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ABSTRACT. Quantum dots have become objects of extensive research activity because of
their applications such as advanced electronic and optoelectronic devices. Here we anal-
yse theoretically the optical properties of dots naturally formed by interface fluctuations
in GaAs narrow quantum wells. Specifically we present the simulations of local optical
spectroscopy and spatially resolved photoluminescence in quantum wells with interface
fluctuations. The theory includes light quantization, acoustic phonon scattering, and inho-
mogeneous sample-excitation and/or light-detection. Such theoretical framework provides
a general basis for the description of spectroscopic imaging. Numerically calculated ab-
sorption and photoluminescence images clarify the impact of the near-field optical setup
and put forward the potentials of the method for the understanding of near-field light emis-
sion from semiconductor quantum structures.

1. Introduction

The introduction of improved semiconductor growth techniques over the past few deca-
des have allowed physical realisation of nanostructured systems. Semiconductor nanos-
tructures exhibit interesting new behavior and would be highly desirable for future applica-
tions, for example in the area of quantum information processing, for various technological
applications such as enhanced optoelectronic devices, single photon emitters and detectors
based on quantum dot (QD) systems.

Really the definition of the interfaces on an atomic scale is never as ideal as physicists
would like it to be. Even with the most sophisticated growth techniques, interface fluctu-
ations of one or a few monolayers can hardly be avoided. A further source of disorder is
alloy fluctuation if a ternary compound is used as barrier or well material. So these dis-
order effects determine the inhomogeneous broadening of the exciton line seen in optical
measurements, and even tend to dominate their linewidth in narrow quantum structures and
to localize the center of mass (COM) motion of excitons [1].

In this context, the availability of characterizing tools is of primary importance. Macro-
scopic optical probes [2, 3] as photoluminescence (PL), photoluminescence excitation
spectroscopy (PLE), and ultrafast Rayleigh scattering have proven to be powerful tech-
niques for probing localized excitons and hence interface fluctuations of quantum struc-
tures. However, such probes perform a spatial averaging of the spectral signal, providing
information at best on an inhomogeneous ensemble of almost zero-dimensional localized
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states of the COM motion. Near-field optical microscopy and spectroscopy, which uses
optical interaction in the visible or near-infrared range has recently become a irreplaceable
technique for optical imaging and spectroscopy at sub-diffraction resolution. Confining the
optical excitation to a very small volume below the diffraction limit, implies the presence
of optical fields with high lateral spatial frequencies able to excite surface states with high
k vectors not accessible by far-field optical excitations. As a consequence optical spectra
of homogeneous surface systems can display remarkable differences in the near and far
zones [4, 5].

This kind of optical microscopy and spectroscopy is able to identify the individual quan-
tum constituents of semiconductor quantum structures [3, 6, 7, 8], can bring to direct and
complete quantum mechanical information on the spatial variations of solid-state meso-
scopic quantum eigenfunctions [9] and provides new insights into the nonlocal character
of light-matter interaction [10, 11]. The high spatial resolution is obtained in Scanning
Near field Optical Microscopy (SNOM) experiments by means of a tapered optical probe
used to obtain the desired spatially confined excitation and/or light-detection.

Theoretical simulations of near-field imaging spectroscopy of semiconductor quantum
structures generally focus on calculation of local absorption [11, 12, 13, 14], while almost
all experimental images are obtained from PL measurements. The supposed equivalence
between PLE and absorption spectra in semiconductors structures is based on the assump-
tion that the recombination times are much larger than the intraband ralaxation times [15].
In this situation, the emission intensity is nearly independent of the relaxation rate and the
luminescence spectrum does not coincide with the absorption spectrum.

