
+ M(Z)� δS

δZ
.

8.3. The building blocks. Summarized, the fundamentals of GENERIC are [67]:

i) The basic (wanted) fields of the system: Z

ii) The state space Z which is not identical to the basic fields Z

iii) The two global potentials: total energy E(Z) and total entropy S(Z) which are func-
tionals defined on the constitutive space

iv) Two, in general operator-valued matrices: L(Z) andM(Z) defined on the state space

v) The rate equation (100) of the basic variables.

The difficulty of GENERIC consists in finding the matrices L and M which determine
the constitutive properties of the system. In easy cases, GENERIC and non-equilibrium
thermodynamics yield the same result [68].

9. Evolution Criteria

Presupposing the hypothesis of local equilibrium and a Gibss fundamental equation for
the differential of the entropy, evolution criteria of thermodynamical systems can be for-
mulated [69]. The dissipation inequality which is used in Clausius-Duhem theories as a
constraint for the constitutive mappings represents here a stability or an evolution crite-
rion. Beyond the positive definitenes (53) of the entropy production density, its Ljapunov
property

(101) σ̇ ≤ 0

is postulated [70]. If the phenomenological equations (57) are linear, the Châtelier-Braun
principle

(102) Y · δX ≥ 0

follows [71]. Here δ means a variation out of a stationary state (impossible process). If
the phenomenological equations are non-linear, the Châtelier-Braun principle is replaced
by the evolution criterion of Glansdorff-Prigogine [72]

(103) σX := Y · Ẋ ≤ 0.
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The connection between Ljapunov stability and excess entropy

(104) ∂tδ
2s ≥ 0

was postulated by Glansdorff et al. [73]. The mentioned evolution criteria need some
presuppositions and are postulated beyond the second law (57).

An other possibility for formulating evolution criteria is to start out with the integrated
dissipation inequality (18) [74]

(105)
d

dt

∫
G

(%s)dV +
∮
∂G

Φ · df −
∫
G
ϕ ≥ 0.

This inequality is valid beyond local equilibrium and needs no statements about stability
or excess entropy. If special conditions are satisfied
i) the environment of the discrete system has reservoir properties and is a perfect fluid
ii) the entropy flux density through the surface of the system is purely thermal
iii) the force density is conservative
iv) there are no volume torques, no energy and entropy supplies,
the dissipation inequality (105) can be written as an evolution criterion

(106)
d

dt

∫
G(t)
⊗dV ≥ 0.

Here ⊗ is a modified negative free energy density. The integral (106) takes a maximum
at all times compared with earlier events. Consequently, in equilibrium it is in its absolute
maximum. The evolution criterion (106) represents a variational principle without any
constraints, because the balances of momentum, spin and energy are taken into account
during the exploitation of (105). Applied to liquid crystals, the evolution criterion results
in the Landau equations which here are derived and not set ad-hoc [74] and in a variational
principle for free-standing liquid crystal films [75]. Also in electrodynamics, the evolution
criterion (106) can be applied to electromagnetic bodies [76].

10. Quantum Thermodynamics

In contrast to quantum mechanics, non-equilibrium thermodynamics is an irreversible
theory. Consequently for introducing quantum effects into thermodynamics, irreversibility
has to be implant into quantum mechanics, a task which is performed by quantum thermo-
dynamics. This expression is not well defined, because different procedures hide behind
this name.

In equilibrium, quantum mechanics and thermodynamics fits together, because the differ-
ent types of the quantal density operator belonging to different thermal equilibrium situa-
tions are well known: micro-canonical, canonical and grand-canonical ensembles belong-
ing to isolated, closed and open discrete systems [77]. The temperature is the equilibrium
temperature of thermostatics.

In non-equilibrium, the situation is much more complicated: One has to create an irre-
versible quantum mechanics. This can be done on different stages. Firstly, one can change
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the Schrödinger equation by introducing damping or other generalizations [78], a way
which cannot be recommended.

10.1. Irreversible density operator. Secondly, one can change the von Neumann equa-
tion leaving the Schrödinger equation unaltered. That is possible by defining the irre-

versible part
◦
% of the density operator [79]

(107)
◦
% := %̇+ (i/~)[H, %]

which is

(108)
◦
% 6≡ 0

for irreversible processes and which is

(109)
◦
% ≡ 0,

if the reversible von Neumann equation is valid. In both the cases (108) and (109), the
Schrödinger equation is untouched, and we have

(110) %̇ =
∑
k

ṗkPk +
∑
k

pkṖk, Pk := |ψk >< ψk|,
∑
k

pk = 1.

