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ABSTRACT. The aim of this note is to investigate the assumptions and the proofs of some
results by F. Hahn, which have been stated in several other classics of Economic Theory.
The results deal with the relations between the gross substitutability and the weak axiom
of revealed preference, in a pure exchange economy, ruled by the Walras law.

1. Introduction

Relations between gross substitutability and the weak axiom of revealed preference, in
a pure exchange economy, have been deeply investigated in Economics [1, 2, 3, 4, 5]. The
problem proved to be very challenging also for a mathematical point of view . The original
proof in [1] is a breakthrough for Mathematical Economics but it is quite elaborate. Sev-
eral other proofs have been proposed in the past years, mainly with the task of making it
simpler to read and to present. For this scope, assumptions such as the existence of partial
derivatives of the excess supply functions have been introduced. However, the proof in
[3], which seems to be accepted by the literature as the easier, still is not detailed from a
mathematical point of view. In this note we present and comment the assumptions com-
monly accepted in the literature and we try to emend the mathematical lacks in the proof
by Hahn. Section 2 is devoted to the statement of the problem and the main result about
gross substitutability and the weak axiom of revealed preference. In Section 3, for the sake
of completeness, we also consider the case when weak gross substitutability is assumed.
As it is known the latter do not imply the weak axiom, but its consequences are of some
interest for economic theory.

2. Gross substitutability and the weak axiom of revealed preference

According to the setting imposed by Hahn, we consider a Walrasian economy of pure
exchange, where (n + 1) goods, labeled by i = 0, 1, . . . , n, are traded. The (non normal-
ized) price of the i-th good is denoted by pi and we refer to the vector p ∈ Rn+1 as the
vector of all prices. The following order relations are classical and refer to a Pareto order
in the space Rn:

i) x ! y if and only if xi ! yi, ∀i = 1, . . . , n;
ii) x ≥ y if and only if x ! y, x $= y;
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iii) x > y if and only if xi < yi, ∀i = 1, . . . , n.
When y = 0, x is said, respectively, nonnegative, semipositive, strictly positive. The
economy is characterized by a supply side and a demand side, which define two different
kinds of agent. For each given price p one can define quantities xi and yi as the total
demand and supply (respectively) of i-th good in the economy. Therefore we recall the
following definitions:

Definition 1. For i = 0, . . . , n the function si(p) : Rn+1
+ → R is the excess supply for the

i-th good at the price p, defined by:

si(p) = xi(p)− yi(p)− x̄i

where xi(p) and yi(p) are, respectively, the supply and the demand for the i-th good at the
price level p and x̄i is the total quantity of i owned by the demand side. The excess supply
can be aggregated into a column vector s(p) ∈ Rn+1, which is a vector valued function of
p.

Definition 2. In a similar way it can be defined an excess demand function, which is, in
the aggregate notation, the vector valued map:

e(p) = −s(p)

We make, according to [6] the following assumptions on s(p) : Rn+1 → Rn+1:

(H1) is defined and continuous over all p ≥ 0;

(H2) is positively homogeneous of degree 0 (PH), i.e. si(λp) = si(p) for all λ > 0 and
i = 0, . . . , n;

(H3) Walras Law is in force, that is p!s(p) = 0, ∀p ≥ 0.

Definition 3. A feasible vector of prices p∗ is said to be an equilibrium for the excess
supply function when:

s(p∗) ! 0, with p∗ ≥ 0

Remark 1. The definition of equilibrium price implies that:

si(p∗) = 0 iff p∗i > 0
si(p∗) > 0 iff p∗i = 0

Otherwise it would be contradicted (H3), having p∗i si(p∗) > 0. Therefore we have
s(p∗) = 0 if and only if p∗ > 0.

The next assumption allows to simplify some of the proofs which follow.

(H4) si(p), i = 0, . . . , n has first order partial derivatives in its domain.

Under assumption (H4) we can state the notion of gross substitutability in the “differen-
tiable” form, which is stricter than the nondifferentiable one.

Definition 4. We say that gross substitutability assumption is in force, or, equivalently that
the (n + 1) goods of the economy are gross substitute, for any feasible price p, when:

(1)
∂si(p)
∂pj

< 0 i, j = 0, 1, . . . , n; i $= j
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Remark 2. • Usually Definition 4 is formulated via excess demand functions. If
this is the case, it can be said that the Jacobian matrix of e(p) is a Metzlerian
matrix.