Detailed simulations of Zimmermann et al. have clarified many aspects of the intrigued
non-equilibrium dynamics giving rise to photoluminescence spectra in disordered quan-
tum structures [16, 17]. Since direct observation of zero dimensional (0D) semiconductor
QDs naturally occurred in narrow quantum wells by near-field photoluminescence imag-
ing they have attracted great attention [3, 18]. Here we present a microscopic quantum
theory of spatially and spectrally resolved photoluminescence in quantum structures that
includes both light quantization (essential to describe spontaneous emission) and phonon
scattering. The theory includes the description of spatially confined excitation (illumi-
nation mode) and/or detection (collection mode). Thus this formulation permits one to
model spectroscopic imaging based on PL excitation spectroscopy in which the excitation
and detection energies and spatial positions can all independently be scanned.

In particular we simulate the construction of reasonable good quality GaAs QW in be-
tweenAlxGa1−xAs barrier (see Fig. 1). In this case, we can suppose that the motion of an
electron-hole pair happens in a disorder potential that acts only on the center of mass coor-
dinate. This is a good assumption only if the amplitude of the disorder potential does not
exceed the exciton binding energy. We report spectroscopic images obtained in collection
mode configuration, where the sample is illuminated conventionally and aperture-SNOM
(tip) is used to collect locally the scattered light.



MICROSCOPIC THEORY OF SPATIALLY RESOLVED PHOTOLUMINESCENCE ... 3

2. Theory

The positive frequency components of the operator describing the signal that can be
detected by a general near-field setup can be expressed as [19]

(1) Ŝ+
t = Â+

bg + Ŝ+ ,

whereÂ+
bg is the elastic background signal, largely uniform along thex−y plane; this term

is proportional to the input electric-field operator.Ŝ+ is related to the sample polarization

density operator̂P
+
(r),

(2) Ŝ+ = A
∫
dr P̂+(r) ·Eout(r) ,

whereA is a complex constant depending on the impedance of the material constituting
the tip [19] andEout(r) is the field mode delivered by the tip. The interband polarization
density operator is given by

(3) P̂+(r) =
∑
eh

µeh ĉe(r)d̂e(r) .

Here, e and h are appropriate sets of quantum numbers which label the carrier states
involved in the optical transition. Photoluminescence can be defined as the incoherent
part of the emitted light intensity. The PL that can be measured by a photodetector af-
ter the collection setup (broadband detection) is proportional toI = 〈 Ŝ− , Ŝ+ 〉, (with
〈 Â , B̂ 〉 ≡ 〈 Â B̂ 〉 − 〈 Â 〉 〈 B̂ 〉). Analogously the steady-state spectrum of incoher-
ent light emitted by the semiconductor quantum structure and detected by the SNOM setup
can be expressed as

(4) IPL(ωout) =
1
π

∫ ∞
0

dτ 〈 Ŝ−(0) , Ŝ+(τ) 〉 eiωdτ .

The polarization density operator can be expressed in terms of exciton operators as,

(5) P̂+(r) = µeh

∑
α

f(z)Ψeh
α (ρ = 0,R)B̂α .

The operatorB̂†α creates an exciton state (one electron-hole pair)B̂†α |0〉 ≡ |E1,α〉 with
energyω1,α. Ψeh

α (ρ,R) is the exciton wavefunction withρ indicating the relative in-plane
eh coordinate andR describes the centre of mass motion, whilef(z) = ue(z)uh(z) is
the product of the electron and hole envelope functions along the confinement direction
(the growth axis). If the disorder induced broadening is small compared to the exciton
binding energy, only the lowest bound state 1s at the fundamental sublevel transition has
to be considered and the exciton wave function can be factorized as follows [17]

(6) Ψeh
α (ρ,R) = φ1s(ρ)ψα(R).

where

(7) ψα(R)

are solutions of the following center mass equation
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(8)

(
−~2∇2

2M
+ V (R)

)
ψα(R) = εαψα(R)

where V(R) is the effective random potential resulting from well-width fluctuations, and
M = m∗e + m∗h is the exciton kinetic mass (m∗e andm∗h are the effective masses of the
electron and the hole).