In the reversible case (109), all rates of the statistical weights vanish by taking the Schrödinger
equation into account for the time rates Ṗk of the projectors (110)2

(111) ṗk = 0, for all k, if
◦
% ≡ 0.

Also the rate of the entropy

(112) S := −kBTr(% ln %), Ṡ = −kBTr(
◦
% ln %) = 0

vanishes in equilibrium. In the irreversible case (108), entropy change appears accord-
ing to (112)2, although the reversible Schrödinger equation is valid. Consequently, the
Schrödinger equation is compatible with non-vanishing entropy rate, if the statistical weights
of the density operator are chosen to be time dependent.

10.2. Beobachtungsebene. The third case to introduce irreversibility into quantum me-
chanics is by paying attention to the limited information which one has from the system
under consideration [80]. This limited information stems from the fact that only a limited
number of measuring devices are available and that therefore the number of measurable
observables is restricted. These available selfadjoint observables Gj form a set, called the
beobachtungsebene [81],

(113) B := {G1, G2, ...., Gn} ≡ {G}
which is analogous to the wanted basic fields (19) to (22). The expectation values of the
G are

(114) g := Tr(%G).

Because of the restricted set of observables in B, the statistical operator % is not determined
by the available expectation values, that means, there are other different density operators
%̂ also satisfying (114)

(115) g = Tr(%̂G) = Tr(%G).
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According to Jaynes [80], we choose for describing the system instead of the quantal % that
coarse-grained density operator R which maximizes the entropy of the system

Smax := −kB min
%̂

Tr(%̂ ln %̂) = −kBTr(R lnR),(116)

g = Tr(RG) = Tr(%G), TrR = 1.(117)

This maximized entropy satisfies the well known relations [79]

(118) Smax = −kBTr(R lnR) = −kBTr(% lnR) ≥ −kBTr(% ln %)

which shows that lnR is the entropy operator for every arbitrarily chosen beobachtungsebene.
Often, the so-called extropy is introduced [82]

(119) Ex := kBTr[%(ln %− lnR)] ≥ 0.

The time rate of the maximized entropy is

(120) Ṡmax = −kBTr(Ṙ lnR) = −kBTr(%̇ lnR)− kBTr[%(lnR)•].

Of course,R does not satisfy the von Neumann equation although the Schrödinger equation
is valid. There are different methods for constructing the dynamics of Ṙ [83]. The most
famous one is the Robertson dynamics [84].

The maximization (116) determines the form of the generalized canonical density operator
R in non-equilibrium [80]

(121) R =
1
Z
e−λ·G, Z = Tr(e−λ·G).

The number of the to G conjugated variables λ is equal to that of the observables in the
beobachtungsebene B, and consequently equal to the number of the expectation values g
(114).

Inserting (121) into (120) yields

(122) Ṡmax = kBλ · Tr(ṘG) = kBλ · [ġ − Tr(RĠ)].

If we take into consideration that the Hamiltonian H is always included in B, (113) be-
comes by splitting

(123) B = {G} = {H,H},

and (122)1 results in an expression which is analogous to (3) for closed systems

(124) Ṡmax = kBβTr(ṘH) + kBκ · Tr(ṘH).

This can be transformed into

Ṡmax = kBβ

{
Ė −

[
Tr(R

∂H
∂a

)− κ
β
· Tr(H

∂R

∂a
)
]
· ȧ
}

+

+kBκ · Tr(H
∂R

∂λ
) · λ̇.(125)
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Consequently, the power and the heat exchanges are according to (2) and (3) for closed
systems

Ẇ =
[

Tr(R
∂H
∂a

)− κ
β
· Tr(H

∂R

∂a
)
]
· ȧ,(126)

Q̇ = Tr(ṘH) +
[
κ

β
· Tr(H

∂R

∂a
)
]
· ȧ.(127)

Here kBβ = 1/Θ is the reciprocal contact temperature, and the expression

(128) kBκ · Tr
(
H
∂R

∂λ

)
· λ̇ = Σ

represents the entropy production in closed systems according to (3) and (4).

10.3. Equilibrium. The quantal density operator % depends on the macroscopic variables
a and λ in general. This can be seen by considering the special case of equilibrium.
Equilibria in closed discrete systems are quantum-mechanically described by the canonical
density operator

(129) %eq =
1
Zeq

exp
(
− H
kBT

)
, Zeq = Tr

[
exp

(
− H
kBT

)]
.