• Condition (1) implies that the excess supply for the i-th good is decreasing with
respect to all others goods (j $= i)

Condition (1), presented in [7, 8, 9], has been widely used to study the existence of
equilibrium prices and the (local and global) stability of the (dynamic) economic system
(see e.g. [1, 6, 10]). Moreover, (1) can be used to obtain results of comparative statics
analysis and the uniqueness of equilibrium price vector p∗.
Some authors, see e.g. [11, 12, 13, 14], introduce, for the study of the above problems the
following weaker assumption.

Definition 5. We say that weak gross substitutability assumption is in force, or, equiva-
lently that the (n + 1) goods of the economy are weak gross substitute, for any feasible
price p, when:

(2)
∂si(p)
∂pj

" 0 i, j = 0, 1, . . . , n; i $= j

Remark 3. Similarly to Definition 4 we can recall that (2) implies that the excess supply
of the i-th good is non-decreasing w.r.t. all other goods. Therefore some constant interval
for the values of si(p) can be allowed.

In [15] another basic concept of economic analysis is stated, the weak axiom of revealed
preference. This axiom plays a crucial role in the proofs of stability properties of Walras’s
“tâtonnement” process. According to our notation, we state the following restricted defini-
tion of this axiom (see e.g. [3, 15]).

Definition 6. The weak axiom of revealed preferences is in force at the equilibrium price
p∗, when:

(3) p∗!s(p) < p∗!s(p∗) = 0 ∀p $= kp∗, k > 0.

This note focuses on the relations between Definitions 4 and 5 and condition (3). We
recall that in [1] the authors have first proved that (5) implies (3). Their proof does not
need assumption (H4), but is very elaborated one. Other authors have made it simpler,
by assuming also (H4) is in force. With regard to this case, we quote the proofs from
[3, 4, 6, 16, 17]. All these proofs are, however, quite inaccurate from a mathematical point
of view. Some interest is also on the graphic proof shown in [18], which however holds
only for n = 2. We can list some facts which are common to the different proofs we have
quoted.

I) Both (H2) and (1) can be void if some pi = 0 (see e.g. [10, 19, 20, 21, 22]).
Hence one should require (1) to hold ∀p ∈ int Rn+1

+ , that is p > 0.
Moreover, (see e.g. [1, 2, 10]) when (1) is in force, it follows that

pi → 0 =⇒ si(p) → −∞

which means the equilibrium price vector p∗ must be strictly positive and therefore
s(p∗) = 0.
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II) Taking I) into account, the continuity of s(p) only over int Rn+1
+ , does not ensure

the existence of equilibrium prices, as shown in [23]. For this mathematical reason
(and some economic arguments) some boundary conditions need to be assumed.
The most classical assumptions (see e.g. [24, 25, 26]) are the following:

i) the vector valued function s(p) is defined and continuous over int Rn+1
+ ;

ii) (H2) and (H3) hold true;
iii) s(p) is bounded from above (i.e. ∃k < 0 , si(p) < k for all feasible p);
iv) if ps → p, where p $= 0, but pi = 0 for some i = 0, 1, . . . , n, then:

Min
{
s0(ps), . . . , sn(ps)

}
→ −∞

These assumptions ensure the existence of a positive equilibrium price vector p∗
without the gross substitutability assumption. If also (1) is in force, we have also
the uniqueness of p∗, as it is well known.

III) Due to (H2), we shall assume that the domain of s(·) is the unit simplex of Rn+1:

Sn+1 =
{
p ∈ Rn+1 |p ≥ 0,

∑

i

pi = 1
}
.

The former set is closed, bounded and convex, however, under assumptions i)-iv)
of II) s(·) is continuous only on int Sn+1, so the usual Weierstrass Theorem cannot
be applied.

IV) Another consequence of (1), which can be found in [1], is that, from p∗ > 0 and
pr

p∗r
" pi

p∗i
, for all i, it follows sr(p) < sr(p∗) = 0.

The following result which we quote from [26] states alternative conditions to guarantee
the existence of strictly positive equilibrium price.

Theorem 1 ([26]). Let si(p), i = 0, . . . , n be functions si : Rn+1
+ → R such that:

(1) si(·) is continuous over int Rn+1
+ ;

(2) p!s(p) = 0 ∀p ∈ int Rn+1
+ ;

(3) If
{
pn

}
n≥0

∈ int Rn+1
+ is a sequence of price vectors converging to p̄ $= 0, and

p̄k = 0 for some good k, then for some other good k′ with p̄k′ $= 0, the associated
sequence of excess supply

{
sk′(pn)

}
n≥0

is unbounded from below.