The dynamics controlled truncation scheme [20] provides an upper limit to the number
of electron-hole pairs to be included for the dynamics description of the interacting elec-
tron system, depending on the excitation density. States with only one electron-hole pair
(excitons) are sufficient to describe the system dynamics at low excitation densities. In this
regime the following relation can be assumed,

(9) B̂α ' |0〉 〈E1,α| ,

and it can be shown that the operatorsB̂α behave as Boson operators. Including only
the exciton subspace and using Eq. (9), the Hamiltonian determining the dynamics of the
semiconductor system is given by the following three contributions:

(10) H = H0 +HI +Hs,

where the first term is the bare electronic Hamiltonian of the semiconductor systemH0 =∑
α ~ωαB̂

†
αB̂α. The interaction of the semiconductor with the light field (in the usual

rotating wave approximation) can be written as

(11) HI = −
∫
d3r Ê−(r) · P̂+(r) +H.c. .

We separate the field operator into a classical contributionEin(r) describing the (possible
inhomogeneous) exciting field and into a fluctuating partÊ−(r) (the one determining the
spontaneous emission) that can be expanded in terms of annihilation photon operators.
FinallyHs describes inelastic scattering due to the interaction of excitons with the phonon
bath.

(12) Hs =
∑

α,β,q

tqα,β(bq + b†−q)B̂†αB̂β ,

These terms produce scattering between different exciton states and dephasing. For the
lowest exciton states, scattering with acoustic phonons is in most cases the dominant pro-
cess.bq is the Bose annihilation operator for a phonon with wave vectorq. The scattering
matrix elements depend on the lattice deformation potentials and the overlap between the
exciton states. The explicit expression fortqα,β can be found elsewhere [17].

The relaxation process in the low-excitation limit can be discussed in terms of kinetic
equation for the exciton density matrix. Diagonal terms of the exciton density matrix

Nα =
〈
B̂†αB̂α

〉
, can be derived starting from the Heisenberg equation of motion for the

exciton operators

(13) −i~∂tB̂
†
α (t) =

[
Ĥ, B̂†α (t)

]
under the influence ofH.

The main approximations are the neglect of possible coherent phonon states and of
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memory effects induced by the photon and phonon fields. The kinetic equation that con-
sider a spatially resolved (illumination-mode) input light field of given frequencyωin and
allows to study the temperature dependence is

(14) ∂tNα = Gα (ωin) +
∑

β

γα←βNβ − 2ΓαNα ,

where2Γα = rα +
∑

β γβ←α is the total out-scattering rate,rα is the rate for spontaneous

emission proportional to the exciton oscillator strength:rα = r0
∣∣∫ d2Rψα (R)

∣∣2, and
γβ←α are the resulting phonon-assisted scattering rates [17], given by

(15) γβ←α =
2π
~

∑
q

((nq + 1) δ (εβ + ~ωq − εα) + nqδ (εβ − ~ωq − εα))
∣∣∣tqβα

∣∣∣2.
An explicit calculation ofr0 can be found elsewhere (see appendix C of ref. [17]).

Here we assume that the tip-sample interaction does not alter the radiative decay rates.
In this equation the generation term that describes the specific experimental excitation
conditions, depends on the spatial overlap between the illuminating beam and the exciton
wavefunctions corresponding to exciton levels resonant with the input light [21]:

(16) Gα = r0
∣∣oin

α

∣∣2 Lα(ωin)

with πLα(ω) = Γ/[(ω − ωα)2 + Γ2] and

(17) oin
α =

∫
d2R Ẽin(R)ψα (R)

whereẼin(R) =
∫
Ein(r)f(z)dz.

In the subsequent numerical calculations concerning the illumination-mode we will as-
sume an input light field with a given Gaussian profile centered around the tip position:
Ẽin(R) = E0

ing(R − R̄). In this case the generation term becomes function of the beam
position and shape (spatial resolution). We observe that also at steady-state Eq. (14) can
give rise to highly non-equilibrium exciton densities. Non-equilibrium here arises from
both spontaneous emission that prevents full thermalization and from the eventual local
excitation described by the generation terms.