Here H is the Hamilton operator of the considered system and T its thermostatic temper-
ature which is equal to that of the controlling reservoir. Comparing (121) with (129), we
obtain for the beobachtungsebene in this equilibrium situation

(130) B = {H},
and (121) results in

(131) Req =
1
Zeq

e−βH = %eq, Zeq := Tr(e−βH), β ≡ (1/kBT ).

We now consider a reversible process which is defined by a trajectory in the equilibrium
sub-space spanned by (a,n, U) according to (1). Consequently, a reversible process con-
sists of equilibrium states and does therefore not exist in nature. Along the equilibrium
trajectory, the beobachtungsebene (130) and the density operator (131) hold true. Con-
sequently, the derivative along the reversible process (that is not the time derivative!) is
according to (131) and (107)

(132) ˙Rrev = %̇rev =
[

1
Zeq

e−βH
]•

=
◦
% rev − (i/~)[H, %rev].

Because according to (121) the variables a and λ are changing also along a reversible pro-
cess, Ṙrev is non-zero in general. The commutator in (132) vanishes according to (131)2.
Consequently,

◦
% rev does also not vanish, a result which proves that in quantum mechanics

even reversible thermodynamical processes do not appear according to (109).

If such processes should be included into a quantum mechanical description, the reversible
von Neumann equation (109) cannot hold for these processes. There remain only two pos-
sibilities: Even reversible thermodynamical processes are excluded from a quantum me-
chanical description or the von Neumann equation has to be extended by the irreversible
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part
◦
% of the density operator. This extension causes that the statistical weights (110)3 of

the density operator cannot be constant, because the projectors (110)2 depend only on the
work variables a. Consequently, (111) does not hold, and (108) and the irreversible von
Neumann equation (107) are valid. That means, the quantum mechanical ensemble gen-
erating the density operator changes in time, if thermodynamical processes are described
quantum mechanically.

From (124) follows the reversible rate of the maximized entropy (122)

(133) Ṡrevmax = kBβTr[ṘrevH] = kBβ[Ėrev − Tr(RḢrev)]

which is consistent with the reversible heat exchange Tr[ṘrevH] in (127).

10.4. Sufficient dynamics. The expectation value of the observablesG ∈ B are

(134) g = Tr(%G) = Tr(RG).

Consequently, we obtain for the rates of the expectation values g

(135) Tr(%̇G) + Tr(%Ġ) = Tr(ṘG) + Tr(RĠ).

which results in

(136) Tr[(%̇− Ṙ)G] = Tr[(R− %)Ġ].

Because in general Ġ 6∈ B and Ġ 6= 0, we obtain that the expectation values of Ġ cal-
culated by R or % are different, because the left-hand side of (136) does not vanish in
general

(137) Tr(RĠ) 6= Tr(%Ġ).

This is an awkward situation because the power cannot be calculated by the density oper-
ator R to which belongs the beobachtungsebene. But there is a possibility to enforce the
equality in (137): We choose the free irreversible part of the density operator (107) so that

(138) Tr[(%̇− Ṙ)G] = 0

is valid. Of all the possibilities, one taking B into account is very easy [79]

(139) %̇ =
◦
% − i

~
[H, %] .= Ṙ− µ(%−R).

This equation determines
◦
%, if R, Ṙ and % are given, that means, the dynamics of R is not

restricted by (139) which represents the extended von Neumann equation for calculating
the microscopic dynamics. According to (139), it results in [79]

(140) %(t) = e−µt
[∫ t

t0

(
Ṙ(τ) + µR(τ)

)
eµτdτ + eµt0%(t0)

]
.

Here, the dynamics of R is given by other considerations [83]. The Schrödinger equation
is still valid. According to (138) and (136), the expectation values of all time derivatives
of G are now correctly represented by R, although these time derivatives are not included
into B. In this case, the beobachtungsebene and the dynamics (140) is called sufficient for
Ġ.
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Final Remark

Although presentations, presuppositions, theoretical concepts and even philosophical
back-grounds may be different in various forms of thermodynamics, there is a common
core for all: The basic variables, the constitutive properties and the Laws of thermodynam-
ics which also includes the principles of mechanics and electrodynamics. Today’s thermo-
dynamics is understood as a general description of classical systems in non-equilibrium
including the reversible limit. Consequently, thermodynamical methods are in vivid devel-
opment and have a wide range of application.

Acknowledgement: I thank J.U. Keller for reading this paper and giving some valuable
hints.
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