Then there exists a strictly positive vector of prices p∗ such that s(p∗) = 0.

If the boundary condition (3) is violated, the equilibrium may have some zero compo-
nents.

Example 1. Consider an exchange economy with two goods. Suppose that the aggregate
excess supply function is

s(p1, p2) =




1

−p1

p2



 for all p ∈ int R2
+

Hence assumptions (1) and (2) of Theorem 1 are fulfilled, but not (3). It is easy now to

prove that the (normalized) equilibrium is p∗ =
[

0
1

]
, which is not strictly positive.
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We wish to stress that some boundary conditions are necessary to have strict positive
equilibria. The next example shows that it is not enough to require more continuity, on the
whole simplex, as stated in Theorem 3.9 of [27].

Example 2. Consider an exchange economy with two goods. Suppose that the aggregate
excess supply function is

s(p1, p2) =
[

p2e−p1p2

−p1e−p1p2

]
for all p ∈ R2

+

Hence assumptions (1) and (2) of Theorem 1 are fulfilled. Moreover the function is con-
tinuous over the whole set R2. It is easy now to prove that the (normalized) equilibrium is

p∗ =
[

0
1

]
, which is not strictly positive.

As already said a simple proof of the implication from (1) to (3) can be found in [3].
Although easy to read, the proof provided by Hahn contains some misleading mathematical
arguments, which we try to amend.

Theorem 2. Let s(·) : Sn+1 → Rn+1 be differentiable over int Rn+1
+ and such that

assumptions i)-iv) hold true. Assume also (1) is fulfilled and p∗ is an equilibrium. Then it
holds:

p∗!s(p) < 0, ∀p > 0, p $= kp∗, k > 0

Proof: The thesis is clearly equivalent to prove that p∗ is the unique maximizer for the real
valued function g(p) = p∗!s(p).
First we claim that p∗ is a maximizer. By assumption iii) we have that there exists some
−∞ < k < +∞ such that:

g(p) =
n∑

i=0

p∗i si(p) ≤
n∑

i=0

p∗i k = K ∀p ∈ Sn+1 ,

that is the range of g is bounded from above. Hence one can choose a sequence converging
to the upper bound. Without loss of generality we can say there exists a sequence pk ∈
Sn+1 such that g(pk) → K. Since Sn+1 is a compact set, we can always think to pk as a
convergent sequence. Let then pk → p̂ ∈ Sn+1. We have two possibilities:

p̂ ∈ int Sn+1 or p̂ ∈ bd Sn+1 ,

where bd Sn+1 stands for the boundary of Sn+1.
Assume the latter holds true. By iv) we have Min

{
s0(ps), . . . , sn(ps)

}
→ −∞, that is:

∀M > 0 ∃k, j :
n∑

i=0

p∗i si(pk) ≤
∑

i &=j

p∗i s(p
k) + p∗j (−M) ,

that is g(pk) → −∞ which is absurd. Therefore we have proved that p̂ ∈ int Sn+1.
Hence there exists a neighborhood U(p̂) such that (cl A means the closure of set A):

(
cl U(p̂) ∩ Sn+1

)
∩ bd Sn+1 = ∅

and p∗ ∈
(
cl U(p̂) ∩ Sn+1

)
.
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So we have defined a compact subset of Sn+1, C =
(
cl U(p̂)∩Sn+1

)
where the maximizer

of g must lay. Clearly Weierstrass theorem applies to g over C and any point which fulfill
the necessary condition:

〈∇g(p̃),p− p̃〉 ≤ 0 ∀p ∈ C

must be that maximizer. Indeed, due to the previous remark I) and (1), it follows that the
former condition is also sufficient. The same condition can be written as:

(4)
∑

j

[(
∑

i

p∗i
∂si

∂pj
(p̃

)
(pj − p̃j)

]
≤ 0

We now prove that p∗ fulfils (4). Recalling that by (H3) the function h(p) = p!s(p) = 0
is constant and differentiable, it follows that ∀j = 0, . . . , n:

∂h

∂pj
(p) = 0 =

∑

i

pi
∂si

∂pj
(p) + sj(p)

that is
∑

i

pi
∂si

∂pj
(p) = −sj(p).