Once the exciton densities have been derived, the frequency integrated PL can be readily
obtained. Inserting Eq. (5) into Eq. 2, it results

(18) I = r0
∑
α

∣∣oout
α

∣∣2Nα ,

whereoout
α analogously tooin

α contains the overlap of the exciton wavefunctions with the
signal modeẼout(R) delivered by the tip (collection mode) and is given by

(19) oout
α =

∫
d2R Ẽout(R)ψα (R)

According to the quantum regression theorem,
〈
Ŝ−(0) Ŝ+(τ)

〉
has the same dynamics

of
〈
Ŝ+(τ)

〉
(proportional to the exciton operator), but with

〈
Ŝ−(0) Ŝ+(0)

〉
as initial
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FIGURE 1. Schematic view of the exciton in a ternary QW with rough interfaces

condition. Following this procedure we obtain

(20) IPL(ωout) = r0
∑
α

∣∣oout
α

∣∣2 Lα(ωout)Nα

3. Numerical results

Here we present numerical result of spatially and spectrally resolved PL for a system of
QDs arising from interface fluctuations of GaAs quantum wells.

We consider the system Hamiltonian containing the disordered potential described af-
terwards. Eigenvalues and eigenvectors are obtained using the relevant LAPACK library
routines available online at [22]. Then we calculate the overlaps between the exciton states,
the source terms and the scattering rates, so to finally write the kinetic equation for the ex-
citon occupation (14). The system of linear equations deriving from putting this equation
equal to zero (stationary case) is solved using the LAPACK routines again; the resulting
Nα are inserted in Eqs. (18) and (20) in order to obtain the desired PL intensities. The
effective disordered potentialV (r), used in our simulations is obtained summing up two
different contributions. They are both modelled as a zero mean, Gauss distributed and spa-

tially correlated process defined by the property〈 V (r)V (r′) 〉 = v2
0e
−|r−r′|2/2ξ2

, where
〈 . . . 〉 denotes ensemble average over random configurations,v0 is the width of the en-
ergy distribution, andξ is the correlation length characterizing the potential fluctuations.
For the former potential we have chosenξ = 16 nm andv0 = 1.5 meV; for the latter, we
usedξ = 8 nm andv0 = 0.5 meV. Fig. 2(a) shows the effective disordered potential felt by
excitons obtained summing these two contributions and used for all the calculations. The
white circle specify the location chosen for local detection.

The samples so characterized take into account two different types of disorder occurring
in the real structures: one encountered in studies of islandlike defects in II-VI quantum well
[3] (where the lateral extent of the confining potential is comparable to or much largher than
the exciton diameter) or self-assembled III-V QDs [23] (where 0D confinement occurs in
islands with a larger height-diameter ratio) and the other considered by Flack [24], where
the samples are characterized by potential fluctuations at length scales small compared to
the exciton diameter.

As a prototype we consider GaAs QWs sandwiched byAlxGa1−xAs barriers, and
adopt an exciton kinetic mass ofm = 0.25m0. By considering a square region of 540
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FIGURE 2. (a) Specific realization of disorder potential (parameters are
given in the text). (b-d) Energy-integrated PL images obtained after uni-
form illumination of the sample at energyωI = 1 meV and collecting
locally the emitted light.
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FIGURE 3. Far field spectrum and local absorption spectrum calculated
centering the tip at the position indicated by the circle in Fig. 2 (a)

nm by 540 nm, we obtain a three dimensional matrix of dataI(x, y, ω) where x and y are
position coordinates.