Therefore we have
∑

j

[(
∑

i

p∗i
∂si

∂pj
(p∗)

)
(
pj − p∗j

)
]

=
∑

j

[
(−sj (p∗))

(
pj − p∗j

)]
=

= −





∑

j

pjsj(p∗)−
∑

j

p∗jsj(p∗)




 .

Because of (H3)
∑

j

p∗jsj(p∗) = 0 and, since p∗ is an equilibrium and pj > 0 we have

(4) is fulfilled by p∗.
We need now to prove that p∗ is the unique maximizer, up to positive multipliers. By
contradiction assume there exists some p0 $= kp∗, which is a maximizer of g. Then it
should be g(p∗) = g(p0), that is:

∑

i

p∗i si(p0) =
∑

i

p∗i si(p∗)

or, equivalently

(5)
∑

i

p∗i
(
si(p0)− si(p∗)

)
= 0

Since p0 $= kp∗, there exists at least one index r = 0, . . . , n, such that
p0

r

p∗r
" p0

i

p∗i
for all

i = 0, . . . , n. As stated in IV), (1), implies that it must hold at least sr(p0) < sr(p∗). The
latter, together with (5) implies the contradiction pr = 0. #

Remark 4. The previous proof suggest a slight change in the assumptions, in order to get
rid of redundant requests. Indeed we need only to guarantee that a maximizer exists. To do
that, it is far too much to ask for continuity and one may impose the upper semicontinuity
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of si(p) for all i = 0, . . . , n on int Sn+1. Once this assumption is in force, we may also
move to consider extended real valued functions, that is si : Rn+1 → R ∪

{
−∞

}
so

that we shall assume si defined on bd Sn+1 where the value −∞ is reached. Hence the
function is upper semicontinuous on a compact set and there is no more reason to define
the set

(
cl U(p̂) ∩ Sn+1

)
we use in the proof.

3. Weak gross substitutability

In [3] the case when (2) is in force is considered also. Under such assumptions it is
possible to prove the weaker consequence

(6) p∗!s(p) < 0, ∀p $∈ E, p∗ ∈ E

where E :=
{
p | s(p)) " 0, p ≥ 0

}
is the set of all equilibrium price. also (6) has some

interest for the economic theory ([3, 6, 11, 13, 23, 28]). Condition (6) has been applied in
[11] to the analysis of stability of Walrasian tatonnement process and in [13] to prove some
results of comparative statics. The problem which arise now is that, basically, we allow
equilibria with some zero components on the price vector.
The original proof of (6) given by Arrow and Hurwicz is long and complicate. An alter-
native proof has been proposed in [5, 29]. The latter is even longer and more complicate
than the original one of Arrow and Hurwicz, but offers a more general setting and proves
the result under weaker assumptions. Finally in [3] a shorter and more elementary proof is
presented, but, as in the previous section, some remarks have to be done.
First when it is assumed that the Jacobian matrix

[∂si(p)
∂pj

]
, i, j = 0, . . . , n

is indecomponible (in the usual sense of Linear Algebra), then the (normalized) equilib-
rium price vector is unique and strictly positive (see e.g. [2, 13]). Therefore the conclusions
are those already established by Theorem 2, under the assumption of gross substitutability
(see [2]).

Also for the case of weak gross substitutability, if we want to obtain positive equilibrium
price vectors, we have to impose, besides usual conditions on s(·), some suitable boundary
condition. For example, in [23] the boundary condition (3) of Theorem 1, is replaced by

(H5) for any fixed boundary point p̄ of int Rn+1
+ \

{
0
}

(int Rn+1
+ is the interior of Rn+1

+ ),
let Kp̄ :=

{
k | p̄k = 0

}
be the set of commodities with zero price. Then si(p)

tends to minus infinity for every i ∈ Kp̄ as p → p̄ and lim infp→p̄ sj(p) > −∞
for any j $∈ Kp̄.

Moreover, following the remarks from [29, 30], to assume continuity of the excess
supply function on the nonnegative, nonzero price domain can be too strict under the weak
gross substitutability hypothesis (the function in Example 2 do not satisfy Definition 5).
Indeed, the function s(p) reduces to the trivially vanishing case under the former combined
assumptions.
We seek, therefore, for some conditions which guarantee the existence of an equilibrium,
but do not imply it is strictly positive. It is useful to assume s(·) is differentiable only on
the interior of the simplex Sn+1 (and eventually on some points of the boundary), together
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to suitable boundary conditions, which imply the existence of semipositive equilibria.
Some results with very general assumptions are in the papers [5, 29], but a result with a
simpler proof, a “classroom note” as the author states, can be found in [28].