In Fig. 2(b-d) we present energy-integrated PL images obtained after uniform illumina-
tion of the sample at energyωI = 1 meV (the zero of energy is fixed at the energy of the 1s
exciton in absence of disorder) and collecting locally the emitted light (C mode with spa-
tial resolutionFWHM = 47 nm). It is worth noting that the energy integrated excitonic
local density of states does not depend on position. So the observed structures are a direct
consequence of the increasing ratio between radiative and nonradiative scattering rates for
exciton states localized at the potential minima (compare e.g. images a and c). As the
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° ° 

FIGURE 4. Energy integrated spatially resolved photoluminescence at
two different temperature

temperature of the structure is lowered, a transition from a broad and fairly continuous PL
to an intense set of few spatially localized luminescence centers can be observed. Another
interesting feature is the non-monotonous brightness of some luminescence centers when
the temperature is increased (see e.g. the location indicated by an arrow in image b), which
can be due to a redistribution of excitons that can overcome shallow local minima by ther-
mal activation and fall down in still deeper states. This temperature-dependent behavior
is in close analogy with the non-monotonous Stokes shift of PL spectra in dependence of
temperature described in many papers [25, 26, 27].

In Fig. 3 we report for reference the far field and a local absorption spectra calculated
with the beam position centered in a local minimum of the disordered potential indicated
by the circle in Fig. 2(a). The shape of near-field spectrum significantly differs from far
field one and strongly depends, as shown elsewhere [14] from the position of the tip. For
example, the high-energy contributions are enhanced when the beam position is centered
in proximity of a local maximum [14]. Fig. 4 displays two energy-integrated PL images
I(X,Y) obtained at two different temperatures (T=2 K and 35 K respectively) It can be
instructive to better understand the emission mechanisms of these systems to compare
measurements of spatially resolved absorption spectra (recently an indirect method able to
provide information on near-field absorption has been developed [28]) with corresponding
PL spectra. Near-field optical spectroscopy technique allows us to construct a PL image as
a function of the energy by collecting spectra as the tip is rastered over the sample surface.

Fig. 5 displays absorption and the corresponding photoluminescence line-scans spectra
calculated atT = 4◦ K for the sample. These line-scans are function of the beam position
and energyIPL(X0, Y, ω) with X0 fixed (see Fig. 2(a) in order to examine theX0 direc-
tion). We observe how in the PL spectrum ( Fig. 5(b)) evidence of states at higher energies
due to the continuous band coming from quasi 2D states originating from the potential
barriers, present in the absorption spectrum ( Fig. 5(a)), disappears. This originates from
the fact that for these states energy relaxation due to phonon scattering is much more rapid
then the radiative decay rate.
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FIGURE 5. Line scan spectra obtained as a function of the beam position
and energyIPL(X0, Y, ω) with X0 fixed. (a) Absorption spectrum. (b)
Photoluminescence spectrum. The temperature of the sample isT =
4◦ K. Spatial resolution of the collecting tip:FWHM = 47 nm.

4. Conclusion

We have presented a microscopic quantum description of spatially resolved photolu-
minescence in QWs with interface fluctuations. The theory includes light quantization in
order to describe spontaneous emission, acoustic phonon scattering and the description of
spatially confined excitation (illumination mode) and/or detection (collection mode). This
model is managed to reproduce PL excitation spectroscopy in which the excitation and
detection energies and spatial positions can all independently be scanned. The presented
numerical calculations show that the assumption of equivalence between PLE and absorp-
tion spectra is not justified. In fact, we find significant differences and states at higher
energy observed in the PL spectrum, in the absorption spectrum disappears. Moreover,
the effect of temperature on the exciton photoluminescence images obtained after uniform
illumination of the sample and collecting locally the emitted light has been studied. In
particular, we have analyzed how lowering temperature the PL spectra exhibit a meta-
morphosis from a quantum well system to a quantum dots one. In conclusion we have
seen as the numerical results here presented constitute an intriguing example of the im-
pact of sample temperature, exciton localization, and microscope setup in the formation of
subwavelength-resolution images.
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