Theorem 3. Let si(p), i = 0, . . . , n be functions si : Rn+1
+ → R such that:

(1) (H2) is in force;
(2) si(·) is differentiable (hence continuous) in int Sn+1 =

{
p ∈ Rn+1

+ |
∑n

i=0 pi =
1
}

, and bounded from above;
(3)

∑n
i=0 si(p) → −∞ as p → p̄ ∈ bd Sn+1;

(4)
∑n

i=0 pisi(p) ! 0, ∀p ∈ Sn+1 (the latter clearly implies (H3) and it is some-
where referred to as weak Walras Law [29]);

(5) s(·) admits partial derivatives on the points of bd Sn+1 where s(·) is defined. In
all points of Sn+1 where s(·) is defined weak gross substitutability is in force.

Then there exists an equilibrium price vector p∗ ∈ Sn+1 (that is some components are
allowed to be null).

Remark 5. The function in Example 1 satisfies the assumptions in Theorem 3

We can now give a correct proof of the arguments followed by Hahn.

Theorem 4. Let s(·) : Sn+1 → Rn+1 be differentiable over int Rn+1
+ and such that

assumptions i)-iv) hold true. Assume also that s(·) admits partial derivatives on bd Sn+1,
(2) is in force and p∗ ∈ Sn+1 is an equilibrium. Then it holds:

p∗!s(p) < 0, ∀p $∈ E, p ∈ Sn+1

where E is the set of all equilibria

Proof: The equilibrium price p∗ now might have some zero components. Following [11,
12], we define the sets

R+ =
{
i , p∗i > 0

}
R0 =

{
i , p∗i = 0

}
.

Without loss of generality we may assume p∗ = (p∗R+ ,p∗R0) that is we have first the
positive components. Note that

∑

i∈R+

p∗i = 1 since p∗ ∈ Sn+1. Hence also the vector pR+

belongs to a unit sphere.
Now, by 5 we have that for all j = 0, . . . , n, sj(·) are decreasing, that is

sj(pR+ ,pR0) ≤ sj(pR+ ,0) since 0 ≤ pk, ∀k ∈ R0

Therefore the thesis is equivalent to prove that p∗ is a solution of the problem

max
K

g(p) = p∗!s(p)

where K :=
{
p ∈ Rn+1

+ , pk = 0, ∀k ∈ R0
}

, and that no maximizer of g can be found in
the set K\E.
In order to prove that p∗ is a solution we can proceed as in Theorem 2, since again we
are considering a closed simplex. We omit the proof since it would be a repetition of the
arguments. To prove that no maxima occurs at K\E, we can assume by contradiction that



A NOTE ON A PROOF OF F. HAHN ... 9

p̃ ∈ K\E is a maximizer of g. For all r ∈ R+ one has kr = p̃r/p∗r and, without loss of
generality it might be k0 ≥ k1 ≥ . . ., for k0 > 0. Therefore it holds by (2) and (H2)

(7) 0 = s0(p∗) = s0(k0p∗) ≤ s0(p̃)

If the latter inequality is strict then Walras law implies the contradiction

k0

∑

i∈R+

p∗i
∂si

∂p0
(p̃) ≤ p0

∂s0

∂p0
(p̃) +

∑

i &=0

pi
∂si

∂p0
(p̃)

= −s0(p̃) < 0

Hence (7) is an equality which implies
∂si

∂pj
(p̃)p̃j = 0 for all j ∈ R+. If the latter is not

true, weak gross substitutability and continuity would imply the strict inequality in (7). So
we must find a different index r ∈ R+ for which the optimality condition (4) is violated.
Say there exists r̄ ∈ R+ such that sr̄(p̃) > 0. The previous reasoning implies there must
be an index h ∈ R+ such that kh = 0.
Hence assume si(p̃) = 0 for all i < h. Then it follows (for the details we refer to [3])
that si(p̃) ≤ 0, for all i ≥ h, with strict inequality for some i. Hence p∗!s(p̃) < 0 which
contradict the assumption p̃ is a maximizer. #
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